
Learning Submodular Functions

Maria-Florina Balcan
Georgia Institute of Technology
School of Computer Science
ninamf@cc.gatech.edu

Nicholas J. A. Harvey
University of Waterloo

Dept. of Combinatorics and Optimization
harvey@math.uwaterloo.ca

ABSTRACT
There has been much interest in the machine learning and algo-
rithmic game theory communities on understanding and using sub-
modular functions. Despite this substantial interest, little is known
about their learnability from data. Motivated by applications, such
as pricing goods in economics, this paper considers PAC-style learn-
ing of submodular functions in a distributional setting.

A problem instance consists of a distribution on {0, 1}n and a
real-valued function on {0, 1}n that is non-negative, monotone,
and submodular. We are given poly(n) samples from this distribu-
tion, along with the values of the function at those sample points.
The task is to approximate the value of the function to within a
multiplicative factor at subsequent sample points drawn from the
same distribution, with sufficiently high probability. We develop
the first theoretical analysis of this problem, proving a number of
important and nearly tight results. For instance, if the underlying
distribution is a product distribution then we give a learning algo-
rithm that achieves a constant-factor approximation (under some
assumptions). However, for general distributions we provide a sur-
prising Õ(n1/3) lower bound based on a new interesting class of
matroids and we also show a O(n1/2) upper bound.

Our work combines central issues in optimization (submodular
functions and matroids) with central topics in learning (distribu-
tional learning and PAC-style analyses) and with central concepts
in pseudo-randomness (lossless expander graphs). Our analysis in-
volves a twist on the usual learning theory models and uncovers
some interesting structural and extremal properties of submodular
functions, which we suspect are likely to be useful in other con-
texts. In particular, to prove our general lower bound, we use loss-
less expanders to construct a new family of matroids which can take
wildly varying rank values on superpolynomially many sets; no
such construction was previously known. This construction shows
unexpected extremal properties of submodular functions.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral

General Terms
Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

1. INTRODUCTION
What does it mean to “learn a submodular function”, and why

would one be interested in doing that? To begin, we start by defin-
ing what submodular functions are. Let [n] = {1, . . . , n} be a
ground set and let f : 2[n] → R be a set function. This function is
called submodular if

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩B) ∀A,B ⊆ [n]. (1.1)

Submodularity is in many ways similar to concavity of functions
defined on R

n. For example, concavity of differentiable functions
is equivalent to gradient monotonicity, and submodularity is equiv-
alent to monotonicity of the marginal values:

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) (1.2)

for all A ⊆ B ⊆ [n] and i �∈ B. This inequality reflects a natu-
ral notion of “diminishing returns”, which explains why submod-
ularity has long been a topic of interest in economics [35]. Sub-
modular functions have also been studied for decades in operations
research and combinatorial optimization [13], as they arise natu-
rally in the study of graphs, matroids, covering problems, facility
location problems, etc.

More recently, submodular functions have become key concepts
in both the machine learning and algorithmic game theory commu-
nities. For example, submodular functions have been used to model
bidders’ valuation functions in combinatorial auctions [18, 26, 6],
for solving feature selection problems in graphical models [24], and
for solving various clustering problems [29]. In fact, submodular-
ity has been the topic of several tutorials and workshops at recent
major conferences in machine learning [1, 25].

The Model. So what does it mean to “learn a submodular func-
tion”? Our definition comes from learning theory, where the goal
of learning is to predict the future based on past observations. One
successful approach to formalizing this goal is Valiant’s PAC model
[37]. However, the PAC model is primarily for learning Boolean-
valued functions, such as threshold functions and low-depth cir-
cuits [37, 23]. For real-valued functions, it seems appropriate to
change the model by ignoring small-magnitude errors in the pre-
dicted values. Our results on learning submodular functions are
presented in this new model, which we call the PMAC model: this
abbreviation stands for “Probably Mostly Approximately Correct”.

In this model, a learning algorithm is given a set S of polyno-
mially many labeled examples drawn i.i.d. from some fixed, but
unknown, distribution D over points in 2[n]. The points are labeled
by a fixed, but unknown, target function f∗ : 2[n] → R+. The goal
is to output a hypothesis function f such that, with large probability
over the choice of examples, the set of points for which f is a good
approximation for f∗ has large measure with respect to D. More

formally,

Prx1,x2,...∼D [Prx∼D [f(x) ≤ f∗(x) ≤ αf(x)] ≥ 1− ε]

≥ 1− δ,

where f is the output of the learning algorithm when given inputs
{ (xi, f

∗(xi)) }i=1,2,... and the approximation ratio α ≥ 1 allows
for multiplicative error in the function values. In our model, one
must approximate the value of a function on a set of large mea-
sure, with high confidence. In contrast, the traditional PAC model
requires one to predict the value exactly on a set of large measure,
with high confidence. The PAC model is the special case of our
model with α = 1.

Motivation. So why would one want to learn a submodular func-
tion in this manner? Our work has multiple motivations. From a
foundational perspective, submodular functions form a broad class
of important functions, so studying their learnability allows us to
understand their structure in a new way. To draw a parallel to the
Boolean-valued case, a class of comparable breadth is the class of
monotone Boolean functions, which have been intensively stud-
ied [11, 9, 3].

From an applications perspective, algorithms for learning sub-
modular functions could be very useful in some of the applications
where these functions arise. A classic example is pricing bundles
of goods. For example, a software company which produces a soft-
ware suite typically produces several bundles, each of which is a
subset of the software programs in the suite. Further examples
abound: automobile manufacturers produce a few trim lines of their
vehicles with various added options; supermarkets sell bundles of
condiments, variety packs of cereal, etc. From an economic stand-
point, the central question here is bundle pricing: how should a
company decide which bundles to sell, and how should they choose
their prices? This is an active area of research in management sci-
ence and microeconomic theory [18, 40, 5].

There has been much work on methods for designing optimally
priced bundles, in various models. These methods typically make
two assumptions [18]. First, the consumer’s valuations for all pos-
sible bundles are known. Second, the consumer’s valuations ex-
hibit economies of scale (e.g., subadditivity or submodularity). Our
work is motivated by the observation that this first assumption is
entirely unrealistic, both computationally and pragmatically, since
the number of bundles is exponential in the number of goods.

We propose learning of submodular functions as an approach to
make this first assumption more realistic. To justify our proposal,
note that corporations typically possess large amounts of data ac-
quired from past consumer purchases [31]. This suggests that pas-
sive supervised learning is a realistic model for learning consumer
valuations. Next, we note that valuations are real numbers, so it
may not be possible to learn them exactly. This suggests that al-
lowing solutions with multiplicative error is appropriate for this
problem. Thus, the problem of learning submodular functions in
the PMAC model is a good fit for the real-world problem of learn-
ing consumer valuations.

1.1 Overview of Our Results and Techniques
We prove several algorithmic results and lower bounds in the PMAC
model, as well as surprising structural results on submodular func-
tions and matroids.

Algorithm for product distributions. We begin with a positive re-
sult. We show that non-negative, monotone, submodular functions
can be PMAC-learned with a constant approximation factor α, un-
der the additional assumptions that the distribution D on examples
is a product distribution, and that the function is Lipschitz.

The main technical result underlying this algorithm is a con-
centration result for monotone, submodular, Lipschitz functions.
Using Talagrand’s inequality, we show that such functions are ex-
tremely tightly concentrated around their expected value. There-
fore the submodular function is actually well-approximated by the
constant function that equals the empirical average on all points.

Inapproximability for general distributions. Given the simplic-
ity of the constant-approximation algorithm for product distribu-
tions, a natural next step would be to generalize it to arbitrary dis-
tributions. Rather surprisingly, we show that this is impossible:
under arbitrary distributions, every algorithm for PMAC-learning
monotone, submodular functions must have approximation factor
Ω̃(n1/3), even if the functions are Lipschitz. Moreover, this lower
bound holds even if the algorithm knows the underlying distribu-
tion and it can adaptively query the target function at points of its
choice.

This inapproximability result is the most technical part of our pa-
per. To prove it, we require a family of submodular functions which
take wildly varying values on a certain set of points. If the target
function is drawn from this family, then the learning algorithm will
not be able to predict the function values on those points, and there-
fore must have a high approximation ratio. We obtain such a family
of submodular functions by creating a new family of matroids with
surprising extremal properties, which we describe below.

Algorithm for general distributions. Our Ω̃(n1/3) inapproxima-
bility result for general distributions turns out to be nearly optimal.
We give an algorithm to PMAC-learn an arbitrary non-negative,
monotone, submodular function with approximation factor O(

√
n).

This algorithm is based on a recent structural result which shows
that any monotone, non-negative, submodular function can be ap-
proximated within a factor of

√
n on every point by the square root

of a linear function [15]. We leverage this result to reduce the prob-
lem of PMAC-learning a submodular function to learning a linear
separator in the usual PAC model. We remark that an improved
structural result for any subclass of submodular functions would
yield an improved analysis of our algorithm for that subclass.

A new family of extremal matroids. Our inapproximability re-
sult is based on a new family of matroids1 with several interesting
properties. The technical question we explore is: given a set family
A = {A1, . . . , Ak} and integers b1, . . . , bk, when is

I = { I : |I | ≤ r ∧ |I ∩Ai| ≤ bi ∀i = 1, . . . , k } (1.3)

a matroid? The simplest matroid of this type is obtained when the
Ai’s are disjoint, in which case I is a (truncated) partition matroid.
Another important matroid of this type is when the Ai’s form an
error-correcting code of constant weight r and minimum distance
4, and each bi = r − 1; this is a paving matroid.

To this date, there has been no unified explanation for these two
types of matroids. Our observation is that these two special cases
are matroids due to the expansion of the set system A: disjoint sets
expand perfectly, and error-correcting codes are precisely pairwise
expanders. This suggests the general question: if A has good ex-
pansion properties, does I form a matroid? For example, if the
Ai’s are almost disjoint, can we obtain a matroid that’s almost a
partition matroid? We give a positive answer to these questions by
a novel and highly technical construction which gives a substan-
tial generalization of partition and paving matroids. This matroid
construction, together with the existence of expanders with certain
parameters, and the fact that the bi’s can be (almost) arbitrary, gives

1 For a brief definition of matroids, see Section 2. For further discussion,
we refer the reader to standard references [30, 32].

a family of matroids taking wildly varying rank values on the Ai’s.
This leads to our Ω̃(n1/3) inapproximability result.

Approximate characterization of matroids. We provide an in-
teresting “approximate characterization” of matroids. It is well-
known that defining the function f : 2[n] → R by f(S) = h(|S|)
gives a submodular function if h : R → R is concave. Surprisingly,
we show that an approximate converse is true: for any matroid,
there exists a concave function h such that most sets S have rank
approximately h(|S|). A more precise statement is in Section 3.1.
This result is based on our concentration inequality for Lipschitz,
submodular functions under product distributions.

1.2 Related Work
Learning real-valued functions and the PMAC Model. In the
machine learning literature [19, 38], learning real-valued functions
(in the distributional learning setting) is often addressed by consid-
ering the squared error loss2, i.e. Ex

[
(f(x)− f∗(x))2

]
. How-

ever, this does not distinguish between the case of having low error
on most of the distribution and high error on just a few points, ver-
sus moderately high error everywhere. Thus, a lower bound for the
squared error loss is not so meaningful. In comparison, the PMAC
model allows for more fine-grained control with separate parame-
ters for the amount and extent of errors.

Learning Submodular Functions. To our knowledge, there is no
prior work on learning submodular functions in a natural distribu-
tional PAC style learning setting. The most relevant work is a paper
of Goemans et al. [15], which considers the problem of “approxi-
mating submodular functions everywhere”. That paper considers
the algorithmic problem of efficiently finding a function which ap-
proximates a submodular function at every point of its domain.
They give an algorithm which achieves an approximation factor
Õ(

√
n), and also show Ω̃(

√
n) inapproximability. Their algorithm

adaptively queries the target function at points of its choice, and the
hypothesis it produces must approximate the target function at ev-
ery point.3 In contrast, our PMAC model falls into the more widely
studied passive supervised learning setting [4, 23, 37, 38], which is
more relevant for our motivating application to bundle pricing.

Our algorithm for PMAC-learning under general distributions
and the Goemans et al. algorithm both rely on the structural result
(due to Goemans et al.) that monotone, submodular functions can
be approximated by the square root of a linear function to within a
factor

√
n. In both cases, the challenge is to find this linear func-

tion. The Goemans et al. algorithm is very sophisticated: it gives an
intricate combinatorial algorithm to approximately solve a certain
convex program which produces the desired function. Additionally,
it requires query access to the target and so does not apply to our
framework. On the other hand, our algorithm is very simple: given
the structural result, we can reduce our problem to that of learning
a linear separator, which is easily solved by linear programming.
Moreover, our algorithm is noise-tolerant and more amenable to
extensions; we elaborate on this in Section 5.

On the other hand, our lower bound is significantly more in-
volved than the lower bound of Goemans et al. [15]. (Their lower
bound was slightly improved by Svitkina and Fleischer [34].) These

2 Other loss functions are also used, such as L1 loss, but these are not
substantially different from squared error loss.
3 Technically speaking, their model can be viewed as “exact learning with
value queries”, which is not very natural from a machine learning perspec-
tive. In particular, in many learning applications arbitrary membership or
value queries are undesirable because natural oracles, such as hired hu-
mans, have difficulty labeling synthetic examples [8]. Also, negative re-
sults for exact learning do not necessarily imply hardness for learning in
more widely used learning models. We discuss this in more detail below.

previous lower bounds also use matroids of the form in Eq. (1.3),
although they only need such matroids for the easy case k = 1.
Handling the case k = nω(1) makes our matroid construction much
more intricate. Essentially, Goemans et al. only show worst-case
inapproximability, whereas we need to show average-case inap-
proximability. A similar situation occurs with Boolean functions,
where lower bounds for distributional learning are typically much
harder to show than lower bounds for exact learning. For instance,
even conjunctions are hard to learn in the exact learning model, and
yet they are trivial to PAC-learn. Proving a lower bound for PAC-
learning requires exhibiting some fundamental complexity in the
class of target functions, especially when one does not restrict the
form of the hypothesis function. It is precisely this phenomenon
which makes our lower bound challenging to prove.

2. FORMALIZING THE MODEL

2.1 Preliminaries
Notation. Let [n] denote the set {1, 2, . . . , n}. This will typically
be used as the ground set for the matroids and submodular functions
that we discuss. For any set S ⊆ [n] and element x ∈ [n], we let
S + x denote S ∪ {x}. The indicator vector of a set S ⊆ [n] is
χ(S) ∈ {0, 1}n, where χ(S)i is 1 if i is in S and 0 otherwise. We
frequently use this natural isomorphism between {0, 1}n and 2[n].

Submodular Functions and Matroids. We now briefly state some
standard facts about matroids and submodular functions. For a de-
tailed discussion, we refer the reader to standard references [14, 27,
30, 32]. We will be concerned with the following properties of set
functions. We say that f : 2[n] → R is
• Non-negative if f(S) ≥ 0 for all S.
• Monotone (or non-decreasing) if f(S) ≤ f(T) for all S ⊆ T .
• Submodular if it satisfies Eq. (1.1), or equivalently Eq. (1.2).
• Subadditive if f(S) + f(T) ≥ f(S ∪ T) for all S, T ⊆ [n].
• L-Lipschitz if |f(S + x) − f(S)| ≤ L for all S ⊆ [n] and

x ∈ [n].
Throughout this paper we will implicitly assume that all set func-
tions satisfy f(∅) = 0.

One manner in which submodular functions arise is as the rank
functions of matroids. A pair M = ([n], I) is called a matroid if
I ⊆ 2[n] is a non-empty family such that
• if I ∈ I and J ⊆ I , then J ∈ I, and
• if I, J ∈ I and |J | < |I |, then there exists an i ∈ I \ J such

that J + i ∈ I.
The sets in I are called independent. The maximal independent sets
all have the same cardinality, which is the rank of the matroid. The
rank function of the matroid is the function rankM : 2[n] → N+

defined by

rankM(S) := max { |I | : I ⊆ S, I ∈ I } .
It is well-known that rankM is non-negative, monotone, submod-
ular, and 1-Lipschitz.

2.2 The PMAC Model
The PMAC model is a passive, supervised learning framework.

There is a space {0, 1}n of examples, and a fixed but unknown
distribution D on {0, 1}n. The examples are labeled by a fixed but
unknown target function f∗ : {0, 1}n → R+. In this model, a
learning algorithm is provided a set S of labeled training examples
drawn i.i.d. from D and labeled by f∗. The algorithm may perform
an arbitrary polynomial time computation on the labeled examples
S , then must output a hypothesis function f : {0, 1}n → R+. The

Algorithm 1 An algorithm for PMAC-learning a non-negative, mono-
tone, 1-Lipschitz, submodular function f∗ when the examples come from
a product distribution. Its input is a sequence of labeled training examples
(S1, f∗(S1)), . . . , (S�, f

∗(S�)), parameters ε and l.

• Let μ =
∑�

i=1 f
∗(Si)/�.

• Case 1: If μ ≥ 450 log(1/ε), then return the constant function
f = μ/4.

• Case 2: If μ < 450 log(1/ε), then compute the set U =⋃
i : f∗(Si)=0 Si. Return the function f where f(A) = 0

if A ⊆ U and f(A) = 1 otherwise.

goal is that, with high probability, f is a good approximation of the
target for most points in D. Formally:

DEFINITION 1. Let F be a family of non-negative, real-valued
functions with domain {0, 1}n. We say that an algorithm A PMAC-
learns F with approximation factor α if, for any distribution D
over {0, 1}n, for any target function f∗ ∈ F , and for ε ≥ 0 and
δ ≥ 0 sufficiently small:
• The input to A is a sequence of pairs {(xi, f∗(xi))}1≤i≤�

where each xi is i.i.d. from D.
• The number of inputs � provided to A and the running time of

A are both at most poly(n, 1
ε
, 1
δ
).

• The output of A is a function f : {0, 1}n → R that satisfies

Prx1,...,x�∼D

[
Prx∼D [f(x) ≤ f∗(x) ≤ α · f(x)] ≥ 1− ε

]
≥ 1− δ.

The name PMAC stands for “Probably Mostly Approximately
Correct”. It is an extension of the PAC model to learning non-
negative, real-valued functions, allowing multiplicative error α. The
PAC model for learning boolean functions is precisely the special
case when α = 1.

Learning submodular functions in the PMAC model. In this pa-
per we focus on the PMAC-learnability of submodular functions.
We note that it is quite easy to PAC-learn the class of boolean sub-
modular functions. Details are given in the full version of the pa-
per [7]. The rest of this paper considers the much more challenging
task of PMAC-learning the general class of real-valued, submod-
ular functions. We also provide PMAC-learnability results for the
more general class of subadditive functions.

In Section 3 we also study PMAC-learnability under a product
distribution D on {0, 1}n, meaning that if x is a sample from D,
then the events xi = 1 and xj = 1 are independent for every i �= j.

3. PRODUCT DISTRIBUTIONS
We consider learnability of submodular functions when the un-

derlying distribution is a product distribution. All proofs are de-
ferred to the full version of the paper.

THEOREM 1. Let F be the class of non-negative, monotone, 1-
Lipschitz, submodular functions with ground set [n] and minimum
non-zero value 1. Let D be a product distribution on {0, 1}n. For
any sufficiently small ε > 0 and δ > 0, Algorithm 1 PMAC-learns
F with approximation factor α = O(log(1/ε)). The number of
training examples used is � = 10n2 log(1/δ) + n log(n/δ)/ε. If
E [f∗(X)] ≥ c log(1/ε), for sufficiently large c, then the approx-
imation factor improves to 8.

An important class to which Theorem 1 applies is that of ma-
troid rank functions. Note that if the minimum non-zero value for
functions in F is η < 1, then a simple modification yields an

approximation factor of O(log(1/ε)/η). We show that, under a
product distribution, the value of f∗ is tightly concentrated around
its expectation. Consequently, the empirical average gives a good
approximation of f∗ for most of the distribution. So f∗ is well-
approximated by the constant function that equals the empirical
average. This idea is used in Case 1 of Algorithm 1.

One caveat is that allowing multiplicative error is of no help in
estimating the zeros of f∗. The zeros must be treated specially.
Fortunately the zeros of a non-negative, monotone, submodular
function have special structure: they are both union-closed and
downward-closed. In other words, the indicator function for the
zeros is a NOR function. Therefore Case 2 handles the zeros by
PAC-learning this NOR function.

The main technical ingredient in proving Theorem 1 is the strong
concentration bound:

THEOREM 2. Let f : 2[n] → R+ be a non-negative, monotone,
submodular, 1-Lipschitz function. Let the random variable X ⊆
[n] have a product distribution. For any b, t ≥ 0,

Pr
[
f(X) ≤ b− t

√
b
]
· Pr [f(X) ≥ b] ≤ exp(−t2/4).

To understand Theorem 2, it is instructive to compare it with
known results. For example, the Chernoff bound is precisely a con-
centration bound for linear, Lipschitz functions. On the other hand,
if f is an arbitrary 1-Lipschitz function then Azuma’s inequality
implies concentration, although of a much weaker form, with stan-
dard deviation roughly

√
n. So Theorem 2 can be viewed as saying

that Azuma’s inequality can be significantly strengthened when the
given function is known to be submodular.4

Theorem 2 most naturally implies concentration around a me-
dian of f(X). By standard manipulations, e.g., [21, §2.5] or [28,
§20.2], this also implies concentration around the expected value.
We obtain:

COROLLARY 3. Let f : 2[n] → R+ be a non-negative, mono-
tone, submodular, 1-Lipschitz function. Let the random variable
X ⊆ [n] have a product distribution. For any 0 ≤ α ≤ 1 and if
E [f(X)] ≥ 240/α, then

Pr [|f(X) −E [f(X)] | > αE [f(X)]]

≤ 4 exp
(− α2 E [f(X)] /16

)
.

3.1 An Approximate Characterization of Ma-
troid Rank Functions

We now present an ancillary result that is an application of the
ideas in the previous section. The statement is quite surprising: ma-
troid rank functions are very well approximated by univariate, con-
cave functions. The proof is also based on Theorem 2. To motivate
the result, consider the following easy construction of submodular
functions, which can be found in Lovász’s survey [27, pp. 251]

PROPOSITION 4. Let h : R → R be concave. Then f : 2[n] →
R defined by f(S) = h(|S|) is submodular.

Surprisingly, we now show that a partial converse is true.

THEOREM 5. Let f : 2[n] → Z+ be the rank function of a
matroid with no loops, i.e., f(S) ≥ 1 whenever S �= ∅. Fix ε > 0,
4 Our proof of Theorem 2 is based on the Talagrand inequality [2, 28].
Independently, Chekuri and Vondrák [12] proved a similar result using the
FKG inequality. Concentration results of this flavor can also be proven us-
ing the framework of self-bounding functions [10], as observed in an earlier
paper by Hajiaghayi et al. [17]; see also the survey by Vondrák [39].

sufficiently small. There exists a concave function h : [0, n] → R

such that, for every k ∈ [n], and for a 1 − ε fraction of the sets
S ∈ (

[n]
k

)
, for some absolute constant c we have

h(k)/(c log(1/ε)) ≤ f(S) ≤ c log(1/ε)h(k).

The idea behind this theorem is as follows. For x ∈ [0, n], we
define h(x) to be the expected value of f under the product distri-
bution which samples elements with probability x/n. The value of
f under this distribution is tightly concentrated around h(x), by the
results of the previous section. For k ∈ [n], the distribution defin-
ing h(k) is very similar to the uniform distribution on sets of size k,
so f is also tightly concentrated under the latter distribution. So the
value of f for most sets of size k is roughly h(k). The concavity of
this function h is a consequence of submodularity of f .

4. INAPPROXIMABILITY UNDER
ARBITRARY DISTRIBUTIONS

The simplicity of Algorithm 1 might make one hope that a constant-
factor approximation is possible under arbitrary distributions. How-
ever, the following theorem, which provides new insight into the
inherent complexity of submodular functions, shows that this is not
the case. A proof is in the appendix.

THEOREM 6. No algorithm can PMAC-learn the class of non-
negative, monotone, submodular functions with approximation fac-
tor o(n1/3/log n). This holds even for the subclass of matroid rank
functions.

This result holds even if the algorithm is told the underlying dis-
tribution, even if the algorithm can query the function on inputs of
its choice, and even if the queries are adaptive. In other words, this
inapproximability still holds in the PMAC model augmented with
value queries. Theorem 6 is an information-theoretic hardness re-
sult. A slight modification gives a complexity-theoretic hardness
result; see the full version of the paper [7].

As we described in Section 1.1, the proof of Theorem 6 pro-
ceeds by constructing a family of matroids whose rank functions
take wildly varying values on a certain set of points. The high
level idea is to show that for a super-polynomial sized set of k
points in {0, 1}n, for any partition of those points into HIGH and
LOW, we can construct a matroid where the points in HIGH have
rank rhigh and the points in LOW have rank rlow, and the ratio
rhigh/rlow = Ω̃(n1/3). This will immediately imply hardness for
learning over the uniform distribution on these k points from any
polynomial-sized sample, even with value queries. Specifically, the
following theorem (proven in Section 4.3) gives this construction:

THEOREM 7. For any k = 2o(n
1/3), there exists a family of

sets A ⊆ 2[n] and a family of matroids M = { MB : B ⊆ A }
with the following properties.
• |A| = k and |A| = n1/3 for every A ∈ A.
• For every B ⊆ A and every A ∈ A, we have

rankMB (A) =

{
8 log k (if A ∈ B)

|A| (if A ∈ A \ B).

For example, by picking k = nlog n, in the matroid MB, a set
A has rank only O(log2 n) if A ∈ B, but has rank Ω(n1/3) if
A ∈ A \ B. In other words, as B varies, the rank of a set A ∈ A
varies wildly, depending on whether A ∈ B or not, as promised.

4.1 Discussion of Theorem 7
To understand Theorem 7, consider the set family defined in

Eq. (1.3), namely

I = { I : |I | ≤ r ∧ |I ∩Ai| ≤ bi ∀i = 1, . . . , k } .
If I is a matroid, and if rank(Ai) = bi, then perhaps such a con-
struction can be used to prove Theorem 7.

Even in the case k = 2, understanding I is quite interesting.
First of all, I typically is not a matroid. Consider taking n = 5,
r = 4, A1 = {1, 2, 3}, A2 = {3, 4, 5} and b1 = b2 = 2. Then
both {1, 2, 4, 5} and {2, 3, 4} are maximal sets in I but they are not
equicardinal, which violates a basic matroid property. However,
one can verify that I is a matroid if we require that r ≤ b1 + b2 −
|A1 ∩A2|. We can even relax the constraint |I | ≤ r to obtain

{ I : |I ∩A1| ≤ b1 ∧ |I ∩A2| ≤ b2 ∧ |I ∩ (A1 ∪ A2)| ≤ r } ,
which is also a matroid if r ≤ b1 + b2 − |A1 ∩ A2|. We would
have preferred a somewhat weaker restriction on r, say r ≤ b1+b2
(which is actually vacuous), but in order to obtain a matroid, this
restriction on r must include an “error term” of −|A1 ∩A2|.

This discussion of the case k = 2 is quite simple. The main con-
tribution of Theorem 7 is to generalize this discussion to the case
k > 2. The generalization is highly technical, as Theorem 7 im-
poses numerous conditions on the desired family of matroids. Quite
magically, the key to satisfying all of the desired conditions is to en-
sure that the family A has strong expansion properties. There are
numerous challenges in proving the desired result. Indeed, our first
construction, Theorem 8, falls short of the mark as it cannot handle
the case k > n, whereas proving Theorem 6 requires k = nω(1).
Theorem 9 improves the first construction with several ideas, and it
provides the basis for proving Theorem 7 and Theorem 6.

We can also interpret Theorem 7 through the lens of the sub-
modular completion problem. Suppose we have partially defined
a set function f : 2[n] → R, perhaps assigning f(A1) = b1,
f(A2) = b2, etc. Can the remaining values of f be chosen such
that f is submodular? This is not a simple question, and recent
results suggest that it is quite challenging [33]. Theorem 7 sheds
some light on the submodular completion problem, for the special
case when each Ai belongs to our particular family A. Its proof
shows that for any bi’s satisfying 8 log k ≤ bi ≤ |Ai|, the remain-
ing values can be chosen such that f is submodular.

4.2 Our New Matroid Constructions
Let A = {A1, . . . , Ak} be an arbitrary family of sets. Let

b1, . . . , bk be integers satisfying 0 ≤ bi ≤ |Ai|. As we saw above,
in the case k = 2,

{I : |I ∩ A1| ≤ b1 ∧ |I ∩A2| ≤ b2

∧ |I ∩ (A1 ∪A2)| ≤ b1 + b2 − |A1 ∩A2|}
is a matroid, where −|A1 ∩ A2| is an undesirable but necessary
“error term” in the last constraint.

To generalize to k > 2, we impose similar constraints for every
subset of the Ai’s. Our new set family is

I = { I : |I ∩A(J)| ≤ f(J) ∀J ⊆ [k] } . (4.1)

where the function f : 2[k] → Z is defined by

f(J) :=
∑
j∈J

bj −
(∑

j∈J

|Aj | − |A(J)|
)
, (4.2)

where A(J) :=
⋃
j∈J

Aj .

In the definition of f(J), we should think of −(∑
j∈J |Aj | −

|A(J)|) as an “error term”, since it is non-positive, and it captures
the “overlap” of the sets { Aj : j ∈ J }. In particular, if J =
{1, 2} then this error term is −|A1 ∩A2|, as it was in the case k =
2. Furthermore, if the Aj’s are all disjoint then the error terms are
all 0, so the family I reduces to { I : |I ∩Aj | ≤ bj ∀j ∈ [k] },
which is a partition matroid.

Our first matroid construction is given by the following theorem,
which is proven in Appendix A.

THEOREM 8. The family I given in Eq. (4.1) is the family of
independent sets of a matroid, if it is non-empty.

As mentioned above, Theorem 8 does not suffice to prove Theo-
rem 6. To see why, suppose that k > n and that bi < |Ai| for every
i. Then f([k]) ≤ n − k < 0, and therefore I is empty. So the
construction of Theorem 8 is only applicable when k ≤ n, which
is insufficient for proving Theorem 6.

We now modify the preceding construction by introducing a sort
of “truncation” operation which allows us to take k � n. We em-
phasize that this truncation is not ordinary matroid truncation. The
ordinary truncation operation decreases the rank of the matroid,
whereas we want to increase the rank by throwing away constraints
in the definition of I. We will introduce an additional parameter τ ,
and only keep constraints for |J | < τ . So long as f is large enough
for a certain interval, then we can truncate f and still get a matroid.

DEFINITION 2. Let μ and τ be non-negative integers. A func-
tion f : 2[k] → R is called (μ, τ)-large if

f(J) ≥
{
0 ∀J ⊆ [k], |J | < τ

μ ∀J ⊆ [k], τ ≤ |J | ≤ 2τ − 2.

The truncated function f̄ : 2[k] → Z is defined by

f̄(J) :=

{
f(J) (if |J | < τ)

μ (otherwise).

THEOREM 9. Suppose that the function f defined in Eq. (4.2)
is (μ, τ)-large. Then the family

Ī =
{
I : |I ∩A(J)| ≤ f̄(J) ∀J ⊆ [k]

}
is the family of independent sets of a matroid.

If we assume that the Ai’s cover the ground set, i.e., A([k]) =
[n], or if we apply ordinary matroid truncation to reduce the rank
to μ, then the family Ī can be written

Ī =
{
I : |I | ≤ μ ∧ |I∩A(J)| ≤ f(J) ∀J ⊆ [k], |J | < τ

}
.

This construction yields quite a broad family of matroids. In partic-
ular, partition matroids and paving matroids are both special cases.
Thus, our construction can produce non-linear matroids, as the Vá-
mos matroid is both non-linear and paving [30].

4.3 Theorem 7 and Matroids from Lossless Ex-
panders

To prove Theorem 7, we must construct the desired set family
A and the matroid family M. To achieve the desired properties of
M, we require that A satisfies a strong expansion property which
we describe now.

DEFINITION 3. Let G = (U ∪ V,E) be a bipartite graph. For
J ⊆ U , define

Γ(J) := { v : ∃u ∈ J such that {u, v} ∈ E } .

For simplicity we let Γ(u) = Γ({u}). The graph G is called a
(d, L, ε)-lossless expander if

|Γ(u)| = d ∀u ∈ U

|Γ(J)| ≥ (1− ε) · d · |J | ∀J ⊆ U, |J | ≤ L.

Lossless expanders are well-studied [20], and their existence is
discussed below in Theorem 13. Given such a G, we will construct
our set family A = {A1, . . . , Ak} ⊆ 2[n] by identifying U = [k],
V = [n], and for each vertex i ∈ U we define Ai to be Γ(i). The
various parameters in Theorem 7 must be reflected in the various
parameters of G, so let us now make clear the relationships between
these parameters.

U = [k], V = [n], d = μ,

L = 2τ − 2, ε =
b

4μ
, b ≥ 2μ

τ
.

(4.3)

(The actual values are chosen below in Eq. (4.6).) Thus we have:

|Ai| = μ ∀i ∈ U

|A(J)| ≥ (1− ε) · μ · |J | ∀J ⊆ U, |J | ≤ 2τ − 2.
(4.4)

Recall that we must construct not a single matroid but an entire
family of matroids, one for every subfamily B ⊆ A. Constructing
this large number of matroids will be no harder than constructing
a single matroid because the matroid properties will follow from
the expansion properties of the set family (i.e., Eq. (4.4)), and these
properties are obviously preserved by restricting to a subfamily.

For any subfamily B ⊆ A, we will obtain the matroid MB using
Theorem 9. Let UB ⊆ U be the set of indices defining B, i.e.,
B = { Ai : i ∈ UB }. The bi parameters will all be equal, so
let their common value be b. The function defining the matroid is
fB : 2UB → R, defined as in Eq. (4.2) by

fB(J) =
∑
j∈J

b−
(∑

j∈J

|Aj | − |A(J)|
)

= (b− μ)|J |+ |A(J)|.

CLAIM 10. fB is (μ, τ)-large.

All claims in this section are proven in Appendix A. By this
claim, Theorem 9 implies that

IB =
{
I : |I | ≤ μ ∧ |I∩A(J)| ≤ fB(J) ∀J ⊆ UB, |J | < τ

}
(4.5)

is the family of independent sets of a matroid, which we call MB.
The next step in proving Theorem 7 is to analyze rankMB(Ai)

for Ai ∈ A. This is accomplished by the following two claims,
which follow from Eq. (4.4) without too much difficulty.

CLAIM 11. Suppose that b ≤ μ. Then for all B ⊆ A and all
Ai ∈ B, we have rankMB(Ai) = b, .

CLAIM 12. rankMB (Ai)=μ for all B⊆A and Ai∈A \ B.

Lastly, we show the existence of an expander graph G with pa-
rameters that are sufficient to prove Theorem 7. The following
probabilistic construction is folklore. We thank Atri Rudra for help-
ful discussions regarding this construction and for stating it in these
general terms. A less general statement along the same lines can be
found in Vadhan’s survey [36, Theorem 4.4].

THEOREM 13. Let k ≥ 2, ε ≥ 0, L ≤ k, d ≥ 2 log(k)/ε and
n ≥ 6Ld/ε. Then a (d, L, ε)-lossless expander exists.

To prove Theorem 7, we choose k = 2o(n
1/3) and μ = |Ai| =

n1/3 (cf. Eq. (4.4)). It is clear from Claim 11 that we must choose

b = 8 log k. (We require that k is at most 2o(n
1/3) because Claim 11

assumes b ≤ μ.) Following Eq. (4.3), we can therefore take

d = μ = n1/3, ε =
b

4μ
=

2 log k

n1/3
,

τ =
2μ

b
=

n1/3

4 log k
, L = 2τ − 2 ≤ n1/3

2 log k
.

(4.6)

This satisfies the hypotheses of Theorem 13, so our desired ex-
pander exists and Theorem 7 is proven.

5. O(
√
n)-APPROXIMATION ALGORITHM

In this section we discuss our most general upper bounds for
efficiently PMAC-learning two very broad families of functions:
a PMAC-learning algorithm with approximation factor O(n) for
learning the family of non-negative, monotone, subadditive func-
tions and a PMAC-learning algorithm with approximation factor
O(

√
n) for learning the class of non-negative, monotone, submod-

ular functions. We start with two lemmas concerning these classes
of functions.

LEMMA 14. Let f : 2[n] → R+ be a non-negative, monotone,
subadditive function. Then there exists a linear function f̂ such that
f̂(S) ≤ f(S) ≤ nf̂(S) for all S ⊆ [n].

A stronger result for the class of submodular functions was proven
by Goemans et al. [15], using properties of submodular polyhedra
and John’s theorem on approximating centrally-symmetric convex
bodies by ellipsoids [22].

LEMMA 15 (GOEMANS ET AL. [15]). Let f : 2[n] → R+

be a non-negative, monotone, submodular function with f(∅) = 0.
Then there exists a function f̂ of the form f̂(S) =

√
wTχ(S) where

w ∈ R
n
+ such that f̂(S) ≤ f(S) ≤ √

nf̂(S) for all S ⊆ [n].

We now prove our main algorithmic results.

THEOREM 16. Let F be the class of non-negative, monotone,
subadditive functions over X = 2[n]. There is an algorithm that
PMAC-learns F with approximation factor n+ 1. That is, for any
distribution D over X , for any ε, δ sufficiently small, with proba-
bility 1− δ, the algorithm produces a function f that approximates
f∗ within a multiplicative factor of n+1 on a set of measure 1− ε
with respect to D. The algorithm uses � = 48n

ε
log

(
9n
δε

)
training

examples and runs in time poly(n, 1/ε, 1/δ).

PROOF. Because of the multiplicative error allowed by the PMAC-
learning model, we will separately analyze the subset of the in-
stance space where f∗ is zero and the subset of the instance space
where f∗ is non-zero. For convenience, let us define:

P = { S : f∗(S) �= 0 } and Z = { S : f∗(S) = 0 } .
The main idea of our algorithm is to reduce our learning prob-

lem to the standard problem of learning a binary classifier (in fact,
a linear separator) from i.i.d. samples in the passive, supervised
learning setting [23, 38] with a slight twist in order to handle the
points in Z. The problem of learning a linear separator in the pas-
sive supervised learning setting is one where the instance space is
R

m, the samples come from some fixed and unknown distribu-
tion D′ on R

m, and there is a fixed but unknown target function
c∗ : R

m → {−1,+1}, c∗(x) = sgn(uTx). The examples in-
duced by D′ and c∗ are called linearly separable since there exists
a vector u such that c∗(x) = sgn(uTx).

The linear separator learning problem we reduce to is defined
as follows. The instance space is R

m where m = n + 1 and the
distribution D′ is defined by the following procedure for generating
a sample from it. Repeatedly draw a sample S ⊆ [n] from the
distribution D until f∗(S) �= 0. Next, flip a fair coin. The sample
from D′ is

(χ(S), f∗(S)) (if the coin is heads)

(χ(S), (n+ 1) · f∗(S)) (if the coin is tails).

The function c∗ defining the labels is as follows: samples for which
the coin was heads are labeled +1, and the others are labeled −1.

We claim that the distribution over labeled examples induced by
D′ and c∗ is linearly separable in R

n+1. To prove this we use
Lemma 14 which says that there exists a linear function f̂(S) =

wTχ(S) such that f̂(S) ≤ f∗(S) ≤ n · f̂(S) for all S ⊆ [n]. Let
u = ((n+ 1/2) · w,−1) ∈ R

m. For any point x in the support of
D′ we have: if x = (χ(S), f∗(S)), then

uTx = (n+ 1/2) · f̂(S)− f∗(S) > 0

and if x = (χ(S), (n+ 1) · f∗(S)) then

uTx = (n+ 1/2) · f̂(S)− (n+ 1) · f∗(S) < 0.

This proves the claim. The linear function f̂ also satisfies f̂(S) = 0
for every S ∈ Z, and moreover:

f̂({j}) = wj = 0 ∀j ∈ UD where UD =
⋃

Si∈Z
Si.

Our algorithm is now as follows. It first partitions the training
set S = {(S1, f

∗(S1)), . . . , (S�, f
∗(S�))} into two sets S0 and

S �=0, where S0 is the subsequence of S with f∗(Si) = 0, and
S �=0 = S \S0. For convenience, let us denote the sequence S�=0 as

S �=0 =
(
(A1, f

∗(A1)), . . . , (Aa, f
∗(Aa))

)
.

Note that a is a random variable and we can think of the sets the
Ai as drawn independently from D, conditioned on belonging to
P . Let

U0 =
⋃
i≤�

f∗(Si)=0

Si and L0 = { S : S ⊆ U0 } .

Using S �=0, we construct S ′
�=0 = ((x1, y1), . . . , (xa, ya), a

sequence of training examples for the binary classification prob-
lem. For each 1 ≤ i ≤ a, let yi be −1 or 1, each with prob-
ability 1/2. If yi = +1 set xi = (χ(Ai), f

∗(Ai)); otherwise
set xi = (χ(Ai), (n + 1) · f∗(Ai)). The last step of our algo-
rithm is to solve a linear program in order to find a linear sepa-
rator u = (w,−z) where w ∈ R

n, z ∈ R consistent with the
labeled examples (xi, yi), i = 1 ≤ i ≤ a, with the additional
constraints that wj = 0 for j ∈ U0. The output hypothesis is
f(S) = 1

(n+1)z
wTχ(S).

To prove correctness, note first that the linear program is fea-
sible; this follows from our earlier discussion using the facts (1)
S ′
�=0 is a set of labeled examples drawn from D′ and labeled by

c∗ and (2) U0 ⊆ UD . It remains to show that f approximates
the target on most of the points. Let Y denote the set of points
S ∈ P such that both of the points (χ(S), f∗(S)) and (χ(S), (n+
1) · f∗(S)) are correctly labeled by sgn(uTx), the linear separa-
tor found by our algorithm. It is easy to show that the function
f(S) = 1

(n+1)z
wTχ(S) approximates f∗ to within a factor n+ 1

on all the points in the set Y . To see this notice that for any point

S ∈ Y , we have

wTχ(S)− zf∗(S) > 0 and wTχ(S)− z(n+ 1)f∗(S) < 0

=⇒ 1

(n+ 1)z
wTχ(S) < f∗(S) < (n+ 1)

1

(n+ 1)z
wTχ(S).

So, for any point in S ∈ Y , the function f(S) = 1
(n+1)z

wTχ(S)

approximates f∗ to within a factor n+ 1.
Moreover, by design the function f correctly labels as 0 all the

examples in L0. To finish the proof, we now note two important
facts: for our choice of � = 16n

ε
log

(
n
δε

)
, with high probability

both P \ Y and Z \ L0 have small measure.

CLAIM 17. If � = 16n
ε

log
(

n
δε

)
, then with probability at least

1− 2δ, the set P \ Y has measure at most 2ε under D.

PROOF. Let q = 1 − p = PrS∼D [S ∈ P]. If q < ε then the
claim is immediate, since P has measure at most ε. So assume that
q ≥ ε. Let μ = E [a] = q�. By assumption μ > 16n log(n/δε) q

ε
.

Then Chernoff bounds give that

Pr
[
a < 8n log(n/δε)

q

ε

]
< exp(−n log(n/δ)q/ε) < δ.

So with probability at least 1 − δ, we have a ≥ 8n log(qn/δε) q
ε
.

By a standard sample complexity argument [38], with probability
at least 1− δ, any linear separator consistent with S′ will be incon-
sistent with the labels on a set of measure at most ε/q under D′. In
particular, this property holds for the linear separator c computed
by the linear program. So for any set S, the conditional probability
that either (χ(S), f∗(S)) or (χ(S), (n+1) · f∗(S)) is incorrectly
labeled, given that S ∈ P , is at most 2ε/q. Thus

Pr [S ∈ P ∧ S �∈ Y] = Pr [S ∈ P] · Pr [S �∈ Y | S ∈ P]

≤ q · (2ε/q),
as required. �

CLAIM 18. If � = 16n
ε

log
(

n
δε

)
, then with probability at least

1− δ, the set Z \ L0 has measure at most ε.

PROOF. For k ≤ �, define

Uk =
⋃
i≤k

f∗(Si)=0

Si and Lk = { S : S ⊆ Uk } .

So L� = L0. By subadditivity, monotonicity, and non-negativity
we have Lk ⊆ Z for any k. Suppose that, for some k, the set Z\Lk

has measure at least ε. Define k′ = k+log(n/δ)/ε. Then amongst
the subsequent examples Sk+1, . . . , Sk′ , the probability that none
of them lie in Z \ Lk is at most (1 − ε)log(n/δ)/ε ≤ δ/n. On the
other hand, if one of them does lie in Z \ Lk, then |Uk′ | > |Uk|.
But |Uk| ≤ n for all k, so this can happen at most n times. Since
� ≥ n log(n/δ)/ε, with probability at least δ the set Z \ L� has
measure at most ε. �

In summary, our algorithm produces a hypothesis f that approxi-
mates f∗ to within a factor n+1 on the set Y∪L�. The complement
of this set is (Z \ L�) ∪ (P \ Y), which has measure at most 3ε,
with probability at least 1− 3δ.

The preceding proof was for the class of subadditive functions.
The proof for submodular functions is identical, replacing Lemma14
with Lemma 15.

THEOREM 19. Let F be the class of non-negative, monotone,
submodular functions over X = 2[n]. There is an algorithm that

Algorithm 2 Algorithm for PMAC-learning the class of non-negative
monotone submodular functions.
Input: A sequence of labeled training examples S =
{(S1, f

∗(S1)), (S2, f
∗(S2)), . . . (S�, f

∗(S�))}, where f∗ is a
submodular function.
• Let S �=0 = {(A1, f

∗(A1)), . . . , (Aa, f
∗(Aa))} be the subse-

quence of S with f∗(Ai) �= 0 ∀i. Let S0 = S \ S �=0. Let U0

be the set of indices defined as U0 =
⋃

i≤�
f∗(Si)=0

Si.

• For each 1 ≤ i ≤ a, let yi be the outcome of flipping a fair
{+1,−1}-valued coin, each coin flip independent of the oth-
ers. Let xi ∈ R

n+1 be the point defined by

xi =

{
(χ(Ai), f

∗2(Ai)) (if yi = +1)

(χ(Ai), (n+ 1) · f∗2(Ai)) (if yi = −1).

• Find a linear separator u = (w,−z) ∈ R
n+1, where w ∈ R

n

and z ∈ R, such that u is consistent with the labeled examples
(xi, yi) ∀i ∈ [a], and with the additional constraint that wj =
0 ∀j ∈ U0.

Output: The function f defined as f(S) =
√

1
(n+1)z

wTχ(S).

PMAC-learns F with approximation factor
√
n+ 1. That is, for

any distribution D over X , for any ε, δ sufficiently small, with
probability 1− δ, the algorithm produces a function f that approx-
imates f∗ within a multiplicative factor of

√
n+ 1 on a set of mea-

sure 1− ε with respect to D. The algorithm uses � = 48n
ε

log
(
9n
δε

)
training examples and runs in time poly(n, 1/ε, 1/δ).

PROOF. To learn the class of non-negative, monotone, submod-
ular functions we apply the algorithm described in Theorem 16
with the following changes: (i) in the second step if yi = +1
we set xi = (χ(Ai), f

∗(Ai)
2) and if yi = −1 we set xi =

(χ(Ai), (n + 1) · f∗(Ai)
2); (ii) we output the function f(S) =√

1
(n+1)z

wTχ(S). See Algorithm 2. To argue correctness we

use Lemma 15, which shows that, for any f ∈ F , the function
f2 can be approximated to within a factor of n by a linear func-
tion. The proof of Theorem 16 can then be applied to the family{
f2 : f ∈ F }

.

Remark. Our algorithm proving Theorem 19 is significantly sim-
pler than the algorithm of Goemans et al. [15] which achieves a
slightly worse approximation factor in the exact learning model
with value queries.

Extensions. Our algorithms for learning submodular and subaddi-
tive functions are quite robust and can be extended to handle more
general scenarios, including forms of noise. Details are given in the
full version of the paper [7]

6. CONCLUSIONS AND OPEN QUESTIONS
In this work we develop the first theoretical analysis for learning

submodular functions in a distributional learning setting. We prove
polynomial upper and lower bounds on the approximability guar-
antees achievable in the general case by using only a polynomial
number of examples drawn i.i.d. from the underlying distribution.
We also provide improved guarantees, achieving constant-factor
approximations, under natural distributional assumptions. These
results provide new insights on the inherent complexity of submod-
ular functions.

Our work combines central issues in optimization (submodular
functions and matroids) with central issues in learning (learnabil-
ity of natural but complex classes of functions in a distributional
setting). Our analysis brings a twist on the usual learning theory

models and uncovers some interesting structural and extremal prop-
erties of matroid and submodular functions, which are likely to be
useful in other contexts as well.

Our work opens up a number of interesting research directions.
A concrete technical question is to close the gap between theO(n1/2)

upper bound in Theorem 19 and the Ω̃(n1/3) lower bound in The-
orem 6. We suspect that if the lower bound can be improved, then
the matroids or submodular functions used in its proof are likely
to be very interesting. It would also be interesting to identify sub-
classes of submodular functions which are PMAC-learnable with
approximation ratio better than O(

√
n).

More generally, our PMAC model provides a new approach for
analyzing the learnability of real valued functions, and it would
be particularly interesting to understand the PMAC-learnability of
other natural classes of real-valued functions.

Acknowledgements: We would like to thank Avrim Blum, Jan
Vondrák, and Atri Rudra for insightful and stimulating discussions.
We also thank Steve Hanneke, Lap Chi Lau, Atri Rudra, Alex
Samorodnitsky, Mohit Singh, Santosh Vempala, and Van Vu.

7. REFERENCES
[1] NIPS workshop on discrete optimization in machine learning:

Submodularity, sparsity & polyhedra (DISCML), 2009.
http://www.discml.cc/.

[2] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 2000.
[3] K. Amano and A. Maruoka. On learning monotone boolean functions

under the uniform distribution. TCS, 350(5):3–12, 2006.
[4] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical

Foundations. Cambridge University Press, 1999.
[5] Y. Bakos and E. Brynjolfsson. Bundling information goods: Pricing,

profits, and efficiency. Management Science, 45(12), 1999.
[6] M. F. Balcan, A. Blum, and Y. Mansour. Item pricing for revenue

maxmimization. In ACM EC, 2009.
[7] M.-F. Balcan and Nicholas J. A. Harvey. Learning submodular

functions, August 2010. arXiv:1008.2159.
[8] E. Baum and K. Lang. Query learning can work poorly when a

human oracle is used. In IJCNN, 1993.
[9] A. Blum, C. Burch, and J. Langford. On learning monotone boolean

functions. In FOCS, 1998.
[10] S. Boucheron, G. Lugosi, and P. Massart. On concentration of

self-bounding functions. Electronic Journal of Probability,
14:1884–1899, 2009.

[11] N. H. Bshouty and C. Tamon. On the Fourier spectrum of monotone
functions. Journal of the ACM, 43(4):747 – 770, 1996.

[12] C. Chekuri and J. Vondrák. Randomized pipage rounding for matroid
polytopes and applications, September 2009. arXiv:0909.4348v1.

[13] J. Edmonds. Submodular functions, matroids, and certain polyhedra.
In R. Guy, H. Hanani, N. Sauer, and J. Schönheim, editors,
Combinatorial Structures and Their Applications, pages 69–87.
Gordon and Breach, 1970.

[14] S. Fujishige. Submodular Functions and Optimization. Elsevier,
2005.

[15] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating
submodular functions everywhere. In SODA, 2009.

[16] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh–Vardy codes. Journal of
the ACM, 56(4), 2009.

[17] M. T. Hajiaghayi, J. H. Kim, T. Leighton, and H. Räcke. Oblivious
routing in directed graphs with random demands. In STOC, 2005.

[18] W. Hanson and R. K. Martin. Optimal bundle pricing. Management
Science, 36(2), 1990.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[20] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their
applications. Bulletin of the AMS, 43:439–561, 2006.

[21] S. Janson, T. Łuczak, and A. Ruciński. Random Graphs.
Wiley-Interscience, 2000.

[22] F. John. Extremum problems with inequalities as subsidiary
conditions. In Studies and Essays, presented to R. Courant on his
60th Birthday, January 8, 1948, 1948.

[23] M. Kearns and U. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

[24] A. Krause and C. Guestrin. Near-optimal nonmyopic value of
information in graphical models. In UAI, 2005.

[25] A. Krause and C. Guestrin. Intelligent information gathering and
submodular function optimization, 2009.
http://submodularity.org/ijcai09/index.html.

[26] B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions
with decreasing marginal utilities. Games and Economic Behavior,
55:270–296, 2006.

[27] L. Lovász. Submodular functions and convexity. Mathematical
Programmming: The State of the Art, 1983.

[28] M. Molloy and B. Reed. Graph Colouring and the Probabilistic
Method. Springer, 2001.

[29] M. Narasimhan and J. Bilmes. Local search for balanced submodular
clusterings. In IJCAI, 2007.

[30] J. G. Oxley. Matroid Theory. Oxford University Press, 1992.
[31] P. Rusmevichientong, B. Van Roy, and P. W. Glynn. A nonparametric

approach to multiproduct pricing. Operations Research, 54(1), 2006.
[32] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.

Springer, 2004.
[33] C. Seshadhri and J. Vondrák. Is submodularity testable? In ICS, 2011.
[34] Z. Svitkina and L. Fleischer. Submodular approximation:

Sampling-based algorithms and lower bounds. In FOCS, 2008.
[35] D. M. Topkis. Supermodularity and Complementarity. Princeton

University Press, 1998.
[36] S. P. Vadhan. Pseudorandomness I. Foundations and Trends in

Theoretical Computer Science. To Appear.
[37] L.G. Valiant. A theory of the learnable. Commun. ACM,

27(11):1134–1142, 1984.
[38] V. N. Vapnik. Statistical Learning Theory. Wiley and Sons, 1998.
[39] J. Vondrák. A note on concentration of submodular functions, May

2010. arXiv:1005.2791.
[40] R. B. Wilson. Nonlinear Pricing. Oxford University Press, 1997.

APPENDIX

A. ADDITIONAL PROOFS
In this section, we will prove Theorem 6, Theorem 8 and The-

orem 9. The latter two proofs are based on a useful lemma which
describes a very general set of conditions that suffice to obtain a
matroid. Surprisingly, it seems that this lemma was not previously
known.

Let C be a family of sets and let f : C → Z be a function.
Consider the family

I = { I : |I ∩ C| ≤ f(C) ∀C ∈ C } . (A.1)

For any I ∈ I, define T (I) = { C ∈ C : |I ∩ C| = f(C) } to
be the set of tight constraints. Suppose that f has the following
uncrossing property:

∀I ∈ I, C1, C2 ∈ T (I)

=⇒ (C1 ∪ C2 ∈ T (I)) ∨ (C1 ∩ C2 = ∅). (A.2)

Note that we do not require that C1∩C2 ∈ C. Our first observation
is that this uncrossing property is sufficient to obtain a matroid.

LEMMA 20. I is the family of independent sets of a matroid, if
it is non-empty.

PROOF. We will show that I satisfies the required axioms of an
independent set family. If I ⊆ I′ ∈ I then clearly I ∈ I also. So
suppose that I ∈ I, I′ ∈ I and |I | < |I ′|. Let C1, . . . , Cm be the
maximal sets in T (I) and let C∗ = ∪i Ci. Note that these maximal
sets are disjoint, otherwise we could replace them with their union.

In other words, Ci ∩ Cj = ∅ for i �=j, otherwise Eq. (A.2) implies
that Ci ∪ Cj ∈ T (I), contradicting maximality. So

|I ′∩C∗| =
m∑
i=1

|I ′∩Ci| ≤
m∑
i=1

f(Ci) =

m∑
i=1

|I∩Ci| = |I∩C∗|.

Since |I ′| > |I | but |I ′ ∩ C∗| ≤ |I ∩ C∗|, we must have that
|I ′ \ C∗| > |I \ C∗|. The key consequence is that some element
x ∈ I ′ \ I is not contained in any tight set, i.e., there exists x ∈
I ′ \ (C∗ ∪ I

)
. Then I + x ∈ I because for every C � x we have

|I ∩ C| ≤ f(C) − 1.

We now use Lemma 20 to prove Theorem 8.

Theorem 8. The family I defined in Eq. (4.1), namely

I = { I : |I ∩A(J)| ≤ f(J) ∀J ⊆ [k] } ,
where

f(J) :=
∑
j∈J

bj−
(∑

j∈J

|Aj |−|A(J)|
)

and A(J) :=
⋃
j∈J

Aj ,

is the family of independent sets of a matroid, if it is non-empty.
This theorem is proven by uncrossing the constraints defining

I and applying Lemma 20. It is not a priori obvious that the con-
straints can be uncrossed because both the left-hand side |I∩A(J)|
and the right-hand side f(J) are submodular functions of J . In
typical uses of uncrossing, the left-hand side is supermodular. The
following proof is a simplification of our original proof, due to Jan
Vondrák.

PROOF. We apply Lemma 20 to C = { A(J) : J ⊆ [k] } and
the function f ′ : C → Z defined by

f ′(C) := min { f(J) : A(J) = C } .
Fix I ∈ I and suppose that C1 and C2 are tight, i.e., |I ∩ Ci| =
f ′(Ci). For i ∈ {1, 2}, let Ji satisfy Ci = A(Ji) and f ′(Ci) =

f(Ji). Define hI : 2[k] → Z by

hI(J) := f(J)− |I ∩A(J)| = |A(J) \ I | −
∑
j∈J

(|Aj | − bj).

We claim that hI is a submodular function of J . This follows be-
cause J �→ |A(J) \ I | is a submodular function of J and J �→∑

j∈J (|Aj | − bj) is a modular function of J .
Since I ∈ I we have |I ∩ A(J)| ≤ f(J), implying hI ≥ 0.

But, for i ∈ {1, 2},

hI(Ji) = f(Ji)− |I ∩A(Ji)| = f ′(Ci)− |I ∩ Ci| = 0,

so J1 and J2 are minimizers of hI . It is well-known that the mini-
mizers of any submodular function are closed under union and in-
tersection. So J1 ∪ J2 and J1 ∩ J2 are also minimizers, implying
that A(J1 ∪ J2) = A(J1) ∪A(J2) = C1 ∪ C2 is also tight.

This shows that Eq. (A.2) holds, so the theorem follows from
Lemma 20.

A similar approach is used for our second construction.

Theorem 9. Suppose that the function f defined in Eq. (4.2) is
(μ, τ)-large. Then the family

Ī =
{
I : |I ∩A(J)| ≤ f̄(J) ∀J ⊆ [k]

}
is the family of independent sets of a matroid.

PROOF. Fix I ∈ Ī . Let J1 and J2 satisfy |I ∩A(Ji)| = f̄(Ji).
By considering two cases, we will show that |I ∩ A(J1 ∪ J2)| ≥
f̄(J1 ∪ J2), so the desired result follows from Lemma 20.

Case 1: max {|J1|, |J2|} ≥ τ . Assume |J1| ≥ |J2|. Then

f̄(J1 ∪ J2) = μ = f̄(J1) = |I ∩ A(J1)| ≤ |I ∩ A(J1 ∪ J2)|.
Case 2: max {|J1|, |J2|} ≤ τ − 1. So |J1 ∪ J2| ≤ 2τ − 2.
We have |I ∩ A(Ji)| = f̄(Ji) = f(Ji) for both i. As argued in
Theorem 8, we also have |I ∩ A(J1 ∪ J2)| = f(J1 ∪ J2). But
f(J1 ∪ J2) ≥ f̄(J1 ∪ J2) since f is (μ, τ)-large.

Claim 10. fB is (μ, τ)-large.

PROOF. Consider J ⊆ UB, |J | ≤ 2τ − 2. Then

fB(J) = (b− μ)|J | + |A(J)|
≥ b|J | − εμ|J | (by Eq. (4.4) and |J | ≤ 2τ − 2)

=
3b

4
|J | (since ε = b/4μ) (A.3)

This shows fB(J) ≥ 0. If additionally |J | ≥ τ then fB(J) ≥ μ
since we require b ≥ 2μ/τ . So, fB is (μ, τ)-large.

Claim 11. Suppose that b ≤ μ. Then for all B ⊆ A and all
Ai ∈ B, we have rankMB(Ai) = b, .

PROOF. The definition of IB includes the constraint |I ∩Ai| ≤
fB({i}) = b. This immediately implies rankMB(Ai) ≤ b. To
prove that equality holds, it suffices to prove that fB(J) ≥ b when-
ever |J | ≥ 1, since this implies that every constraint in the def-
inition of IB has right-hand side at least b (except when J = ∅,
and assuming that μ ≥ b). For |J | = 1 this is immediate, and for
|J | ≥ 2 we have

fB(J) = b|J |−μ|J |+|A(J)| ≥ b|J |−εμ|J | = b|J |−b|J |/4 ≥ b,

which completes the proof.

Claim 12. rankMB (Ai)=μ for all B⊆A and Ai∈A \ B.

PROOF. Since μ = |Ai|, the condition rankMB(Ai) = μ holds
iff Ai ∈ IB. So it suffices to prove that Ai satisfies all constraints
in the definition of IB (in Eq. (4.5)).

The constraint |Ai| ≤ μ is trivially satisfied, by Eq. (4.4). So it
remains to show that for every J ⊆ UB with |J | < τ , we have

|Ai ∩ A(J)| ≤ fB(J). (A.4)

This is trivial if J = ∅, so assume |J | ≥ 1. We have

|Ai ∩A(J)| = |Ai|+ |A(J)| − |A(J + i)|
≤ μ+ μ|J | − (1− ε)μ|J + i| (by Eq. (4.4))

=
b |J + i|

4
≤ b |J |

2
≤ fB(J) (by Eq. (A.3)).

This proves Eq. (A.4), so Ai ∈ IB, as desired.

Proof (of Theorem 6). We will apply Theorem 7 with k = 2t

where t = ω(logn). Let A and M be the families constructed
by Theorem 7. Let the underlying distribution D on 2[n] be the
uniform distribution on A. (Note that D is not a product distri-
bution.) Choose a matroid MB ∈ M uniformly at random and
let the target function be f∗ = rankMB . Consider any algo-
rithm which attempts to PMAC-learn f∗; note that the algorithm
does not know B. For any A ∈ A that is not a training exam-
ple, the algorithm has no information about f∗(A), so it cannot
determine its value better than randomly guessing between the two
possible values 8t and |A|. The set of non-training examples has
measure 1 − 2−t+O(logn). So the expected measure of the set
on which the algorithm correctly determines the rank is at most
1/2 + 2−t+O(logn). On the set for which the algorithm did not
correctly determine the rank, its approximation factor can be no
better than n1/3/(8t). �

	Introduction
	Overview of Our Results and Techniques
	Related Work

	Formalizing the Model
	Preliminaries
	The PMAC Model

	Product Distributions
	An Approximate Characterization of Matroid Rank Functions

	Inapproximability under Arbitrary Distributions
	Discussion of Theorem 7
	Our New Matroid Constructions
	Theorem 7 and Matroids from Lossless Expanders

	O(n)-approximation Algorithm
	Conclusions and Open Questions
	References
	Additional Proofs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

