
AN ALGORITHMIC PROOF OF THE LOVÁSZ LOCAL LEMMA VIA
RESAMPLING ORACLES�

NICHOLAS J. A. HARVEY: AND JAN VONDRÁK;

Abstract. The Lovász Local Lemma is a seminal result in probabilistic combinatorics. It gives
a sufficient condition on a probability space and a collection of events for the existence of an outcome
that simultaneously avoids all of those events. Finding such an outcome by an efficient algorithm has
been an active research topic for decades. Breakthrough work of Moser and Tardos (2009) presented
an efficient algorithm for a general setting primarily characterized by a product structure on the
probability space.

In this work we present an efficient algorithm for a much more general setting. Our main
assumption is that there exist certain functions, called resampling oracles, that can be invoked
to address the undesired occurrence of the events. We show that, in all scenarios to which the
original Lovász Local Lemma applies, there exist resampling oracles, although they are not necessarily
efficient. Nevertheless, for essentially all known applications of the Lovász Local Lemma and its
generalizations, we have designed efficient resampling oracles. As an application of these techniques,
we present a new result on packings of rainbow spanning trees.

Key words. Lovász Local Lemma, randomized algorithms, general probability spaces.

AMS subject classifications. 68Q87, 68R05, 68W20

1. Introduction. The Lovász Local Lemma (LLL) is a powerful tool with nu-
merous uses in combinatorics and theoretical computer science. If a given probability
space and collection of events satisfy a certain condition, then the LLL asserts the
existence of an outcome that simultaneously avoids those events. The classical for-
mulation of the LLL [15, 46] is as follows.

Let Ω be a probability space with probability measure µ. Let E1, . . . , En be
certain “undesired” events in that space. Let G be a graph with vertex set rns �
t1, . . . , nu. The edges of G are denoted EpGq. For the purposes of this paper we
will assume that Ω is finite and that G is undirected, but these assumptions are
not actually necessary in the classical formulation. The notation i v j denotes that
ti, ju P EpGq and i � j. The neighbors of vertex i are Γpiq � t j : i v j u. Let
Γ�piq � Γpiq Y tiu and let Γ�pIq �

�
iPI Γ�piq for I � rns.

Theorem 1 (General Lovász Local Lemma [15, 46]). Suppose that the events
satisfy the following condition that controls their dependences

(Dep) Pr
µ
rEi | XjPJEjs � Pr

µ
rEis @i P rns, J � rnszΓ�piq

and the following criterion that controls their probabilities

(GLL) Dx1, . . . , xn P p0, 1q such that Pr
µ
rEis ¤ xi

¹
jPΓpiq

p1� xjq @i P rns.

Then Prµr
�n
i�1Eis ¡ 0.

An equivalent statement of (Dep) is that the event Ei must be independent of
the sigma-algebra generated by the events t Ej : j R Γ�piq u. When (Dep) holds, G

�Submitted January 2018.
Funding: N. Harvey was supported by an NSERC Discovery Grant.

:University of British Columbia, Vancouver, Canada. (nickhar@cs.ubc.ca).
;Stanford University, CA, USA. (jvondrak@stanford.edu).

1

mailto:nickhar@cs.ubc.ca
mailto:jvondrak@stanford.edu


is called a dependency graph. The literature contains several dependency conditions
generalizing (Dep) and criteria generalizing (GLL) under which the conclusion of the
theorem remains true. We will discuss several such generalizations below.

Algorithms. Algorithms to efficiently find an outcome in
�n
i�1Ei have been the

subject of research for several decades. In 2008, a nearly optimal result was obtained
by Moser [34] for a canonical application of the LLL, the bounded-degree k-SAT
problem. Shortly thereafter, Moser and Tardos [35] extended that result to a general
scenario called the “variable model” in which Ω consists of independent variables,
each Ei depends on a subset of the variables, and events Ei and Ej are adjacent in
G if there is a variable on which they both depend. Clearly the resulting graph is a
dependency graph. The Moser-Tardos algorithm is extremely simple: after drawing
an initial sample of the variables, it repeatedly checks if any undesired event occurs,
then resamples any such event. Resampling an event means that the variables on
which it depends receive fresh samples according to µ; here, the independence of the
variables is crucial. Moser and Tardos prove that, if the (GLL) condition is satisfied,
this algorithm will produce the desired outcome after at most

°n
i�1

xi

1�xi
resampling

operations, in expectation.
Numerous extensions of the Moser-Tardos algorithm have been proposed. These

extensions can handle more general criteria [28, 38, 1, 29], derandomization [12],
exponentially many events [22], distributed scenarios [13], etc. However, these results
are restricted to the Moser-Tardos variable model and hence cannot be viewed as
algorithmic proofs of the LLL in full generality. There are many known scenarios
for the LLL and its generalizations that fall outside the scope of the variable model
[31, 32]. One example scenario, random spanning trees in complete graphs, is discussed
in Section 3.

Recently, some efficient algorithms have been developed that go beyond the vari-
able model. This related work is discussed in Section 1.5.

1.1. Our contributions. The primary motivating question for this work is
whether there is an “algorithmic proof” of the Lovász Local Lemma in general prob-
ability spaces. We answer this question in the following sense: We propose an algo-
rithmic framework for the general Lovász Local Lemma, based on a new notion of
resampling oracles. In this framework, we present an algorithm that finds a point
in
�n
i�1Ei (avoiding all undesired events) efficiently, if given access to three types

of subroutines outlined below, the most crucial one being resampling oracles. The
existence of such subroutines, ignoring efficiency considerations, turns out to be a
consequence of the Lovász Local Lemma’s assumptions. Whether these subroutines
can be implemented efficiently is an instance-dependent issue, as discussed further
below.

Thus, using the existence of these (potentially inefficient) subroutines, our algo-
rithm provides a new proof of the existential LLL as formulated in Theorem 1, and
even of several more general formulations. Algorithmically, we reduce the problem of
finding a point in

�n
i�1Ei to the problem of implementing the three subroutines that

we discuss next.

1.1.1. Algorithmic assumptions. In order to discuss algorithms for the LLL
in full generality, one must assume some form of access to the probability space at
hand. It is natural to assume that one can efficiently sample from µ, and efficiently
check whether a given event Ei occurs. However, even under these assumptions,
finding the desired output can be computationally hard; this result is established in



Section 2.2. Therefore, our framework assumes the existence of one more subroutine
that can be used by our algorithm. This leads us to the notion of resampling oracles.

Let us introduce some notation. An atomic event ω in the probability space Ω
will be called a state. We write ω � µ to denote that a random state ω is distributed
according to µ, and ω � µ|Ei to denote that the distribution is µ conditioned on Ei.
The resampling oracles are defined with respect to a graphG on rns with neighborhood
structure Γ, not necessarily satisfying the (Dep) condition.

The three subroutines required by our algorithm are as follows.


 Sampling from µ: There is a subroutine that provides an independent random
state ω � µ.


 Checking events: For each i P rns, there is a subroutine that determines
whether ω P Ei.


 Resampling oracles: For each i P rns, there is a randomized subroutine ri :
Ω Ñ Ω with the following properties.

� (R1) If Ei is an event and ω � µ|Ei , then ripωq � µ. (The oracle ri
removes conditioning on Ei.)

� (R2) For any j R Γ�piq, if ω R Ej then also ripωq R Ej . (Resampling an
event cannot cause new non-neighbor events to occur.)

When these conditions hold, we say that ri is a resampling oracle for events
E1, . . . , En and graph G.

If efficiency concerns are ignored, the first two subroutines trivially exist. It turns
out that (possibly inefficient) resampling oracles exist if and only if a certain relaxation
of (Dep) holds; this result is established in Section 1.3.

Main Result. Our main result is an algorithm that uses the three subroutines
to find a point in

�n
i�1Ei. This algorithm is efficient whenever the three subroutines

have efficient implementations.

Theorem 2 (Informal). Consider any probability space, any events E1, . . . , En,
and any undirected graph G on vertex set rns. If (GLL) is satisfied and if the three
subroutines described above are available, then our algorithm finds a state in

�n
i�1Ei

efficiently in terms of the number of calls to these subroutines.

We make a more precise statement in the following section. We note that this
theorem does not assume that (Dep) holds, and the existence of resampling oracles is
actually a strictly weaker condition. Thus, our algorithm provides a new proof of the
existential LLL under its original assumptions, as they are stated in Theorem 1.

1.2. Our algorithm: MaximalSetResample. A striking aspect of the work
of Moser and Tardos [35] is the simplicity and flexibility of their algorithm — in
each iteration, any event Ei that occurs can be resampled. We propose a different
algorithm that is somewhat less flexible, but whose analysis seems to be simpler in
our scenario. Roughly speaking, our algorithm proceeds in iterations where in each
iteration we resample events that form an independent set in G. The independent
set is generated by a greedy algorithm that adds a vertex i and resamples Ei, if i is
not adjacent to the previously selected vertices and Ei occurs in the current state.
This is repeated until no events occur. Pseudocode for this procedure is shown in
Algorithm 1. Nearly identical algorithms have been proposed before, particularly
parallel algorithms [35, 28], although our interest lies not in the parallel aspects but
rather in making the LLL (and its stronger variants) algorithmic in our general setting.



Algorithm 1 MaximalSetResample uses resampling oracles to output a state ω P�n
i�1Ei. It requires the three subroutines described in Section 1.1.1: sampling ω � µ,

checking if an event Ei occurs, and the resampling oracles ri.

1: Initialize ω with a random state sampled from µ;
2: t :� 0;
3: repeat
4: t :� t� 1;
5: Jt :� H;
6: while there is i R Γ�pJtq such that ω P Ei do
7: Let i be the minimum index satisfying that condition;
8: Jt :� Jt Y tiu;
9: ω :� ripωq; B Resample Ei

10: end while
11: until Jt � H;
12: return ω.

Our algorithmic proof of the LLL amounts to showing that MaximalSetResample
terminates, at which point ω P

�n
i�1Ei clearly holds. Our bound on the running

time of MaximalSetResample is shown by the following theorem, which is proven in
Section 4. We note that our bound is at most quadratic in the quantity

°n
i�1

xi

1�xi

which was the bound proved by Moser and Tardos [35].

Theorem 3. Suppose that the events E1, . . . , En satisfy (GLL) and that the three
subroutines described above in Section 1.1.1 are available. Then the expected number
of calls to the resampling oracles before MaximalSetResample terminates is

O

�
ņ

i�1

xi
1� xi

ņ

j�1

log
1

1� xj

�
.

1.3. Generalizing the dependency condition. A result due to Erdős and
Spencer [16] shows that Theorem 1 still holds when (Dep) is generalized to1

(Lop) Pr
µ
rEi | XjPJEjs ¤ Pr

µ
rEis @i P rns, J � rnszΓ�piq.

They playfully called this the “lopsidependency” condition, and called G a “lopside-
pendency graph”. This more general condition enables several interesting uses of
the LLL in combinatorics and theoretical computer science, e.g., existence of Latin
transversals [16] and optimal thresholds for satisfiability [19].

Recall that Theorem 3 did not assume (Dep) and instead assumed the existence
of resampling oracles. It is natural to wonder how the latter assumption relates to
lopsidependency. We show that the existence of resampling oracles is equivalent to a
condition that we call lopsided association, and whose strength lies strictly between
(Dep) and (Lop). The lopsided association condition is

(LopA) Pr
µ
rEi X F s ¥ Pr

µ
rEis � Pr

µ
rF s @i P rns,@F P Fi

1 More precisely, (Lop) should be restricted to J for which PrµrXjPJEjs ¡ 0. However that
restriction is ultimately unnecessary because, in the context of the LLL, the theorem of Erdős and
Spencer implies that PrµrXjPrnsEjs ¡ 0.



where Fi contains all events F whose indicator variable is a monotone non-decreasing
function of the indicator variables of pEj : j R Γ�piqq. We call a graph satisfying
(LopA) a lopsided association graph for events E1, . . . , En.

Theorem 4 (Informal). Resampling oracles exist for events E1, . . . , En and a
graph G if and only if G is a lopsided association graph for events E1, . . . , En.

This equivalence follows essentially from LP duality: the existence of a resampling
oracle can be formulated as a transportation problem for which the lopsided association
condition is exactly the necessary and sufficient condition for a feasible transportation
to exist. Section 2.1 proves this result in detail.

The fact that a graph is a lopsidependency graph can be a useful property to
study in its own right. For example, there are applications in which the LLL with
lopsidependency is used to estimate the number of objects satisfying certain condi-
tions, e.g., [39]. Designing resampling oracles could be a useful approach to proving
that a certain graph indeed satisfies lopsidependency.

As remarked above, the dependency conditions are related by the implications

(Dep) ñ (LopA) ñ (Lop).

The first implication is obvious since (Dep) implies that Ei is independent of F in
(LopA). To see the second implication, simply take F �

�
jPJ Ej for any J �

rnszΓ�piq to obtain that PrµrEi | YjPJEjs ¥ PrµrEis. Although lopsided associa-
tion is formally a stronger assumption than lopsidependency, every use of the LLL
with lopsidependency that we have studied actually satisfies the stronger lopsided
association condition.

Our technical report [25] presents efficient resampling oracles for all of those sce-
narios. Consequently, Theorem 3 makes the LLL efficient in all of those scenarios. Due
to our intention that the present paper be illustrative but not exhaustive, Section 3
discusses resampling oracles only in the scenario of random spanning trees.

As remarked above, Section 2.2 describes a scenario in which (Dep) and (GLL) are
satisfied for a dependency graph G but finding a state ω P

�n
i�1Ei is computationally

hard, assuming standard complexity theoretic beliefs. In that scenario resampling
oracles must necessarily exist since (Dep) is satisfied, but they cannot be efficiently
implemented due to the computational hardness. Therefore the equivalence between
(LopA) and resampling oracles comes with no efficiency guarantees. Nevertheless in
all lopsidependency scenarios that we have encountered in applications of the LLL,
efficient implementations of the resampling oracles arise naturally from existing work,
or can be devised with modest effort. In particular this is the case for random permu-
tations, perfect matchings in complete graphs, and spanning trees in complete graphs,
as discussed in our technical report [25].

1.4. Generalizing the LLL criterion. In the early papers on the LLL [15, 46],
the (GLL) criterion relating the dependency graph G and the probabilities PrµrEis
was shown to be a sufficient condition to ensure that Prµr

�n
i�1Eis ¡ 0. Shearer [45]

discovered a more general criterion that ensures the same conclusion. In fact Shearer’s
criterion is the best possible, under the assumption that G is undirected: when-
ever Shearer’s criterion is violated, there exist a corresponding measure µ and events
E1, . . . , En for which Prµr

�n
i�1Eis � 0. There are a few uses of the LLL in which G

is directed, but not many.
Section 4 formally defines Shearer’s criterion and uses it in a fundamental way to

prove Theorem 3. Moreover, we give an algorithmic proof of the LLL under Shearer’s



criterion instead of the (GLL) criterion. This algorithm is efficient in typical situa-
tions, although the efficiency depends on Shearer’s parameters. The following simpli-
fied result is stated formally and proven in Section 4.4.

Theorem 5 (Informal). Let G be a graph. Let PrµrE1s, . . . ,PrµrEns be prob-
abilities that satisfy Shearer’s criterion for G with ε slack. Suppose that the three
subroutines described in Section 1.1.1 are available. Then the expected number of
calls to the resampling oracles by MaximalSetResample is Opnε log 1

ε q.

We also prove a more refined bound valid for any probabilities satisfying Shearer’s
criterion. This bound is similar to the bound obtained by Kolipaka and Szegedy [28];
see Section 4.4 for details.

Unfortunately Shearer’s criterion is unwieldy and has not seen much use in appli-
cations of the LLL. Recently several researchers have proposed criteria of intermediate
strength between (GLL) and Shearer’s criterion [7, 29]. The first of these, called the
cluster expansion criterion, was originally devised by Bissacot et al. [7], and is based
on insights from statistical physics. This criterion has given improved results in sev-
eral applications of the local lemma [8, 24, 36]. Previous algorithmic work has also
used the cluster expansion criterion in the variable model [1, 38] and for permutations
[24].

We give a new, elementary proof that the cluster expansion criterion implies
Shearer’s criterion. In contrast, the previous proof is analytic and requires several
ideas from statistical physics [7]. As a consequence, we obtain the first purely com-
binatorial proof that the existential LLL holds under the cluster expansion criterion.
Another consequence (Theorem 6) is an algorithm for the LLL under the cluster ex-
pansion criterion, obtained using our algorithmic results under Shearer’s criterion.
This generalizes Theorem 3 by replacing (GLL) with the cluster expansion criterion,
stated below as (CLL). To state the result, we require additional notation: let Ind
denote the family of independent sets in the graph G.

Theorem 6. Suppose that the events E1, . . . , En satisfy the following criterion

(CLL) Dy1, . . . , yn ¡ 0 such that Pr
µ
rEis ¤

yi°
J�Γ�piq,JPInd

±
jPJ yj

.

and that the three subroutines described in Section 1.1.1 are available. Then the
expected number of calls to the resampling oracles before MaximalSetResample termi-
nates is O

�°n
i�1 yi

°n
j�1 lnp1� yjq

�
.

1.5. Techniques and related work. The breakthrough work of Moser and
Tardos [34, 35] stimulated a string of results on algorithms for the LLL. This section
reviews the results that are most relevant to our work. Several interesting techniques
play a role in the analyses of these previous algorithms. These can be roughly cate-
gorized as the entropy compression method [33, 3], witness trees or witness sequences
[35, 24, 28] and forward-looking combinatorial analysis [20].

Moser [34, 33] developed the entropy compression method to analyze a very simple
algorithm for the “symmetric” LLL [15], which incorporates the maximum degree
of G and a uniform bound on PrµrEis. The entropy compression method roughly
shows that, if the algorithm runs for a long time, a transcript of the algorithm’s
actions provides a compressed representation of the algorithm’s random bits, which is
unlikely due to entropy considerations. Following this, Moser and Tardos [35] showed
that a similar algorithm will produce a state in

�n
i�1Ei, assuming the independent

variable model and the (GLL) criterion. This paper is primarily responsible for the



development of witness trees, and proved the “witness tree lemma”, which yields an
extremely elegant analysis in the variable model. The witness tree lemma has further
implications. For example, it allows one to analyze separately for each event its
expected number of resamplings. Moser and Tardos also extended the variable model
to incorporate a limited form of lopsidependency, and showed that their analysis still
holds in that setting.

While the work of Moser and Tardos [35] does not refer explicitly to the en-
tropy compression method of [33], the conceptual connection is strong. The entropy
compression argument inspired a significant line of work where this method is tai-
lored to various combinatorial problems, most often dealing with graph colorings
[17, 21, 41, 42, 14], and typically yielding results stronger than those obtained by a
direct application of the LLL. The entropy compression method also inspired a general
existential result strengthening the LLL [6].

Our work is more closely related to the original LLL: We aim to develop an al-
gorithmic framework for applications of the LLL that overcomes the main limitation
of Moser and Tardos [35], the assumption of underlying independent random vari-
ables. We achieve this by addressing the occurrence of an event through the abstract
notion of resampling oracles rather than directly resampling the variables of the vari-
able model. Furthermore we give efficient implementations of resampling oracles for
essentially all known probability spaces to which the LLL has been applied. A sig-
nificant difference with our work is that we do not have an analogue of the witness
tree lemma; our approach provides a simpler analysis when the LLL criterion has
slack but requires a more complicated analysis to remove the slack assumption. As a
consequence, our bound on the number of resampling oracle calls is larger than the
Moser-Tardos bound. The lack of a witness tree lemma is inherent: our technical
report [25] proves that the witness tree lemma is false in the abstract scenario of
resampling oracles.

The Moser-Tardos algorithm is known to terminate under criteria more general
than (GLL), while still assuming the variable model. Pegden [38] showed that the
cluster expansion criterion suffices, whereas Kolipaka and Szegedy [28] showed more
generally that Shearer’s criterion suffices. Furthermore, Harris [23] gives a new cri-
terion under which the Moser-Tardos algorithm terminates, even though Shearer’s
criterion may be violated; this result also assumes the variable model. Our analysis of
MaximalSetResample also holds under the cluster expansion criterion or Shearer’s cri-
terion, in the more general context of resampling oracles. Our bounds on the number
of resampling operations are somewhat larger than those of [38, 28], but the increase
is at most quadratic.

Kolipaka and Szegedy [28] present another algorithm, called GeneralizedResam-
ple, whose analysis proves the LLL under Shearer’s condition for arbitrary probability
spaces. GeneralizedResample is similar to MaximalSetResample in that they both
work with abstract distributions and that they repeatedly choose a maximal indepen-
dent set J of undesired events to resample. However, the way that the bad events
are resampled is different: GeneralizedResample needs to sample from µ|XjRΓ�pJqEj

,

which is a complicated operation that seems difficult to implement efficiently. Thus
MaximalSetResample can be viewed as a variant of GeneralizedResample that can be
made efficient in all known scenarios.

Harris and Srinivasan [24] show that the Moser-Tardos algorithm can be adapted
to handle certain events in a probability space involving random permutations. Their
method for resampling an event is based on the Fisher-Yates shuffle. Since their



resampling method perfectly satisfies the criteria of a resampling oracle, this permu-
tation scenario can also be handled by our framework, as discussed in our technical
report [25]. The result of Harris and Srinivasan is stronger than ours in that they
do prove an analog of the witness tree lemma. Consequently their algorithm requires
fewer resamplings than ours, and they are able to derive parallel variants of their algo-
rithm. The work of Harris and Srinivasan is technically challenging, and generalizing
it to a more abstract setting seems daunting.

Achlioptas and Iliopoulos [3] proposed a general framework for finding “flawless
objects”, based on actions for addressing flaws. We call this the A-I framework.
They show that, under certain conditions, a random walk over such actions rapidly
converges to a flawless object. This naturally relates to the LLL by viewing each event
Ei as a flaw. At the same time, the A-I framework is not tied to the probabilistic
formulation of the LLL, and can derive results, such as the greedy algorithm for
vertex coloring, that seem to be outside the scope of typical LLL formulations, such
as Theorem 1. The A-I framework [3] has other restrictions and does not claim to
recover any particular form of the LLL. Nevertheless, the framework can accommodate
applications of the LLL where lopsidependency plays a role, such as rainbow matchings
and rainbow Hamilton cycles. In contrast, our framework embraces the probabilistic
formulation and can recover the original existential LLL (Theorem 1) in full generality,
even incorporating Shearer’s generalization. The A-I analysis [3] is inspired by Moser’s
entropy method. Technically, it entails an encoding of random walks by “witness
forests” and combinatorial counting thereof to estimate the length of the random walk.
The terminology of witness forests is reminiscent of the witness trees of Moser and
Tardos, but conceptually they are different in that the witness forests grow “forward
in time” rather than backward. This is conceptually similar to “forward-looking
combinatorial analysis”, which we discuss next.

Giotis et al. [20] show that a variant of Moser’s algorithm gives an algorithmic
proof in the variable model of the symmetric LLL. While this result is relatively
limited when compared to the results above, their analysis is a clear example of
forward-looking combinatorial analysis. Whereas Moser and Tardos use a backward-
looking argument to find witness trees in the algorithm’s “log”, Giotis et al. analyze a
forward-looking structure: the tree of resampled events and their dependencies, look-
ing forward in time. This viewpoint seems more natural and suitable for extensions.

Our approach can be roughly described as forward-looking analysis with a care-
ful modification of the Moser-Tardos algorithm, formulated in the framework of re-
sampling oracles. Our main conceptual contribution is the simple definition of the
resampling oracles, which allows the resamplings to be readily incorporated into the
forward-looking analysis. Our modification of the Moser-Tardos algorithm is designed
to combine this analysis with the technology of “stable set sequences” [28], defined in
Section 4.1, which allows us to accommodate various LLL criteria, including Shearer’s
criterion. This plays a fundamental role in the full proof of Theorem 3.

Our second contribution is a technical idea concerning slack in the LLL criteria.
This idea is a perfectly valid statement regarding the existential LLL as well, although
we will exploit it algorithmically. One drawback of the forward-looking analysis is that
it naturally leads to an exponential bound on the number of resamplings, unless there
is some slack in the LLL criterion; this same issue arises in [3, 20]. Our idea eliminates
the need for slack in the (GLL) and (CLL) criteria, at least in the setting where G
is undirected. We prove that, even if (GLL) or (CLL) are tight, we can instead
perform our analysis using Shearer’s criterion, which is never tight because it defines
an open set. For example, consider the familiar case of Theorem 1, and suppose that



(GLL) holds with equality, i.e., PrµrEis � xi
±
jPΓpiqp1 � xjq for all i. We show that

the conclusion of the LLL remains true even if each event Ei actually had the larger
probability PrµrEis�

�
1�p2

°
i

xi

1�xi
q�1
�
. The proof of this fact crucially uses Shearer’s

criterion and it does not seem to follow from more elementary tools [15, 46].

Follow-up work. Achlioptas and Iliopoulos generalized their framework further
to incorporate our notion of resampling oracles [2]. This subsequent work can be
viewed as a unification of their framework and ours; it has the benefit of both captur-
ing the framework of resampling oracles and allowing some additional flexibility (in
particular, the possibility of regenerating the measure µ approximately rather than
exactly). We remark that this work is still incomparable with ours, primarily due to
the facts that our analysis is performed in Shearer’s more general setting, and that
our algorithm is efficient even when the LLL criteria are tight.

Kolmogorov [30] studies why MaximalSetResample needs to examine the events in
a fixed order. He formulates a notion of “commutativity” in the resampling operations,
and shows that this suffices to allow events to be resampled in an arbitrary order. He
shows that the resampling oracles for permutations [24, 25] and perfect matchings
[25] are commutative. However, the resampling oracles for spanning trees discussed
in Section 3.2 appear not to be commutative. So it seems possible that there are
scenarios for the LLL with lopsidependency for which resampling oracles exist but
commutative ones do not.

Although we have shown that the witness tree lemma does not necessarily hold
in the setting of resampling oracles [25], Iliopoulos [27] has shown that the witness
tree lemma does hold with commutative resampling oracles. This has several uses,
for example, to approximate the distribution µ|Xn

j�1Ej
in the setting of commutative

resampling oracles.

1.6. Organization. The rest of the paper is organized as follows. In Section 2,
we discuss the connection between resampling oracles and the assumptions of the
Lovász Local Lemma. We also show here that resampling oracles as well as the LLL
itself can be computationally hard in general. In Section 3, we show concrete exam-
ples of efficient implementations of resampling oracles and an illustrative application.
Finally, in Section 4 we present the full analysis of our algorithm.

2. Resampling oracles: existence and efficiency. The algorithms in this
paper do not explicitly assume that the lopsidependency condition (Lop) holds, but
instead assume the existence of resampling oracles. To understand the relationship
between those two assumptions, first recall the condition (LopA), which was defined
on page 4, and is a strengthening of (Lop). In Section 2.1 we show that the existence
of a resampling oracle for each event is equivalent to the condition (LopA).

We should emphasize that the efficiency of an implementation of a resampling
oracle is a separate issue. There is no general guarantee that resampling oracles can be
implemented efficiently. Indeed, as we show in Section 2.2, there are applications of the
LLL such that the resampling oracles are hard to implement efficiently, and finding
a state avoiding all events is computationally hard, under standard computational
complexity assumptions.

Nevertheless, this is not an issue in common applications of the LLL: resampling
oracles exist and can be implemented efficiently in all uses of the LLL of which we
are aware, even those involving lopsidependency. Section 3 discusses the scenario of
random spanning trees, and other scenarios are discussed in our technical report [25].



2.1. Existence of resampling oracles. This section proves an equivalence
lemma connecting resampling oracles with the notion of lopsided association. First,
let us define formally what we call a resampling oracle.

Definition 7. Let E1, . . . , En be events on a space Ω with a probability measure
µ, and let G � prns, Eq be a graph with neighbors of i P rns denoted by Γpiq. Let ri be
a randomized procedure that takes a state ω P Ω and outputs a state ripωq P Ω. We
say that ri is a resampling oracle for Ei with respect to G, if
(R1) For ω � µ|Ei

, we obtain ripωq � µ. (The oracle ri removes conditioning on Ei.)
(R2) For any j R Γ�piq � Γpiq Y tiu, if ω R Ej then also ripωq R Ej. (Resampling an

event cannot cause new non-neighbor events to occur.)

Next, let us define the notion of a lopsided association graph.

Definition 8. A graph G with neighborhood function Γ is a lopsided association
graph for events E1, . . . , En if

(LopA) Pr
µ
rEi X F s ¥ Pr

µ
rEis � Pr

µ
rF s @i P rns,@F P Fi

where Fi contains all events F whose indicator variable is a monotone non-decreasing
function of the indicator variables of pEj : j R Γ�piqq.

Lemma 9. Consider a fixed i P rns and assume PrµrEis ¡ 0. The following
statements are equivalent.

(a) There exists a resampling oracle ri satisfying the conditions (R1) and (R2)
with respect to a neighborhood Γ�piq.

(b) PrµrEi X F s ¥ PrµrEis � PrµrF s for any event F P Fi.

We remark that Lemma 9 ignores all issues of computational efficiency.

Corollary 10. Resampling oracles r1, . . . , rn exist for events E1, . . . , En with
respect to a graph G if and only if G is a lopsided association graph for E1, . . . , En.
Both statements imply that the lopsidependency condition (Lop) holds.

Proof (of Lemma 9). In this proof it will be convenient to emphasize the rela-
tionship between events and states by letting Eirωs denote the t0, 1u-valued function
that indicates whether event Ei occurs at the state ω P Ω.

(a) ñ (b): Consider the coupled states pω, ω1q where ω � µ|Ei and ω1 � ripωq.
By (R1), ω1 � µ. For any event F P Fi, if F does not occur at ω then it does not
occur at ω1 either, due to (R2). This establishes that

Pr
µ
rF s � Eω1�µrF rω

1ss ¤ Eω�µ|Ei
rF rωss � Pr

µ
rF | Eis,

which implies PrµrF X Eis ¥ PrµrF s � PrµrEis. In particular this implies (Lop), by
taking F �

�
jPJ Ej .

(b) ñ (a): We begin by formulating the existence of a resampling oracle as the
following transportation problem. Consider a bipartite graph pU YW,Eq, where U
and W are disjoint, U represents all the states ω P Ω satisfying Ei, and W represents
all the states ω P Ω. Edges represent the possible actions of the resampling oracle:
pu,wq P E if u satisfies every event among pEj : j R Γ�piq q that w satisfies. Each
vertex has an associated weight: For w P W , we define pw � Prµrws, and for u P U ,
pu � Prµrus{PrµrEis, i.e, pu is the probability of u conditioned on Ei. We claim that
the resampling oracle ri exists if and only if there is an assignment fuw of values to



the edges such that

(1)

°
w:pu,wqPE fuw � pu @u P U°
u:pu,wqPE fuw � pw @w PW

fuw ¥ 0 @u P U, w PW.

Such an assignment is called a feasible transportation. Given such a transportation,
the resampling oracle is defined naturally by following each edge from u P U with
probability fuw{pu, and the resulting distribution on W is pw. Conversely, for a
resampling oracle which, for a given state u P U , generates w P W with probability
quw, we define fuw � puquw. This assignment satisfies (1).

Our goal at this point is to show that (b) implies feasibility of (1). A condition
that is equivalent to (1), but more convenient for our purposes, can be determined
from LP duality [43, Theorem 21.11]. A feasible transportation exists if and only if

(2)
p2.1q

°
uPU pu �

°
wPW pw

p2.2q
°
uPA pu ¤

°
wPΓpAq pw @A � U,

where ΓpAq � t w PW : Du P A s.t. pu,wq P E u. This is an extension of Hall’s con-
dition for the existence of a perfect matching.

Our goal at this point is to show that (b) implies feasibility of (2). Let us now
simplify (2). Fix any A � U . The neighborhood ΓpAq consists of states satisfying
at most those events among t Ej : j R Γ�piq u satisfied by some state in A. Thus
ΓpAq corresponds to an event F 1 such that F 1rωs is a non-increasing function of
pEjrωs : j R Γ�piq q. Next observe that, if the set of events among t Ej : j R Γ�piq u
satisfied by u1 P U is a subset of those satisfied by u P U , then Γpu1q � Γpuq. Suppose
that, for each u P A, we add to A all such vertices u1. Doing so can only increase
the left-hand side of (2.2), but does not increase the right-hand side as ΓpAq remains
unchanged (since Γpu1q � Γpuq). Furthermore, the resulting set A corresponds to the
same event F 1, but restricted to the states in U . Let us call such a set A non-increasing.
Let (2�) denote the simplification of (2) in which we restrict to non-increasing A. We
have argued that (2) and (2�) are equivalent.

Our goal at this point is to show that (b) implies feasibility of (2�). It is easy to
see that (b) is equivalent to

Pr
µ
rF X Eis ¤ Pr

µ
rF s � Pr

µ
rEis @F P Fi.

Assuming PrrEis ¡ 0, we can rewrite this as PrµrF | Eis ¤ PrµrF s @F P Fi. Now
consider using this inequality with F � F 1 for each F 1 corresponding to some non-
increasing set A � U . Since F 1 is a non-increasing function of pEjrωs : j R Γ�piq q,
then F � F 1 is a non-decreasing function of those events, and therefore F P Fi as
required. We then have¸

uPA

pu � Pr
µ
rF 1 | Eis ¤ Pr

µ
rF 1s �

¸
wPΓpAq

pw.

This verifies the feasibility of (2�), and hence the desired resampling oracle exists.

2.2. Computational hardness of the LLL. This section considers whether
the LLL can always be made algorithmic. We show that, even in fairly simple scenarios
where the LLL applies, finding the desired output can be computationally hard. This



fact seems not to have been observed in the literature to date. We first observe that
the question of algorithmic efficiency must be stated carefully otherwise hardness is
trivial.

A trivial example. Given a Boolean formula φ, let the probability space be Ω � t0, 1u,
and let µ be the uniform measure on Ω. There is a single event E1 defined to be
E1 � t1u if φ is satisfiable, and E1 � t0u if φ is not satisfiable. Since PrrE1s � 1{2, the
(GLL) criterion holds trivially with x1 � 1{2. The LLL gives the obvious conclusion
that there is a state ω R E. Yet, finding this state requires deciding satisfiability of φ,
which is NP-complete.

The reason that this example is trivial is that even deciding whether the undesired
event has occurred is computationally hard. A more meaningful discussion of LLL
efficiency ought to rule out this trivial example by considering only scenarios that
satisfy some reasonable assumptions. With that in mind, we will assume that


 there is a probability space Ω, whose states can be described by m bits;

 a graph G satisfying (Dep) for events E1, . . . , En is explicitly provided;

 x1, . . . , xn P p0, 1q satisfying the (GLL) conditions are provided, and the value°n

i�1
xi

1�xi
is at most polypnq;


 there is a subroutine that provides an independent random state ω � µ in
polypmq time;


 for each i P rns, there is a subroutine which determines for any given ω P Ω
whether ω P Ei, in polypmq time.

As far as we know, no prior work refutes the possibility that there is an algorithmic
form of the LLL, with running time polypm,nq, in this general scenario.

Our results imply that resampling oracles do exist in this general scenario, so it
is only the question of whether these resampling oracles are efficient that prevents
Theorem 3 from providing an efficient algorithm. Nevertheless, we show that there
is an instance of the LLL that satisfies the reasonable assumptions stated above, but
for which finding a state in

�
iEi requires solving a problem that is computationally

hard (under standard computational complexity assumptions). As a consequence, we
conclude that the resampling oracles cannot always be implemented efficiently, even
under the reasonable assumptions of this general scenario.

We remark that NP-completeness is not the right notion of hardness here [37].
Problems in NP involve deciding whether a solution exists, whereas the LLL guar-
antees that a solution exists, and the goal is to explicitly find a solution. Our result
is instead based on hardness of the discrete logarithm problem, a standard belief in
computational complexity theory. This problem is defined as follows. For a prime p
and positive integer n, let GFppnq denote the finite field of order pn, and GF�ppnq
its multiplicative group of nonzero elements. Given a generator g of GF�ppnq and an
element h P GF�ppnq, the goal is to find an integer 1 ¤ k ¤ pn � 1 such that gk � h.

Theorem 11. There are instances of events E1, . . . , En on a probability space
Ω � t0, 1un under the uniform probability measure, such that


 the events Ei are mutually independent;

 for each i P rns, the condition ω P Ei can be checked in polypnq time for given
ω P Ω;


 the (GLL) conditions are satisfied with xi � 1{2 for each i P rns;
but finding a state in

�n
i�1Ei is as hard as solving the discrete logarithm problem in

GF�p2nq.

Remark. At first glance, this result may seem to contradict the fact that the LLL can



be made algorithmic in the variable model [35], where events are defined on under-
lying independent random variables. The key point is that the variable model also
relies on a particular type of dependency graph (defined by shared variables) which
might have more edges than necessary, and therefore might have stronger hypothe-
ses than necessary. Theorem 11 shows that, even if the probability space consists of
independent t0, 1u random variables, the LLL cannot in general be made algorith-
mic if the dependency graph of the variable model is not used, and instead the true
dependencies are considered.

Proof. Consider an instance of the discrete logarithm problem in the finite field
GFp2nq. We define an instance of n events on Ω � t0, 1un as follows. First identify
Ω � t0, 1un with r2ns as well as GFp2nq in a natural way. We define f : r2ns Ñ GFp2nq
by fp0q � 0 and fpxq � gx for x � 0, where the exponentiation is performed in
GFp2nq. For each i P rns, we define an event Ei that occurs for ω P t0, 1un iff
pfpωqqi � 1�hi. This is a condition that can be checked in time polypnq, by computing

fpωq � gω where we interpret ω as
°n�1
i�0 ωi2

i and compute gω by taking squares
iteratively.

Observe that for ω distributed uniformly in Ω � t0, 1un, fpωq is again distributed
uniformly in Ω, since f is a bijection. (Note that 0 is mapped to 0, and fpωq for
ω � 0 generates each element of the multiplicative group GF�p2nq exactly once).
Therefore, the probability of Ei is 1{2, for each i P rns. Further, the events E1, . . . , En
are mutually independent, since for any J � rns,

�
jPJ Ej X

�
j1RJ Ej1 occurs iff

fpωq � h`1J , which happens with probability 1{2n. Here 1J P t0, 1u
n

is the indicator
vector for the set J , and ` denotes addition in GFp2nq (i.e., component-wise xor in
t0, 1u

n
). Hence the dependency graph is empty, and the LLL with parameters xi � 1{2

trivially implies that there exists a state ω avoiding all the events. In this instance,
we know explicitly that the state avoiding all the events is f�1phq. Therefore, if we
had an efficient algorithm to find this point for any given h P GF�p2nq, we would also
have an efficient algorithm for the discrete logarithm problem in GFp2nq.

3. Implementation of resampling oracles and applications. In this sec-
tion, we present efficient implementations of resampling oracles in two application
settings: the variable model introduced by Moser and Tardos [35], and a setting of
random spanning trees in complete graphs. Other settings are discussed in our tech-
nical report [25].

To be more precise, resampling oracles also depend on the types of events and
dependencies that can be handled. For example, if the probability space consists
of independent random variables, the variable model allows any events but assumes
dependency between any two events that share any variables. In the setting of span-
ning trees, we consider the “canonical events” defined by [31], characterized by the
appearance of a certain subset of edges.

Finally, Section 3.3 shows how resampling oracles for a certain probability space
can be extended in a natural way to products of such probability spaces. This allows
us to generalize from resampling oracles for one random spanning tree to a collection
of independent random spanning trees. Section 3.4 gives an application of these
techniques to a problem involving rainbow spanning trees.

3.1. The variable model. This is the most common setting, considered orig-
inally by Moser and Tardos [35]. Here, Ω has a product structure corresponding to
independent random variables t Xa : a P U u. The probability measure µ here is a
product measure. Each bad event Ei depends on a particular subset of variables Ai.



Adjacency in the dependency graph is defined by i v j iff Ai XAj � H.
Here our algorithmic assumptions correspond exactly to the Moser-Tardos frame-

work [35]. Sampling from µ means generating a fresh set of random variables inde-
pendently. The resampling oracle ri takes a state ω and replaces the random variables
t Xa : a P Ai u by fresh random samples. It is easy to see that the assumptions are
satisfied: in particular, a random state sampled from µ conditioned on Ei has all
variables outside of Ai independently random (according to µ). Hence, resampling
the variables of Ai produces the distribution µ. Clearly, resampling t Xa : a P Ai u
does not affect any events whose variables do not intersect Ai.

We note that this resampling oracle is also consistent with the notion of lopside-
pendency on product spaces considered by [35]: They call two events Ei, Ej lopside-
pendent, if Ai X Aj � H and it is possible to cause Ej to occur by resampling Ai in
a state where Ei holds but Ej does not. (The definition in [35] is worded differently
but equivalent to this.) This is exactly the condition that we require our resampling
oracle to satisfy.

3.2. Spanning trees. Here, the probability space Ω is the set of all spanning
trees in Kn, the complete graph on n vertices. Let us consider an event EA for a set of
edges A, where EA occurs for T P Ω iff A � T . We now define an adjacency relation
between edge sets as follows: A v B if there exist edges e P A and f P B such that
e and f share exactly one vertex. Lu et al. [31, Lemma 7] show that this relation in
fact defines a lopsidependency graph (which they call a negative dependency graph)
for spanning trees.

To implement a resampling oracle in this setting, we will use as a subroutine an
algorithm to generate a uniformly random spanning tree in a given graph G. This
can be done efficiently by several methods, for example by a random walk [9].

Algorithm 2 Resampling oracle for spanning trees

1: Function rApT q:
2: Check that A � T , otherwise fail.
3: Let W � V pAq, the vertices covered by A.

4: Let T1 �
�
V zW

2

�
X T , the edges of T disjoint from W .

5: Let F1 �
�
V zW

2

�
zT , the edges disjoint from W not present in T .

6: Let G2 � pKnzF1q{T1 be the multigraph obtained by deleting F1 and contracting
T1.

7: Generate a uniformly random spanning tree T2 in G2.
8: return T1 Y T2.

Lemma 12. If A is a fixed forest and T is a uniformly random spanning tree in
Kn conditioned on A � T , then rApT q produces a uniformly random spanning tree in
Kn.

Proof. First, observe that since T2 is a spanning tree of G2 � pKnzF1q{T1, it is
also a spanning tree of Kn{T1 where T1 is a forest, and therefore T1YT2 is a spanning
tree of Kn. We need to prove that it is a uniformly random spanning tree.

First, we appeal to a known result [31, Lemma 6] concerning spanning trees in
Kn. Let F be a forest in Kn with m components, and let fi be the number of vertices



in the ith component. Then the number of spanning trees containing F is exactly

(3) nn�2
m¹
i�1

fi
nfi�1

.

Equivalently (since nn�2 is the total number of spanning trees), for a uniformly ran-
dom spanning tree T , PrrF � T s �

±m
i�1 fi{n

fi�1. This has the surprising conse-
quence that for vertex-disjoint forests F1, F2, we have

PrrF1 Y F2 � T s � PrrF1 � T s � PrrF2 � T s,

i.e., the containment of F1 and F2 are independent events. (In a general graph, the
appearances of different edges in a random spanning tree are negatively correlated,
but here we are in a complete graph.)

Let W � V pAq and let B be any forest on V zW , i.e., vertex-disjoint from A. By
the above, the appearance of B in a uniformly random spanning tree is independent of
the appearance of A. Hence, if T is uniformly random, we have PrrB � T | A � T s �

PrrB � T s. This implies that the distribution of T X
�
V zW

2

�
is exactly the same for

a uniformly random spanning tree T as it is for one conditioned on A � T (formally,
by applying the inclusion-exclusion formula). Recall the lemma’s hypothesis that T

is uniform conditioned on A � T . It follows that the forest T1 � T X
�
V zW

2

�
has the

same distribution as a uniformly random spanning tree, restricted to V zW .
The final step is that we extend T1 to a spanning tree T1 Y T2, where T2 is a

uniform spanning tree in G2 � pKnzF1q{T1. Note that G2 is a multigraph, i.e., it is
important that we preserve the multiplicity of edges after contraction. The spanning
trees T2 in G2 � pKnzF1q{T1 are in a one-to-one correspondence with spanning trees

in Kn conditioned on T X
�
V zW

2

�
� T1. This is because each such tree T2 extends

T1 to a different spanning tree of Kn, and each spanning tree where T X
�
V zW

2

�
� T1

can be obtained in this way. Therefore, for a fixed T1, T1 Y T2 is a uniformly random
spanning tree conditioned on T X

�
V zW

2

�
� T1. Finally, since the distribution of T1 is

equal to that of a uniformly random spanning tree restricted to V zW , T1 Y T2 is a
uniformly random spanning tree.

Lemma 13. The resampling oracle rApT q applied to a spanning tree satisfying EA
does not cause any new event EB such that B R Γ�pAq.

Proof. Note that the only edges that we modify are those incident to W � V pAq.
Therefore, any new event EB that the operation of rA could cause must be such that
B contains an edge incident to W and not contained in A. Such an edge shares exactly
one vertex with some edge in A and hence B v A.

3.3. Composition of resampling oracles for product spaces. Suppose we
have a product probability space Ω � Ω1 �Ω2 � . . .�ΩN , where on each Ωi we have
resampling oracles rij for events Eij , j P Ei, with respect to a graph Gi. Our goal is
to show that there is a natural way to combine these resampling oracles in order to
handle events on Ω that are obtained by taking intersections of the events Eij . The
following theorem formalizes this notion.

Theorem 14. Let Ω1, . . . ,ΩN be probability spaces, where for each Ωi we have
resampling oracles rij for events Eij , j P Ei with respect to a graph Gi. Let Ω �
Ω1 � Ω2 � . . .ΩN be a product space with the respective product probability measure.
For any set J of pairs pi, jq, j P Ei where each i P rN s appears at most once, define



an event EJ on Ω to occur in a state ω � pω1, . . . , ωN q iff Eij occurs in ωi for
each pi, jq P J . Define a graph G on these events by J v J 1 iff there exist pairs
pi, jq P J, pi, j1q P J 1 such that j v j1 in Gi. Then there exist resampling oracles rJ
for the events EJ with respect to G, which are obtained by calling in succession each
of the oracles rij for pi, jq P J .

Proof. For notational simplicity, let us assume that on each Ωi we have a trivial
event Ei0 � Ωi and the respective resampling oracle ri0 is the identity on Ωi. Then
we can assume that each collection of events J is in the form

J � tp1, j1q, p2, j2q, . . . , pN, jN qu ,

where we set j` � 0 for components where there is no event to resample. We define

rJpω1, . . . , ωN q � pr1j1pω1q, r2j2pω2q, . . . , rNjN pωN qq.

We claim that these are resampling oracles with respect toG as defined in the theorem.
Let us denote by µi the probability distribution on Ωi and by µ the product

distribution on Ω. For the first condition, suppose that ω � µ|EJ
. By the product

structure of Ω, this is the same as having ω � pω1, . . . , ωN q where the components
are independent and ω` � µ`|E`j`

for each p`, j`q P J , and ω` � µ` for components
such that j` � 0. By the properties of the resampling oracles r`j` , we have r`j`pω`q �
µ`. Since the resampling oracles are applied with independent randomness for each
component, we have

rJpωq � pr1j1pω1q, r2j2pω2q, . . . , rNjN pωN qq � µ1 � µ2 � . . .� µN � µ.

For the second condition, note that if ω R EJ 1 and rJpωq P EJ 1 , it must be the
case that there is p`, j`q P J and p`, j1`q P J

1 such that ω` R E`j1` and r`j`pωq P E`j1` .
However, this is possible only if j` v j1` in the graph G`. By the definition of G, this
means that J v J 1 as well.

The next section illustrates this result by extending our resampling oracles for
random spanning trees to N -tuples of independent random spanning trees.

3.4. Application: rainbow spanning trees. This section presents an appli-
cation of our framework in the setting of spanning trees. To the best of our knowledge,
no previous algorithmic form of the LLL could handle this scenario.

The setting under consideration involves an edge-coloring of Kn. This coloring
may be improper, meaning that intersecting edges may have the same color. Given
such an edge-coloring of Kn, a spanning tree is called rainbow if the colors of its edges
are distinct.

The existence of a single rainbow spanning tree is completely resolved by the
matroid intersection theorem: It can be decided efficiently whether a rainbow spanning
tree exists for a given edge coloring, and it can be found efficiently if it exists. However,
the existence of multiple edge-disjoint rainbow spanning trees is more challenging. An
attractive conjecture of Brualdi and Hollingsworth [10] states that if n ¥ 6 is even and
Kn is properly edge-colored by n � 1 colors, then the edges can be decomposed into
n{2 rainbow spanning trees, each tree using each color exactly once. Until recently,
it was only known that every such edge-coloring contains 2 edge-disjoint rainbow
spanning trees [4]. In [11], it was proved that for any proper edge-coloring (and more
generally for any coloring where each color appears at most n{2 times) then there
exist Ωpn{ log nq edge-disjoint rainbow spanning trees. We prove that there exist



Ωpnq rainbow spanning trees under a somewhat stronger coloring assumption, and
using our framework we can also do this algorithmically.2

Theorem 15. Given an edge-coloring of Kn such that each color appears on at
most 1

32 p
3
4 q

3n edges, at least 1
32 p

3
4 q

3n edge-disjoint rainbow spanning trees exist and
can be found in Opn4q resampling oracle calls with high probability.

Our result relies on Theorem 6, our algorithmic version of the LLL under the
cluster expansion criterion. To obtain the result with high probability, we appeal
to a more refined bound that we state in Theorem 57. We note that if there is
constant multiplicative slack in the assumption on color appearances, the number of
resamplings improves to Opn2q, using the result in Theorem 57 with constant ε slack.

To prove the existential statement, we simply sample 1
32 p

3
4 q

3n independently ran-
dom spanning trees and hope that they will be both pairwise edge-disjoint and rain-
bow. This unlikely proposition happens to be true with positive probability, thanks
to the LLL and the independence properties of random spanning trees that we men-
tioned in Section 3.2. Given this setup, our framework implies that we can also find
the rainbow trees efficiently.

Proof. We apply our algorithm in the setting of t independent and uniformly
random spanning trees T1, . . . , Tt � Kn. The bad events in our probability space are
of two types:


 Eief : For each i P rts and two edges e � f in Kn of the same color, Eief occurs
if te, fu � Ti;


 Eije : For each i � j P rts and an edge e in Kn, Eije occurs if e P Ti X Tj .

Clearly, if no bad event occurs then the t trees are rainbow and pairwise edge-disjoint.
By (3) the probability of a bad event of the first type is PrrEief s � 3{n2 if

|e Y f | � 3 and PrrEief s � 4{n2 if |e Y f | � 4. The probability of a bad event of

the second type is PrrEije s � p2{nq2 � 4{n2, since each of the two trees contains
e independently with probability 2{n. Hence, the probability of each bad event is
upper-bounded by p � 4{n2.

In Section 3.2 we constructed a resampling oracle rA for a single spanning tree.
By Theorem 14, this resampling oracle extends in a natural way to the setting of t
independent random spanning trees. In particular, for an event Eief , we define rief
as an application of the resampling oracle rte,fu to the tree Ti. For an event Eije , we
define rije as an application of the resampling oracle rteu independently to the trees Ti
and Tj . It is easy to check using Theorem 14 that for independent uniformly random
spanning trees conditioned on either type of event, the respective resampling oracle
generates independent uniformly random spanning trees.

Let us define the following lopsidependency graph, which potentially has more
edges than necessary. The graph contains the following kinds of edges:


 Eief v Eie1f 1 whenever eY f intersects e1 Y f 1;


 Eief v Eije1 and Ejef v Eije1 whenever e1 intersects eY f ;


 Eije v Eij
1

e1 and Eije v Ei
1j
e1 whenever e1 intersects e.

We claim that the resampling oracle for any bad event can cause new bad events
only in its neighborhood. This follows from the fact that the resampling oracle affects

2Subsequently to our work, several papers showed independently that for any proper edge-coloring
by n� 1 colors, there exist Ωpnq edge-disjoint rainbow spanning trees [26, 5, 40].



only the trees relevant to the event (in the superscript), and the only edges modified
are those incident to those relevant to the event (in the subscript), due to Lemma 13.

Let us now verify the cluster expansion criterion, introduced as (CLL) in Sec-
tion 1.4, so that we may apply Theorem 57. Let us assume that each color appears
on at most q edges, and we generate t random spanning trees. We claim that the
neighborhood of each bad event can be partitioned into 4 cliques of size at most
pn� 1qpq � t� 2q.

First, consider an event of type Eief . The neighborhood of Eief consists of:


 Events Eie1f 1 where e1 or f 1 shares a vertex with eYf . For each vertex v P eYf ,

there are at most pn� 1qpq� 1q events Eie1f 1 where v P e1Y f 1, since there are
n � 1 ways to pick an edge incident to v, and the number of other edges of
the same color is at most q � 1.


 Events Eije1 where e1 intersects e Y f . For each vertex v P e Y f , there are

at most pn� 1qpt� 1q events Eije1 where v P e1, since there are pn� 1q edges
incident to v and t� 1 choices for the tree index j.

All these events can be covered by 4 cliques, one for each vertex v P eY f , where the
clique associated with a vertex v contains all the events that involve some edge incident
to v. By our definition of the dependency graph, all such events are pairwise neighbors.
As discussed above, the number of such events is at most pn�1qpq�1q�pn�1qpt�1q.
The cliques are not necessarily disjoint but we can make them disjoint trivially by
keeping each event in exactly one clique.

Secondly, consider an event of type Eije . The neighborhood of Eije consists of:


 Events Eie1f 1 and Eje1f 1 where e intersects e1Y f 1. For each choice of v P e and
either i or j in the superscript, the number of such events where v P e1Y f 1 is
at most pn� 1qpq� 1q, because there are n� 1 ways to pick an edge incident
to v and at most q � 1 other edges of the same color.


 Events Ei
1j
e1 , E

ij1

e1 where e1 intersects e. For each choice of v P e and either i1j
or ij1 in the superscript, the number of such events is at most pn� 1qpt� 1q,
since there are pn � 1q edges incident to v and t � 1 choices for the second
tree index.

Again, these events can be covered by 4 cliques, one associated with each choice of a
vertex v P e and either i or j in the superscript. By our construction of the dependency
graph, all such events are pairwise neighbors. As discussed above, the size of each
clique is again at most pn� 1qpq � 1q � pn� 1qpt� 1q.

Considering the symmetry of the dependency graph, we set the variables for all
events equal to yief � yije � y. The cluster expansion criteria will be satisfied if we
set the parameters so that

p ¤
y

p1� pn� 1qpq � t� 2qyq4
¤

y°
I�Γ�pEq,IPInd y

I
,

where E denotes either Eief or Eije . The second inequality holds due to the structure

of the neighborhood of each event that we described above. We set y � βp � 4β{n2

and assume q � t � 2 ¤ γn. The assumption of the theorem allows γ � 1
16 p

3
4 q

3 and

we choose β � p 4
3 q

4; the reader can verify that β
p1�4γβq4 � 1. Therefore, using these

relations,

p �
βp

p1� 4γβq4
�

y

p1� γn2yq4
¤

y

p1� pn� 1qpq � t� 2qyq4



which verifies the assumption of Theorem 57. Theorem 57 implies that MaximalSe-
tResample terminates after Opp

°
yief �

°
yije q

2q resampling oracle calls with high

probability. The total number of events here is Optqn2 � t2n2q � Opn4q and for each
event the respective variable is y � Op1{n2q. Therefore, the expected number of
resampling oracle calls is Opn4q.

4. Analysis of the algorithm. The previous sections have explained the con-
text of our resampling oracle setting, described some example resampling oracles, and
illustrated them with an application. This section proves our main technical results,
including analyses of the MaximalSetResample algorithm.

In Section 4.1, we begin with the basic notions necessary for our analysis and a
coupling argument which forms the basis of all our algorithmic results. In Section 4.2,
we introduce the independence polynomial of a graph and summarize its fundamental
properties that are important for our analysis. In Section 4.3, we prove that our
algorithm is efficient if Shearer’s criterion is satisfied with an ε slack. In Section 4.4,
we show that in some sense this assumption is not necessary, because every point
satisfying Shearer’s criterion has some slack available, and we quantify how large this
slack is. Finally, we return to the weaker (but more practical) variants of the local
lemma: the (GLL) and (CLL) criteria. We present new combinatorial connections
between these criteria and Shearer’s criterion, which in turn imply our main results
on the efficiency of our algorithm under the (GLL) and (CLL) criteria (in Sections
4.5 and 4.6, respectively).

4.1. Stable set sequences and the coupling argument. An important no-
tion in our analysis is that of stable set sequences. This concept originated in the work
of Kolipaka and Szegedy [28], which builds on Shearer’s work [45]. There are some
similarities but also differences in how this concept is applied here: most notably, our
stable set sequences grow forward in time, while the stable set sequences in [28] grow
backward in time, as the Moser-Tardos analysis [35] does.

Definition 16. One execution of the outer repeat loop in MaximalSetResample
is called an iteration. For a sequence of non-empty sets I � pI1, . . . , Itq, we say that
the algorithm follows I if Is is the set resampled in iteration s for 1 ¤ s   t, and It
is a set of the first m events resampled in iteration t for some m ¥ 1 (a prefix of the
maximal independent set constructed in iteration t).

Recall that Ind � IndpGq denotes the independent sets (including the empty set)
in the graph under consideration.

Definition 17. I � pI1, I2, . . . , Itq is called a stable set sequence if I1, . . . , It P
IndpGq and Is�1 � Γ�pIsq for each 1 ¤ s   t. We call the sequence I proper if each
independent set Is is nonempty.

Note that if Is � H for some s, then It � H for all t ¡ s. Therefore, the
nonempty sets always form a prefix of the stable set sequence. An empty sequence is
also considered to be a stable set sequence, of length 0.

Lemma 18. If MaximalSetResample follows a sequence J � pJ1, . . . , Jtq, then J
is a stable set sequence.

Proof. By construction, the set Js chosen in each iteration is independent in
G. For each i P Js, we execute the resampling oracle ri. Recall that ri executed
on a satisfied event Ei can only cause new events in the neighborhood Γ�piq (and
this neighborhood is not explored again until the following iteration). Since Js is a
maximal independent set of satisfied events, all the events satisfied in the following



iteration are neighbors of some event in Js, i.e., Js�1 � Γ�pJsq. In iteration t, this
also holds since Jt is still a set of satisfied events (not necessarily maximal).

We use the following notation: For i P rns, pi � PrµrEis. For S � rns, pS �±
iPS pi. For a stable set sequence I � pI1, . . . , Itq, pI �

±t
s�1 p

Is . We relate stable
set sequences to executions of the algorithm by the following coupling argument.
Although the use of stable set sequences is inspired by [28], their coupling argument
is different due to its backward-looking nature (similar to [35]), and their restriction
to the variable model.

Lemma 19. For any proper stable set sequence I � pI1, I2, . . . , Itq, the probability
that the MaximalSetResample algorithm follows I is at most pI .

Proof. Given I � pI1, I2, . . . , Itq, let us consider the following “I-checking” ran-
dom process. We start with a random state ω � µ. In iteration s, we process the
events of Is in the ascending order of their indices. For each i P Is, we check whether
ω satisfies Ei; if not, we terminate. Otherwise, we apply the resampling oracle ri
and replace ω by ripωq. We continue for s � 1, 2, . . . , t. We say that the I-checking
process succeeds if every event is satisfied when checked and the process runs until
the end.

By induction, the state ω after each resampling oracle call is distributed according
to µ: Assuming this was true in the previous step and conditioned on Ei satisfied, we
have ω � µ|Ei

. By assumption, the resampling oracle ri removes this conditioning and
produces again a random state ripωq � µ. Therefore, whenever we check event Ei, it is
satisfied with probability PrµrEis (conditioned on the past). By a telescoping product
of conditional probabilities, the probability that the I-checking process succeeds is
exactly

±t
s�1

±
iPIs

PrµrEis �
±t
s�1 p

Is � pI .
To conclude, we argue that the probability that MaximalSetResample follows the

sequence I is at most the probability that the I-checking process succeeds. To see this,
suppose that we couple MaximalSetResample and the I-checking process, so they use
the same source of randomness. In each iteration, if MaximalSetResample includes
i in Jt, it means that Ei is satisfied. Both procedures apply the resampling oracle
ripωq and by coupling the distribution in the next iteration is the same. Therefore,
the event that MaximalSetResample follows the sequence I is contained in the event
that the I-checking process succeeds, which happens with probability pI .

The main difference between MaximalSetResample and the I-checking process is
that the stable set sequence I is not required to be maximal in any sense. So, even
though MaximalSetResample is coupled with the I-checking process, it is possible
that MaximalSetResample resamples additional events not appearing in I. It is also
work observing that, when executing MaximalSetResample, we do not claim that the
distribution of the current state ω P Ω is µ after each resampling oracle call. This
would mean that the algorithm is not making any progress in its search for a state
avoiding all events. It is only the I-checking process that has this property.

Definition 20. Let Stab denote the set of all stable set sequences and Prop the
set of proper stable set sequences. Let us denote by Stab` the set of stable set sequences
pI1, . . . , I`q of length `, and by Stab`pJq the subset of Stab` such that the first set in
the sequence is J . Similarly, denote by Prop` the set of proper stable set sequences of
length `. For I � pI1, . . . , Itq P Prop, let us call σpIq �

°t
s�1 |Is| the total size of the

sequence.

Lemma 21. The probability that MaximalSetResample runs for at least ` itera-



tions is at most
°

IPProp`
pI . The probability that MaximalSetResample resamples at

least s events is at most
°

IPProp:σpIq�s pI .

Proof. If the algorithm runs for at least ` iterations, it means that it follows
some proper sequence I � pI1, I2, . . . , I`q. By Lemma 19, the probability that the
algorithm follows a particular stable set sequence I is at most pI . By the union
bound, the probability that the algorithm runs for at least ` iterations is at most°

I�pI1,...,I`qPProp pI .
Similarly, if the algorithm resamples at least s events, it means that it follows

some proper sequence I of total size σpIq � s. By the union bound, the probability
of resampling at least s events is upper-bounded by

°
IPProp:σpIq�s pI .

We note that these bounds could be larger than 1 and thus vacuous. The events
that “the algorithm follows I � pI1, . . . , I`q” are disjoint for different sequences of
fixed total size σpIq, while they could overlap for a fixed length ` (because we can
take I` to be different prefixes of the sequence of events resampled in iteration t). In
any case, the upper bound of pI on each of the events could be quite loose.

4.2. Preliminaries on Shearer’s criterion. In this section we discuss a strong
version of the local lemma due to Shearer [45]. Shearer’s lemma is based on certain
forms of the multivariate independence polynomial. Recall that pI denotes

±
iPI pi.

Definition 22. Given a graph G and values p1, . . . , pn, define for each S � rns

(4) qS � qSppq �
¸
IPInd
S�I

p�1q|IzS|pI .

Note that qS � 0 for S R Ind. An alternative form of these polynomials that is
also useful is obtained by summing over subsets of S.

Definition 23. Given a graph G and values p1, . . . , pn, define

q̆S � q̆Sppq �
¸
IPInd
I�S

p�1q|I|pI .

The following set plays a fundamental role.

Definition 24. Given a graph G, the Shearer region is the semialgebraic set

S � t p P p0, 1qn : @I P Ind, qIppq ¡ 0 u(5a)

� t p P p0, 1qn : @S � rns, q̆Sppq ¡ 0 u(5b)

The equivalence between (5a) and (5b) is proven below in Claim 32.
Shearer’s Lemma can be stated as follows.

Lemma 25 (Shearer [45]). Let G be a lopsidependency graph for the events
E1, . . . , En. Let pi � PrµrEis P p0, 1q. If p P S then Prµr

�n
i�1Eis ¥ qH.

It is known that Shearer’s Lemma implies Theorem 1, as we will see in Section 4.5,
and in fact gives the tight criterion under which all events can be avoided for a given
dependency graph G. The polynomials qSppq and q̆Sppq have a natural interpretation
in the Shearer region: There is a “tight instance” where qSppq is the probability that
the set of occurring events is exactly S, and q̆Sppq is the probability that none of the
events in S occur. In particular, qHppq � q̆rnsppq is exactly the probability that no
event occurs. (See [45] for more details.)



4.2.1. Properties of independence polynomials. In this section we sum-
marize some of the important properties of these polynomials, most of which may be
found in earlier work. Since some of the proofs are not easy to recover due to differ-
ent notation or their analytic nature (in case of [44]), we provide short combinatorial
proofs in the appendix for completeness.

Claim 26 (The “fundamental identity”. Shearer [45], Scott-Sokal [44, Eq. (3.5)]).
For any a P S, we have

q̆S � q̆Sztau � pa � q̆SzΓ�paq.

Claim 27 (Shearer [45], Scott-Sokal [44, Eq. (2.52)]). For every S � rns,

q̆S �
¸

Y�rnszS

qY .

Claim 28 (Shearer [45]). ¸
JPInd

qJ �
¸

S�rns

qS � 1.

Claim 29 (Scott-Sokal [44, Eq. (2.48)]). For I P Ind,

qI � pI � q̆rnszΓ�pIq.

Lemma 30 (Kolipaka-Szegedy [28, Lemma 15]). For any I P Ind

qI � pI �
¸

S�Γ�pIq

qS .

Claim 31 (Simultaneous positivity of qS and q̆S). Assume that p P r0, 1sn. Then

qI ¥ 0 @I P Ind ùñ q̆S ¥ qH @S � rns(6)

q̆S ¥ 0 @S � rns ùñ qI ¥ prns � q̆rns @I P Ind.(7)

Claim 32. The two characterizations of the Shearer region, (5a) and (5b), are
equivalent.

Claim 33 (Monotonicity of q̆, Scott-Sokal [44, Theorem 2.10]). Let p P r0, 1sn.

q̆Sppq ¥ 0 @S � rns ùñ q̆Spp
1q ¥ q̆Sppq @0 ¤ p1 ¤ p, @S � rns.

Corollary 34. For any p P S and A � B � rns, we have q̆Appq ¥ q̆Bppq.

Claim 35 (Log-submodularity of q̆S , Scott-Sokal [44, Corollary 2.27]). For any
p P S and A,B � rns, we have q̆A � q̆B ¥ q̆AYB � q̆AXB.

Claim 36 (Log-submodularity of qS). For any p P S and A,B � rns, we have
qA � qB ¥ qAYB � qAXB.

Claim 37. Suppose that p P S. For any set S � rns,¸
J�S

qJ
qH

¤
¹
jPS

�
1�

qtju

qH

	
.

Claim 38. If qH ¡ 0 then
qtiu
qH

�
q̆rnsztiu
q̆rns

� 1.

Claim 39 (Kolipaka-Szegedy [28, Theorem 5]). If p1� εqp P S then
qtiu
qH

¤ 1
ε for

each i P rns.



4.2.2. Connection to stable set sequences. Kolipaka and Szegedy showed
that stable set sequences relate to the independence polynomials qS . The following
is the crucial upper-bound for stable set sequences when Shearer’s criterion holds. A
proof appears in the appendix.

Lemma 40 (Kolipaka-Szegedy [28]). If qS ¥ 0 for all S � rns and qH ¡ 0, then

¸
IPStab`pJq

pI ¤
qJ
qH

@J P Ind,@` ¥ 1.

The inequality in Lemma 40 actually becomes an equality as `Ñ8. This stronger
result is also due to Kolipaka and Szegedy [28, Theorem 14], and an alternative
exposition may be found in our technical report [25]. This paper does not use the
stronger result.

From Claim 28 and Lemma 40 we obtain immediately the following.

Corollary 41. If qS ¥ 0 for all S � rns and qH ¡ 0,

¸
IPProp

pI ¤
1

qH
.

Summary at this point. By Lemma 21 and Corollary 41, MaximalSetResample
produces a state in

�n
i�1Ei after at most 1{qH iterations in expectation. However,

this should not be viewed as a statement of efficiency. Shearer’s Lemma proves that
Prµr

�n
i�1Eis ¥ qH so, in expectation, 1{qH independent samples from µ would also

suffice to find a state in
�n
i�1Ei.

Section 4.3 improves this analysis by assuming that Shearer’s criterion holds with
some slack. Section 4.4 then removes the need for that assumption — it argues that
Shearer’s criterion always holds with some slack, and provides quantitative bounds
on that slack.

4.3. Shearer’s criterion with slack. In this section we consider scenarios in
which Shearer’s criterion holds with a certain amount of slack. To make this formal,
we will consider another vector p1 of probabilities with p ¤ p1 P S. For notational
convenience, we will let q1S denote the value qSpp

1q and let qS denote qSppq as before.
Let us assume that Shearer’s criterion holds with some slack in the following natural
sense.

Definition 42. We say that p P p0, 1qn satisfies Shearer’s criterion with coeffi-
cients q1S at a slack of ε, if p1 � p1�εqp is still in the Shearer region S and q1S � qSpp

1q.

Theorem 43. Recall that pi � PrµrEis. If the pi satisfy Shearer’s criterion with
coefficient q1H at a slack of ε P p0, 1q, then the probability that MaximalSetResample

resamples more than 2
ε

�
ln 1

q1
H
� t
�

events is at most e�t.

Proof. By Lemma 21, the probability that MaximalSetResample resamples more
than s events is at most

°
IPProp:σpIq�rss pI . By the slack assumption, we have

Prrresample more than s eventss ¤
¸

IPProp
σpIq�rss

pI ¤ p1� εq�s
¸

IPProp
σpIq�rss

p1I

since we have p1i � p1�εqpi for each event appearing in a sequence I. The hypothesis is
that the probabilities p1i satisfy Shearer’s criterion with a bound of q1H. Consequently,



Corollary 41 implies that
°

IPProp:σpIq�rss p
1
I ¤

°
IPProp p

1
I ¤ 1{q1H. Thus, for s �

2
ε

�
ln 1

q1
H
� t
�

we obtain

Prrresample more than s eventss ¤ p1� εq�s
1

q1H

¤ e�sε{2
1

q1H

¤ e�plnp1{q
1
Hq�tq

1

q1H
� e�t.

In other words, the probability that MaximalSetResample requires more than
2
ε lnp1{q1Hq resamplings decays exponentially fast; in particular the expected number

of resampled events is O
�

1
ε lnp1{q1Hq

�
. This appears significantly better than the

trivial bound of 1{qH; still, it is not clear whether this bound can be considered
“polynomial”. In the following, we show that this leads in fact to efficient bounds,
comparable to the best known bounds in the variable model.

Corollary 44. If the pi satisfy Shearer’s criterion with coefficients q1S at a slack
of ε P p0, 1q, then the probability that MaximalSetResample resamples more than

2

ε

�
ņ

j�1

ln
�

1�
q1tju

q1H

	
� t

�

events is at most e�t.

Proof. By Claim 28 and Claim 37, we have

ln
1

q1H
� ln

¸
J�rns

q1J
q1H

¤
ņ

j�1

ln
�

1�
q1tju

q1H

	
.

The result follows from Theorem 43.

Next, we provide a simplified bound that depends only on the amount of slack and
the number of events. It is similar to the bound of Opn{εq given by Kolipaka-Szegedy
[28] in the variable model. These bounds may be considered efficient, depending on
the parameter by which one measures efficiency. For example, in some applications n
can be exponentially large in another parameter, in which case the theorem does not
guarantee efficiency.

Theorem 45. If p1, . . . , pn satisfy Shearer’s criterion at a slack of ε P p0, 1q, then
the expected number of events resampled by MaximalSetResample is Opnε log 1

ε q.

Proof. Let p1 � p1� ε{2qp. By assumption, p1� ε{3qp1 ¤ p1� εqp P S. So p1 still

has ε{3 slack and, by Claim 39, the coefficients q1S � qSpp
1q satisfy

q1tiu
q1
H
¤ 3

ε . The point

p satisfies Shearer’s criterion with coefficients q1S at a slack of ε{2 so, by Corollary 44,
the probability that we resample more than 4

ε pn lnp1� 3
ε q � tq events is at most e�t.

In expectation, we resample Opnε log 1
ε q events as claimed.

4.4. Quantification of slack in Shearer’s criterion. In the previous section,
we proved a bound on the number of resamplings in the MaximalSetResample algo-
rithm, provided that Shearer’s criterion is satisfied with a certain slack. In fact, from
Definition 24 one can observe that the Shearer region is an open set and therefore



there is always a certain amount of slack. However, how large a slack we can assume
is not a priori clear. In particular, one can compare with Kolipaka-Szegedy [28] where
a bound is proved on the expected number of events one has to resample in the vari-
able model: If Shearer’s criterion is satisfied with coefficients qS , then the expected
number of resamplings is at most

°n
i�1 qtiu{qH [28]. In this section, we prove that

anywhere in the Shearer region, there is an amount of slack inversely proportional to
this quantity, which leads to a bound similar to that of Kolipaka and Szegedy [28].

Lemma 46. Let pp1, . . . , pnq P p0, 1q
n be a point in the Shearer region. Let ε �

qHppq{p2
°n
i�1 qtiuppqq and p1i � p1 � εqpi. Then pp11, . . . , p

1
nq is also in the Shearer

region, and qHpp
1q ¥ 1

2qHppq.

Before proving the lemma, let us consider the partial derivatives of the q̆S poly-
nomials.

Claim 47. For any i P S,

Bq̆S
Bpi

� � q̆SzΓ�piq

and for any j P SzΓ�piq,

B2q̆S
BpiBpj

� q̆SzΓ�piqzΓ�pjq.

For other choices of i, j, the partial derivatives are 0. In particular, for any point in

the Shearer region, Bq̆S
Bpi

¤ 0 and B2q̆S
BpiBpj

¥ 0.

Due to Claim 47, we may say that q̆Spp1, . . . , pnq is “continuous supermodular”
in the Shearer region.

Proof. For any i P S, we have q̆S � q̆Sztiu � piq̆SzΓ�piq by Claim 26. The poly-

nomials q̆Sztiu and q̆SzΓ�piq do not depend on pi and hence Bq̆S
Bpi

is equal to �q̆SzΓ�piq.

Repeating this argument one more time for j P SzΓ�piq, we get Bq̆S
Bpi

� �q̆SzΓ�piq �
�q̆SzΓ�piqztju � pj q̆SzΓ�piqzΓ�pjq. Again, q̆SzΓ�piqztju and q̆SzΓ�piqzΓ�pjq do not depend

on pj and hence B2q̆S
BpiBpj

� q̆SzΓ�piqzΓ�pjq.

Clearly, we have Bq̆S
Bpi

� 0 unless i P S, and B2q̆S
BpiBpj

� 0 unless i P S and j P SzΓ�piq.

Since all the coefficients q̆S are positive in the Shearer region, we have Bq̆S
Bpi

¤ 0 and
B2q̆S
BpiBpj

¥ 0 for all i, j.

Now we can prove Lemma 46.

Proof. Consider the line segment from p � pp1, . . . , pnq to p1 � pp11, . . . , p
1
nq where

p1i � p1�εqpi, ε �
qH

2
°n

i�1 qtiu
. Note that p1i ¤ p1�

qH
qtiu

qpi �
qtiu�qH
qtiu

pi �
q̆rnsztiu

piq̆rnszΓ�piq
pi ¤ 1

by Claim 27, Claim 29 and Corollary 34. Let us define

QHpλq � qHpp1� λqp1, . . . , p1� λqpnq.

Observe from Claim 27 that qH � q̆rns. By the chain rule, Claim 47 and Claim 29 we
have

dQH

dλ

���
λ�0

�
ņ

i�1

pi
BqH
Bpi

� �
ņ

i�1

piq̆rnszΓ�piq � �
ņ

i�1

qtiu.



Assuming that p1� λqp � pp1� λqp1, . . . , p1� λqpnq is in the Shearer region, we also
have by Claim 47

d2QH

dλ2
�

ņ

i,j�1

B2qH
BpiBpj

pipj ¥ 0.

That is, QHpλq is a convex function for λ ¥ 0 as long as p1 � λqp is in the Shearer
region. Our goal is to prove that this indeed happens for λ P r0, εs.

Assume for the sake of contradiction that p1 � λqp is not in the Shearer region
for some λ P r0, εs, and let λ� be the minimum such value (which exists since the
complement of the Shearer region is closed). By Claim 31, anywhere in the Shearer
region, qH � q̆rns is the minimum of the q̆S coefficients; hence by continuity it must
be the case that q̆rnspp1 � λ�qpq is the minimum coefficient among q̆Spp1 � λ�qpq for
all S � rns, and QHpλ

�q � q̆rnspp1�λ
�qpq ¤ 0. On the other hand, by the minimality

of λ�, QHpλq is positive and convex on r0, λ�q and therefore

QHpλ
�q ¥ QHp0q�λ

� dQH

dλ

���
λ�0

� qH�λ
�

ņ

i�1

qtiu ¥ qH� ε
ņ

i�1

qtiu �
1

2
qH ¡ 0,

which is a contradiction. Therefore, QHpλq is positive and convex for all λ P r0, εs.
By the same computation as above, QHpεq ¥

1
2qH.

This implies our main algorithmic result under Shearer’s criterion.

Theorem 48. Let E1, . . . , En be events and let pi � PrµrEis. Suppose that the
three subroutines described in Section 1.1.1 exist. If p P S then the probability that
MaximalSetResample resamples more than 4

°n
i�1

qtiu
qH

�°n
j�1 lnp1�

qtju
qH
q�1�t

�
events

is at most e�t.

We note that the corresponding result in the variable model [28] was that the
expected number of resamplings is at most

°n
i�1

qtiu
qH

. Here, we obtain a bound which

is at most quadratic in this quantity.

Proof. Directly from Theorem 43 and Lemma 46: Given p in the Shearer region,
Lemma 46 implies that p in fact satisfies Shearer’s criterion with a bound of q1H ¥

qH
2

at a slack of ε �
qH
2 {
°n
i�1 qtiu. By Theorem 43, the probability that MaximalSet-

Resample resamples more than s events is at most e�t, where

s �
2

ε

�
ln

1

q1H
� t

�
¤

4

qH

ņ

i�1

qtiu

�
ln

1

qH
� 1� t



.

Using Claim 37, we can replace ln 1
qH

by
°n
j�1 lnp1�

qtju
qH
q.

4.5. The General LLL criterion. Shearer’s Lemma (Lemma 25) is a strength-
ening of the original Lovász Local Lemma (Theorem 1): if p1, . . . , pn satisfy (GLL)
then they must also satisfy Shearer’s criterion p P S. Nevertheless, there does not
seem to be a direct proof of this fact in the literature. Shearer [45] indirectly proves
this fact by showing that, when p R S it is possible that Prr

�n
i�1Eis � 0, so the

contrapositive of Theorem 1 implies that (GLL) cannot hold. Scott and Sokal prove
this fact using analytic properties of the partition function [44, Corollary 5.3]. In this
section we establish this fact by an elementary, self-contained proof.

We then establish Theorem 3, our algorithmic form of Theorem 1 in the general
framework of resampling oracles.



Lemma 49. Suppose that p satisfies (GLL). Then, for every S � rns and a P S,
we have

q̆S
q̆Sztau

¥ 1� xa.

Corollary 50 ((GLL) implies Shearer). If p satisfies (GLL) then p P S.

Proof. For any S � rns, write it as S � ts1, . . . , sku. Induction yields

q̆S
q̆H

�
k¹
i�1

q̆ts1,...,siu

q̆ts1,...,si�1u
¥

¹
aPS

p1� xaq ¡ 0.

The claim follows since q̆H � 1.

Corollary 51. If p satisfies (GLL) then
qtau
qH

¤ xa

1�xa
.

Proof. Lemma 49 yields
q̆rns�a

q̆rns
¤ 1

1�xa
, so the result follows from Claim 38.

Proof (of Lemma 49). We proceed by induction on |S|. The base case, S � H,
is trivial: there is no a P S to choose. Consider S � H and an element a P S. By
Claim 26, we have q̆S � q̆Sztau � paq̆SzΓ�paq. By the inductive hypothesis applied
iteratively to the elements of pSz tauqzpSzΓ�paqq � Γpaq X S, we have

q̆Sztau ¥ q̆SzΓ�paq

¹
iPΓpaqXS

p1� xiq.

Therefore, we can write

q̆S � q̆Sztau � paq̆SzΓ�paq ¥ q̆Sztau

�
1�

pa±
iPΓpaqXSp1� xiq

�
.

By the claim’s hypothesis, pa ¤ xa
±
iPΓpaqp1 � xiq ¤ xa

±
iPΓpaqXSp1 � xiq, so we

conclude that q̆S ¥ p1� xaqq̆Sztau.

These results, together with our analysis of Shearer’s criterion with slack (Corol-
lary 44), immediately provide an analysis under the assumption that (GLL) holds
with slack. However, this connection to Shearer’s criterion allows us to prove more.

We show that our algorithm is in fact efficient even when the (GLL) criterion is
tight. This holds because tightness of (GLL) does not imply tightness of Shearer’s
criterion. In fact, Shearer’s criterion is never tight: as we argued already, it defines
an open set, and Section 4.4 derives a quantitative bound on the slack that is always
available under Shearer’s criterion.

Theorem 52. Let E1, . . . , En be events and let pi � PrµrEis. Suppose that the
three subroutines described in Section 1.1.1 exist. If p satisfies (GLL) then the proba-
bility that MaximalSetResample resamples more than 4

°n
i�1

xi

1�xi
p
°n
j�1 ln 1

1�xj
�1�tq

events is at most e�t.
If (GLL) is satisfied with a slack of ε P p0, 1q, i.e., p1� εqpi ¤ xi

±
jPΓpiqp1� xjq,

then with probability at least 1 � e�t, MaximalSetResample resamples no more than
2
ε p
°n
j�1 ln 1

1�xj
� tq events.

Proof. The first part follows directly from Theorem 48, since Corollary 50 shows
that p P S and Corollary 51 shows that

qtiu
qH

¤ xi

1�xi
. The second part follows from

Corollary 44, using again that
qtiu
qH

¤ xi

1�xi
.

Theorem 3 follows immediately from Theorem 52.



4.6. The cluster expansion criterion. Recall that Section 1.4 introduced the
cluster expansion criterion, which often gives improved quantitative bounds compared
to the General LLL. One example of this is the application discussed in Section 3.4.

For convenience, let us restate the cluster expansion criterion here. Given param-
eters y1, . . . , yn, define the notation

YS �
¸
I�S
IPInd

yI @S � rns.

The cluster expansion criterion for a vector p P r0, 1sn, with respect to a graph G, is

(CLL) Dy1, . . . , yn ¡ 0 such that pi ¤ yi{YΓ�piq.

This criterion was introduced in the following non-constructive form of the LLL.

Theorem 53 (Bissacot et al. [7]). Let E1, . . . , En be events. Let G be a lopside-
pendency graph for these events and let pi � PrµrEis. If p and G satisfy (CLL) then
Prµr

�n
i�1Eis ¡ 0.

To see that this strengthens the original LLL (Theorem 1), one may verify that
(GLL) implies (CLL): if pi ¤ xi

±
jPΓpiqp1� xjq, we can take yi �

xi

1�xi
(so 1� xi �

1
1�yi

) and then use the simple bound¸
I�Γ�piq
IPInd

yI ¤
¸

I�Γ�piq

yI �
¹

jPΓ�piq

p1� yjq.

On the other hand, Shearer’s Lemma (Lemma 25) strengthens Theorem 53, in the
sense that (CLL) implies p P S. This fact was established by Bissacot et al. [7] by
analytic methods that relied on earlier results [18]. In this section we establish this
fact by a new proof that is elementary and self-contained.

An algorithmic form of Theorem 53 in the variable model was proven by Peg-
den [38]. In fact, that result is subsumed by the algorithm of Kolipaka and Szegedy
in Shearer’s setting, since (CLL) implies p P S. In this section, we prove a new
algorithmic form of Theorem 53 in the general framework of resampling oracles.

To begin, we establish the following connection between the yi parameters and
the q̆S polynomials. For convenience, let us introduce the notation Sc � rnszS,
S � a � S Y tau and S � a � Sz tau.

Lemma 54. Suppose that p satisfies (CLL). Then, for every S � rns and a P S,
we have

q̆S
q̆S�a

¥
YSc

YpS�aqc
.

The proof is in Section 4.6.1 below.

Corollary 55 ((CLL) implies Shearer). If p satisfies (CLL) then p P S.

Proof. For any S � rns, write it as S � ts1, . . . , sku. Applying Lemma 54 repeat-
edly, we obtain

q̆S
q̆H

�
k¹
i�1

q̆ts1,...,siu

q̆ts1,...,si�1u
¥

k¹
i�1

Yts1,...,siuc

Yts1,...,si�1u
c
�

YSc

Yrns
¡ 0

since YT ¡ 0 for all T � rns under the (CLL) criterion. Recall that q̆H � 1. Hence
q̆S ¡ 0 for all S � rns, which means that p is in the Shearer region.



Corollary 56. If p satisfies (CLL) then
qtau
qH

¤ ya.

Proof. Lemma 54 yields
q̆rns�a

q̆rns
¤

Yprns�aqc

Yrnsc
� 1 � ya, so the result follows from

Claim 38.

These corollaries lead to our algorithmic result under the cluster expansion cri-
terion. The following theorem subsumes Theorem 6 and adds a statement under the
assumption of slack.

Theorem 57. Let E1, . . . , En be events and let pi � PrµrEis. Suppose that the
three subroutines described in Section 1.1.1 exist. If p satisfies (CLL) then, with
probability at least 1� e�t, MaximalSetResample resamples no more than

4
ņ

i�1

yi

�
ņ

j�1

lnp1� yjq � 1� t

�
events.

If (CLL) is satisfied with a slack of ε P p0, 1q, i.e., p1�εqpi ¤ yi{YΓ�piq, then with
probability at least 1� e�t, MaximalSetResample resamples no more than

2

ε

�
ņ

j�1

lnp1� yjq � t

�
events.

Proof. The first statement follows directly from Theorem 48, since Corollary 55
shows that p P S and Corollary 56 shows that

qtiu
qH

¤ yi. Next assume that (CLL)

is satisfied with ε slack. We apply Corollary 55 and Corollary 56 to the point p1 �
p1� εqp, obtaining that p1 P S and q1tju{q

1
H ¤ yj , where q1S denotes qSpp

1q. The second
statement then follows directly from Corollary 44.

4.6.1. Proof of Lemma 54.

Claim 58 (The “fundamental identity” for Y ). YA � YA�a � yaYAzΓ�paq for all
a P A.

Proof. Every summand yJ on the left-hand side either appears in YA�a if a R J , or
can be written as ya � y

B where B � JzΓ�paq, in which case it appears as a summand
in yaYAzΓ�paq.

Claim 59 (Log-subadditivity of Y ). YAYB ¤ YA � YB for any A,B � rns.

Proof. It suffices to consider the case that A and B are disjoint, as replacing
B with BzA decreases the right-hand side and leaves the left-hand side unchanged.
Every summand yJ on the left-hand side can be written as yJ

1

� yJ
2

with J 1 � J XA
and J2 � J XB. The product yJ

1

�yJ
2

appears as a summand on the right-hand side,
and all other summands are non-negative.

Proof (of Lemma 54). We proceed by induction on |S|. The base case is S � tau.

In that case we have
q̆tau
q̆H

� q̆tau � 1�pa. On the other hand, by the two claims above

and (CLL), we have

Yrns � Yrns�a � yaYrnszΓ�paq ¥ Yrns�a � paYΓ�paqYrnszΓ�paq ¥ Yrns�a � paYrns.

Therefore,
Yrns�a

Yrns
¤ 1� pa which proves the base case.

We prove the inductive step by similar manipulations. By Claim 26, we have

q̆S
q̆S�a

� 1� pa
q̆SzΓ�paq

q̆S�a
.



The inductive hypothesis applied repeatedly to the elements of S X Γpaq yields

1� pa
q̆SzΓ�paq

q̆S�a
¥ 1� pa

YpSzΓ�paqqc

YpS�aqc
� 1� pa

YScYΓ�paq

YSc�a
.

By the two claims above and (CLL), we have

YSc�a � YSc � yaYSczΓ�paq ¥ YSc � paYΓ�paqYSczΓ�paq ¥ YSc � paYScYΓ�paq.

We conclude that

q̆S
q̆S�a

¥ 1� pa
YScYΓ�paq

YSc�a
¥ 1�

YSc�a � YSc

YSc�a
�

YSc

YpS�aqc
.

5. Conclusions. We have shown that the Lovász Local Lemma can be made al-
gorithmic in the abstract framework of resampling oracles. This framework captures
the General LLL as well as Shearer’s Lemma in the existential sense, and leads to effi-
cient algorithms for the primary examples of probability spaces and events satisfying
lopsidependency that have been considered in the literature (as surveyed in [31]).

Our algorithmic form of the General LLL, stated in Theorem 3, performs more re-
sampling operations than the Moser-Tardos algorithm [35]. Specifically, our algorithm
uses O

�°n
i�1

xi

1�xi

°n
j�1 log 1

1�xj

�
resampling operations, which is roughly quadrati-

cally worse than the
°n
i�1

xi

1�xi
bound of Moser-Tardos [35]. Similarly, our algorithmic

result under Shearer’s condition (Theorem 48) uses O
�°n

i�1
qtiu
qH

°n
j�1 lnp1�

qtju
qH
q
�

re-

sampling operations, which is roughly quadratically worse than the
°n
i�1

qtiu
qH

bound

of Kolipaka-Szegedy [28]. Can this quadratic loss be eliminated?
One way to prove that result would be to prove an analogue of the witness tree

lemma, which is a centerpiece of the Moser-Tardos analysis [35]. The witness tree
lemma has other advantages, for example in deriving parallel and deterministic algo-
rithms. Unfortunately, the witness tree lemma is not true in the general setting of
resampling oracles [25]. It is, however, true in the variable model [35] as well as in the
setting of random permutations [24]. Is there a variant of our framework which can
handle the same scenarios that we do, but in which the witness tree lemma is true?

Subsequent to the initial publication of this paper, Kolmogorov [30] and Iliopou-
los [27] have made progress on this question. Their framework based on the notion
of “commutativity” supports a witness tree lemma and captures the scenarios of per-
mutations [24, 25] and perfect matchings [25]. However, developing a framework that
supports a witness tree lemma and can handle the spanning tree scenario of Section 3.2
remains an open question.

Acknowledgements. We thank Mohit Singh for discussions at the early stage
of this work, David Harris for suggesting the statement of Theorem 14, and the anony-
mous referees for several suggestions, including improved parameters in Theorem 15.

REFERENCES

[1] Dimitris Achlioptas and Themis Gouleakis. Algorithmic improvements of the Lovász local
lemma via cluster expansion. In Proceedings of FSTTCS, 2012.

[2] Dimitris Achlioptas and Fotis Iliopoulos. Focused stochastic local search and the Lovász local
lemma. In Proc. of 27th ACM-SIAM SODA, 2016.

[3] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the
Lovász local lemma. Journal of the ACM, 63(3):22:1–22:29, 2016.



[4] Saieed Akbari and Alireza Alipour. Multicolored trees in complete graphs. J. Graph Theory,
54(3):221–232, 2007.

[5] József Balogh, Hong Liu, and Richard Montgomery. Rainbow spanning trees in properly
coloured complete graphs. Discrete Applied Mathematics, 247:97–101, 2018.

[6] Anton Bernshteyn. The local cut lemma. Eur. J. Comb., 63:95–114, 2017.
[7] R. Bissacot, R. Fernández, A. Procacci, and B. Scoppola. An improvement of the Lovász local

lemma via cluster expansion. Combin. Probab. Comput., 20:709–719, 2011.
[8] Julia Böttcher, Yoshiharu Kohayakawa, and Aldo Procacci. Properly coloured copies and

rainbow copies of large graphs with small maximum degree. Random Structures and Al-
gorithms, 40(4), 2012.

[9] Andrei Broder. Generating random spanning trees. In Proceedings of FOCS, pages 442–447,
1989.

[10] Richard A. Brualdi and Susan Hollingsworth. Multicolored trees in complete graphs. J. Combin.
Theory Ser. B, 68, 1996.

[11] James M. Carraher, Stephen G. Hartke, and Paul Horn. Edge-disjoint rainbow spanning trees
in complete graphs. European Journal of Combinatorics, 57:71–84, 2016.

[12] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms
for the Lovász local lemma. SIAM Journal on Computing, 42(6), 2013.

[13] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. In Proceedings of PODC, 2014.

[14] Vida Dujmovic, Gwenaël Joret, Jakub Kozik, and David R. Wood. Nonrepetitive colouring via
entropy compression. Combinatorica, 36(6):661–686, 2016.

[15] Paul Erdös and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In A. Hajnal et al., editor, Infinite and finite sets, volume 10 of Colloquia
Mathematica Societatis János Bolyai, pages 609–628. North-Holland, Amsterdam, 1975.

[16] Paul Erdös and Joel Spencer. The Lopsided Lovász Local Lemma and Latin transversals.
Discrete Applied Mathematics, 30:151–154, 1991.

[17] Louis Esperet and Aline Parreau. Acyclic edge-coloring using entropy compression. Eur. J.
Comb., 34(6):1019–1027, 2013.

[18] R. Fernández and A. Procacci. Cluster expansion for abstract polymer models: New bounds
from an old approach. Comm. Math. Phys, 274:123–140, 2007.

[19] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is tight for SAT. In Proceed-
ings of SODA, 2011.

[20] Ioannis Giotis, Lefteris M. Kirousis, Kostas I. Psaromiligkos, and Dimitrios M. Thilikos. Acyclic
edge coloring through the Lovász Local Lemma. Theor. Comput. Sci., 665:40–50, 2017.

[21] Daniel Gonçalves, Mickaël Montassier, and Alexandre Pinlou. Entropy compression method
applied to graph colorings. CoRR, abs/1406.4380, 2014.

[22] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. Journal of the ACM, 58(6), 2011.

[23] David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided
Lovász Local Lemma. In Proceedings of 26th ACM-SIAM SODA, 2015.

[24] David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász Local Lemma
on permutations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 907–
925, 2014.

[25] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via
resampling oracles. CoRR, 1504.02044, 2015.

[26] Paul Horn. Rainbow spanning trees in complete graphs colored by one-factorizations. Journal
of Graph Theory, 87(3):333–346, 2018.

[27] Fotis Iliopoulos. Backtracking and commutative algorithms for the LLL. CoRR, 1704.02796,
2017.

[28] Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proceedings of
STOC, 2011.

[29] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with improved appli-
cations. In Proceedings of APPROX/RANDOM, 2012.

[30] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. In 57th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 780–787, 2016.

[31] Lincoln Lu, Austin Mohr, and László Székely. Quest for negative dependency graphs. Recent
Advances in Harmonic Analysis and Applications, 25:243–258, 2013.

[32] Austin Mohr. Applications of the lopsided Lovász local lemma regarding hypergraphs. PhD
thesis, University of South Carolina, 2013.

[33] Robin Moser. Exact Algorithms for Constraint Satisfaction Problems. PhD thesis, ETH Zürich,



2012.
[34] Robin A. Moser. A constructive proof of the Lovász local lemma. In Proceedings of STOC,

2009.
[35] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local Lemma.

Journal of the ACM, 57(2), 2010.
[36] Sokol Ndreca, Aldo Procacci, and Benedetto Scoppola. Improved bounds on coloring of graphs.

European Journal of Combinatorics, 33(4), 2012.
[37] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient

proofs of existence. Journal of Computer and System Sciences, 48:498–532, 1994.
[38] Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM J. Discrete

Math, 28:911–917, 2014.
[39] Guillem Perarnau and Oriol Serra. Rainbow perfect matchings in complete bipartite graphs:

Existence and counting. Combinatorics, Probability and Computing, 22:783–799, 2013.
[40] Alexey Pokrovskiy and Benny Sudakov. Linearly many rainbow trees in properly edge-coloured

complete graphs. J. Comb. Theory, Ser. B, 132:134–156, 2018.
[41] Jakub Przybylo. On the facial thue choice index via entropy compression. Journal of Graph

Theory, 77(3):180–189, 2014.
[42] Jakub Przybylo, Jens Schreyer, and Erika Skrabul’áková. On the facial thue choice number

of plane graphs via entropy compression method. Graphs and Combinatorics, 32(3):1137–
1153, 2016.

[43] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2004.
[44] Alexander D. Scott and Alan D. Sokal. The Repulsive Lattice Gas, the Independent-Set Poly-

nomial, and the Lovász Local Lemma. Journal of Statistical Physics, 118(5):1151–1261,
2005.

[45] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3), 1985.
[46] Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69–76,

1977.



Appendix A. Proofs omitted from Section 4.2.

Proof (of Claim 26). Every independent set I � S either contains a or does not.
In addition, if a P I then I is independent iff Iztau is an independent subset of
SzΓ�paq.

Proof (of Claim 27). By definition of qY ,¸
Y�rnszS

qY �
¸

Y�rnszS

¸
IPInd
Y�I

p�1q|IzY |pI �
¸
IPInd

pI
¸

Y�IzS

p�1q|IzY |.

If IzS � H then the last alternating sum is zero. Therefore, the sum simplifies to°
IPInd:I�Sp�1q|I|pI � q̆S as required.

Proof (of Claim 28). Set S � H in Claim 27 and use the fact that q̆H � 1.

Proof (of Claim 29). Given I P Ind, each independent set J � I can be written
uniquely as J � I YK where K is independent and K X Γ�pIq � H. So,

qI �
¸

JPInd:I�J

p�1q|JzI|pJ � pI
¸
KPInd

K�rnszΓ�pIq

p�1q|K|pK � pI � q̆rnszΓ�pIq.

Proof (of Lemma 30). By Claim 29 and Claim 27, we have

qI � pI � q̆rnszΓ�pIq � pI
¸

S�Γ�pIq

qS ,

as required.

Proof (of Claim 31). (6) follows from Claim 27 (since qY � 0 for Y R Ind). To
see (7), first note that qI ¥ 0 for all I P Ind, by Claim 29. Consequently, by Claim 27,
q̆rns � minS q̆S . Clearly, prns � minI p

I . It follows from Claim 29 again that qI �

pI � q̆rnszΓ�pIq ¥ prns � q̆rns.

Proof (of Claim 32). By Claim 31, if qH ¡ 0 and qS ¥ 0 @S � rns, then q̆S ¡ 0
for all S � rns. Conversely, if q̆S ¡ 0 for all S � rns, then qI ¥ prnsq̆rns ¡ 0 for all
I P Ind.

Proof (of Claim 33). First consider the case that p and p1 differ only in coordinate

i. For any S � rns, Claim 26 implies that B
Bpi
q̆Sppq � �q̆SzΓ�piqppq and B2

Bp2
i
q̆S � 0.

Thus,
q̆Spp

1q � q̆Sppq � ppi � p1iq � q̆SzΓ�piqppq ¥ q̆Sppq.

The case that p1 and p differ in multiple coordinates is handled by induction.

Proof (of Claim 35). We claim that for any a P S � T , we have

(8)
q̆S

q̆Sztau
¥

q̆T
q̆T ztau

.

By induction, this implies that for any R � S, q̆S
q̆SzR

¥ q̆T
q̆T zR

. We obtain the claim

above by setting S � A, T � AYB, and R � AzB.
We prove (8) again by induction, on |T |. For |T | � 1, the statement is trivial.

Let |T | ¡ 1. By Claim 26, we have

q̆S � q̆Sztau � paq̆SzΓ�paq



and
q̆T � q̆T ztau � paq̆T zΓ�paq.

Let us denote S X Γ�paq � ta, s1, . . . , sku. We apply (8) to strict subsets of S and T ,
to obtain

q̆SzΓ�paq

q̆Sztau
�

k¹
i�1

q̆Szta,s1,...,si�1,siu

q̆Szta,s1,...,si�1u

¤
k¹
i�1

q̆T zta,s1,...,si�1,siu

q̆T zta,s1,...,si�1u
�

q̆T zpSXΓ�paqq

q̆T ztau
¤

q̆T zΓ�paq

q̆T ztau
,

where in the last step we used the monotonicity of q̆T in T (from Corollary 34). This
implies (8):

q̆S
q̆Sztau

� 1� pa
q̆SzΓ�paq

q̆Sztau
¥ 1� pa

q̆T zΓ�paq

q̆T ztau
�

q̆T
q̆T ztau

.

Proof (of Claim 36). We can assume AY B P Ind; otherwise the right-hand side
is zero. By Claim 29, we have

qA � qB � pAq̆rnszΓ�pAq � p
B q̆rnszΓ�pBq.

By Claim 35,

q̆rnszΓ�pAq � q̆rnszΓ�pBq ¥ q̆rnszpΓ�pAqYΓ�pBqq � q̆rnszpΓ�pAqXΓ�pBqq.

Next we use the fact that Γ�pAq Y Γ�pBq � Γ�pA Y Bq, and Γ�pAq X Γ�pBq �
Γ�pAXBq. Therefore, by the monotonicity of q̆S (from Corollary 34),

q̆rnszΓ�pAq � q̆rnszΓ�pBq ¥ q̆rnszΓ�pAYBq � q̆rnszΓ�pAXBq.

Also, pApB � pAYBpAXB . Using Claim 29 one more time, we obtain

qA � qB ¥ pAYB q̆rnszΓ�pAYBq � p
AXB q̆rnszΓ�pAXBq � qAYB � qAXB .

Proof (of Claim 37). The proof is by induction on S, the case |S| ¤ 1 being
trivial. Fix any s P S. Claim 36 implies that qJYtsu � qH ¤ qtsu � qJ for any J � Sz tsu.
Summing over J yields ¸

J�Sztsu

qJYtsu

qH
¤

qtsu

qH

¸
J�Sztsu

qJ
qH

.

Adding
°
J�Sztsu

qJ
qH

to both sides yields

¸
J�S

qJ
qH

¤
�

1�
qtsu

qH

	 ¸
J�Sztsu

qJ
qH

.

The claim follows by induction.

Proof (of Claim 38). By Claim 27,

1�
qtiu

qH
�
qH � qtiu

qH
�
q̆rnsztiu

q̆rns
.



Proof (of Claim 39). Note that q̆rnsztiuppq does not depend on pi, while q̆rnsppq
is linear in pi. Also, both quantities are equal at pi � 0: we have q̆rnspp1, . . . , 0 �
pi, . . . , pnq � q̆rnsztiuppq. Since p1�εqp P S, we know that q̆rnspp1, . . . , p1�εqpi, . . . , pnq ¥

0. By linearity, q̆rnsppq ¥
ε

1�ε q̆rnsztiuppq. Claim 38 then implies that
qtiu
qH

¤ 1
ε .

Proof (of Lemma 40). We proceed by induction: for ` � 1, there is only one such
stable set sequence I � pJq. By Lemma 30, we have qJ � pJ

°
S�Γ�pJq qS ¥ pJqH.

(Recall that qS ¥ 0 for all S � rns.) Hence, ppJq � pJ ¤ qJ{qH.
The inductive step: every stable set sequence starting with J has the form I �

pJ, J 1, . . .q where J 1 � Γ�pJq. Therefore,

(9)
¸

IPStab`pJq

pI � pJ
¸
J 1PInd

J 1�Γ�pJq

¸
IPStab`�1pJ 1q

pI .

By the inductive hypothesis,
°

IPStab`�1pJ 1q
pI ¤ qJ 1{qH. Also, recall that qJ 1 � 0 if

J 1 R Ind. Therefore, ¸
IPStab`pJq

pI ¤ pJ
¸

J 1�Γ�pJq

qJ 1

qH
�
qJ
qH

using Lemma 30 to obtain the last equality.


	Introduction
	Our contributions
	Algorithmic assumptions

	Our algorithm: MaximalSetResample
	Generalizing the dependency condition
	Generalizing the LLL criterion
	Techniques and related work
	Organization

	Resampling oracles: existence and efficiency
	Existence of resampling oracles
	Computational hardness of the LLL

	Implementation of resampling oracles and applications
	The variable model
	Spanning trees
	Composition of resampling oracles for product spaces
	Application: rainbow spanning trees

	Analysis of the algorithm
	Stable set sequences and the coupling argument
	Preliminaries on Shearer's criterion
	Properties of independence polynomials
	Connection to stable set sequences

	Shearer's criterion with slack
	Quantification of slack in Shearer's criterion
	The General LLL criterion
	The cluster expansion criterion
	Proof of Lemma 54


	Conclusions
	References
	Appendix A. Proofs omitted from Section 4.2

