
An Algorithmic Proof of the Lovász Local Lemma
via Resampling Oracles

Nicholas J. A. Harvey
University of British Columbia

Vancouver, B.C., Canada
nickhar@cs.ubc.ca

Jan Vondrák
IBM Almaden Research Center

San Jose, CA, USA
jvondrak@gmail.com

Abstract

The Lovász Local Lemma is a seminal result in probabilistic combinatorics. It gives a sufficient condition on a probability
space and a collection of events for the existence of an outcome that simultaneously avoids all of those events. Finding such
an outcome by an efficient algorithm has been an active research topic for decades. Breakthrough work of Moser and Tardos
(2009) presented an efficient algorithm for a general setting primarily characterized by a product structure on the probability
space.

In this work we present an efficient algorithm for a much more general setting. Our main assumption is that there exist
certain functions, called resampling oracles, that can be invoked to address the undesired occurrence of the events. We show
that, in all scenarios to which the original Lovász Local Lemma applies, there exist resampling oracles, although they are not
necessarily efficient. Nevertheless, for essentially all known applications of the Lovász Local Lemma and its generalizations,
we have designed efficient resampling oracles. As applications of these techniques, we present new results for packings of
Latin transversals, rainbow matchings and rainbow spanning trees.

Keywords

Lovász local lemma, algorithmic proof, general probability spaces, resampling oracles

I. INTRODUCTION

The Lovász Local Lemma (LLL) is a powerful tool with numerous uses in combinatorics and theoretical computer science.
If a given probability space and collection of events satisfy a certain condition, then the LLL asserts the existence of an
outcome that simultaneously avoids those events. The classical formulation of the LLL [13], [32] is as follows.

Let Ω be a discrete probability space with probability measure µ. Let E1, . . . , En be certain “undesired” events in
that space. Let G be an undirected graph with vertex set [n] = {1, . . . , n}. The edges of G are denoted E(G). Let
Γ(i) = { j 6= i : {i, j} ∈ E(G) } be the neighbors of vertex i. Also, let Γ+(i) = Γ(i) ∪ {i} and let Γ+(I) =

⋃
i∈I Γ+(i)

for I ⊆ [n].

Theorem I.1 (General Lovász Local Lemma [13], [32]). Suppose that the events satisfy the following condition that controls
their dependencies

Pr
µ

[Ei | ∩j∈JEj] = Pr
µ

[Ei] ∀i ∈ [n], J ⊆ [n] \ Γ+(i) (Dep)

and the following criterion that controls their probabilities

∃x1, . . . , xn ∈ (0, 1) such that Pr
µ

[Ei] ≤ xi
∏
j∈Γ(i)

(1− xj) ∀i ∈ [n]. (GLL)

Then Prµ[
⋂n
i=1Ei] > 0.

An equivalent statement of (Dep) is that the event Ei must be independent of the joint distribution on the events
{ Ej : j 6∈ Γ+(i) }. When (Dep) holds, G is called a dependency graph. The literature contains several dependency conditions
generalizing (Dep) and criteria generalizing (GLL) under which the conclusion of the theorem remains true. We will discuss
several such generalizations below.

The LLL can also be formulated [5] in terms of a directed dependency graph instead of an undirected graph, but nearly all
applications of which we are aware involve an undirected graph. Accordingly, our work focuses primarily on the undirected
case, but we will mention below which of our results extend to the directed case.

Algorithms: Algorithms to efficiently find an outcome in
⋂n
i=1Ei have been the subject of research for several decades.

In 2008, a nearly optimal result was obtained by Moser [26] for a canonical application of the LLL, the bounded-degree
k-SAT problem. Shortly thereafter, Moser and Tardos [27] extended that result to a general scenario called the “variable
model” in which Ω consists of independent variables, each Ei depends on a subset of the variables, and events Ei and Ej
are adjacent in G if there is a variable on which they both depend. Clearly the resulting graph is a dependency graph. The
Moser-Tardos algorithm is extremely simple: after drawing an initial sample of the variables, it repeatedly checks if any
undesired event occurs, then resamples any such event. Resampling an event means that the variables on which it depends
receive fresh samples according to µ. Moser and Tardos prove that, if the (GLL) condition is satisfied, this algorithm will
produced the desired outcome after at most

∑n
i=1

xi

1−xi
resampling operations.

Numerous extensions of the Moser-Tardos algorithm have been proposed. These extensions can handle more general
criteria [21], [29], [1], [22], derandomization [11], exponentially many events [17], distributed scenarios [12], etc. However,
all of these results are restricted to the Moser-Tardos variable model. Thus, these results cannot be viewed as algorithmic
proofs of the LLL in full generality. There are many known scenarios for the LLL and its generalizations that fall outside
the scope of the variable model [23], [24]. Section III discusses several such scenarios, including random permutations,
matchings and spanning trees.

Recently two efficient LLL algorithms have been developed that go beyond the variable model. Harris and Srinivasan [18]
extend the Moser-Tardos algorithm to a scenario involving random permutations; this scenario originates in work of Erdős
and Spencer [14]. Achlioptas and Iliopoulos [2] define an abstract “flaw correction” framework that captures many known
applications of the LLL outside the variable model, and some results beyond the LLL itself. Their framework eliminates
the need for an underlying measure µ but on the other hand has other limitations; in particular the authors do not claim a
formal connection with Theorem I.1. We discuss this further in Section I-E.

A. Our contributions

We present an algorithmic framework for the Lovász Local Lemma based on a new notion of resampling oracles. We
then present an algorithm that uses resampling oracles to yield an algorithmic proof of the LLL. Our analysis yields a new
proof of Theorem I.1, and several generalizations as described below.

1) Algorithmic assumptions: In order to provide algorithmic access to the probability space Ω, we will need to assume
the existence and efficiency of certain subroutines that are use by our algorithm. These assumptions will suffice to make
our algorithmic proof efficient.

Before proceeding, let us introduce further notation. An atomic event ω in the probability space Ω will be called a state.
We write ω ∼ µ to denote that a random state ω is distributed according to µ, and ω ∼ µ|Ei

to denote that the distribution
is µ conditioned on Ei. The resampling oracles are defined with respect to a graph G on [n] with neighborhood structure
Γ. We emphasize that G is an arbitrary undirected graph, and it is not necessarily a dependency graph satisfying (Dep).

The three subroutines required by our algorithm are as follows.
• Sampling from µ: There is a subroutine that can provide an independent random state ω ∼ µ.
• Checking events: For each i ∈ [n], there is a subroutine that can determine whether ω ∈ Ei.
• Resampling oracles: For each i ∈ [n], there is a randomized subroutine ri : Ω→ Ω with the following properties.

(R1) If Ei is an event and ω ∼ µ|Ei
, then ri(ω) ∼ µ. (The oracle ri removes conditioning on Ei.)

(R2) For any j /∈ Γ+(i), if ω 6∈ Ej then also ri(ω) 6∈ Ej . (Resampling an event cannot cause new non-neighbor
events to occur.)

When these conditions are satisfied, we say that ri is a resampling oracle for events E1, . . . , En and graph G.
If efficiency concerns are ignored, the first two subroutines trivially exist. It is not hard to see that resampling oracles

also exist if (Dep) is satisfied. This will be proven in greater generality in Section II-A.

2) Main Result: Our main result is that, if the three subroutines described above have efficient implementations, then
there is an efficient algorithmic proof of the LLL.

Theorem (Informal). Consider any probability space, any events E1, . . . , En, and any undirected graph G on vertex set
[n]. If (GLL) is satisfied and if the three subroutines described above exist and have efficient implementations, then our
algorithm efficiently finds a state in

⋂n
i=1Ei.

This theorem does not assume that (Dep) holds, and it turns out that the existence of resampling oracles is a strictly
weaker condition. Thus, our algorithm yields a new proof of Theorem I.1 under its original assumptions. However, in order
for our algorithm to be efficient, we must additionally assume that the three subroutines are efficient.

B. Our algorithm: MaximalSetResample

A striking aspect of the work of Moser and Tardos [27] is the simplicity and flexibility of their algorithm — in each
iteration, any event Ei that occurs can be resampled. We propose a different algorithm that is somewhat less flexible,
but whose analysis seems to be simpler in our scenario. Roughly speaking, our algorithm executes the standard greedy
algorithm for computing a maximal independent set, except that a vertex i is only added if Ei occurs in the current state,
and those conditions change dynamically. This is repeated until no events occur. Pseudocode for this procedure is shown
in Algorithm 1. Nearly identical algorithms have been proposed before, particularly parallel algorithms [27], [21] although
our interest lies not in the parallel aspects but rather with handling resampling oracles as cleanly as possible.

Algorithm 1 MaximalSetResample uses resampling oracles to output a state ω ∈
⋂n
i=1Ei. It requires the three subroutines

described in Section I-A1: sampling ω ∼ µ, checking if an event Ei occurs, and the resampling oracles ri.
1: Initialize ω with a random state sampled from µ;
2: t := 0;
3: repeat
4: t := t+ 1;
5: Jt := ∅
6: while there is i /∈ Γ+(Jt) such that ω ∈ Ei do
7: Pick the smallest such i;
8: Jt := Jt ∪ {i};
9: ω := ri(ω); B Resample Ei

10: end while
11: until Jt = ∅;
12: return ω.

Our algorithmic proof of the LLL amounts to showing that MaximalSetResample terminates, at which point ω ∈
⋂n
i=1Ei

clearly holds. That is shown by the following theorem.

Theorem I.2. Suppose that the events E1, . . . , En satisfy (GLL) and that the three subroutines described above in Sec-
tion I-A1 are available. Then the expected number of calls to the resampling oracles by MaximalSetResample is

O

 n∑
i=1

xi
1− xi

n∑
j=1

log
1

1− xj

 .

Each execution of the outer loop in Algorithm 1 is called an iteration. As remarked above, the set Jt computed in the tth

iteration is an independent set in the graph, meaning that Jt ∩ Γ(i) = ∅ for all i ∈ Jt.

C. Generalizing the dependency condition

Erdős and Spencer [14] showed that Theorem I.1 still holds when (Dep) is generalized to1

Pr
µ

[Ei | ∩j∈JEj] ≤ Pr
µ

[Ei] ∀i ∈ [n], J ⊆ [n] \ Γ+(i). (Lop)

They playfully called this the “lopsidependency” condition, and called G a “lopsidependency graph”. This more general
condition enables several interesting uses of the LLL in combinatorics and theoretical computer science, e.g., existence of
Latin transversals [14] and optimal thresholds for satisfiability [15].

Recall that Theorem I.2 did not assume (Dep) and instead assumed the existence of resampling oracles. It is natural to
wonder how the latter assumption relates to lopsidependency. We show that the existence of resampling oracles is equivalent
to a condition that we call lopsided association, and whose strength lies strictly between (Dep) and (Lop). The lopsided
association condition is

Pr
µ

[Ei ∩ F] ≥ Pr
µ

[Ei] · Pr
µ

[F] ∀i ∈ [n],∀F ∈ Fi (LopA)

where Fi contains all events F whose indicator variable is a monotone non-decreasing function of the indicator variables
of (Ej : j /∈ Γ+(i)). We call a graph satisfying (LopA) a lopsided association graph for events E1, . . . , En.

1 More precisely, (Lop) should be restricted to J for which Prµ[∩j∈JEj] > 0. However that restriction is ultimately unnecessary because, in the
context of the LLL, the theorem of Erdős and Spencer implies that Prµ[∩j∈[n]Ej] > 0.

Theorem (Informal). Resampling oracles exist for events E1, . . . , En and graph G if and only if G is a lopsided association
graph for events E1, . . . , En.

This equivalence follows essentially from LP duality: The existence of a resampling oracle can be formulated as a
transportation problem for which the lopsided association condition is exactly the necessary and sufficient condition for a
feasible transportation to exist. Section II proves this result in detail.

As remarked above, the dependency conditions are related by (Dep) ⇒ (LopA) ⇒ (Lop). The first implication is obvious
since Ei is independent of F in (LopA). To see the second implication, simply take F =

⋃
j∈J Ej for any J ⊆ [n] \

Γ+(i) to obtain that Prµ[Ei | ∪j∈JEj] ≥ Prµ[Ei]. Although lopsided association is formally a stronger assumption than
lopsidependency, every use of the LLL with lopsidependency that we have studied actually satisfies the stronger lopsided
association condition. We demonstrate this in Section III by designing efficient resampling oracles for those scenarios.
Consequently, Theorem I.2 makes the LLL efficient in those scenarios.

The equivalence between (LopA) and resampling oracles comes with no efficiency guarantees. Nevertheless in all lop-
sidependency scenarios that we have considered, efficient implementations of the resampling oracles arise naturally from
existing work, or can be devised with modest effort. In particular this is the case for random permutations, perfect matchings
in complete graphs, and spanning trees in complete graphs, as discussed in Section III.

D. Generalizing the LLL criterion

In the early papers on the LLL [13], [32], the (GLL) criterion relating the dependency graph G and the probabilities
Prµ[Ei] was shown to be a sufficient condition to ensure that Prµ[

⋂n
i=1Ei] > 0. Shearer [31] discovered a more general

criterion that ensures the same conclusion. In fact, Shearer’s criterion is the best possible: whenever his criterion is violated,
there exist a corresponding measure µ and events E1, . . . , En for which Prµ[

⋂n
i=1Ei] = 0. In the full version of the

paper [19], we state Shearer’s criterion and prove the following result.

Theorem (Informal). Suppose that a graph G and the probabilities Prµ[E1], . . . ,Prµ[En] satisfy Shearer’s criterion with
ε slack, and that the three subroutines described in Section I-A1 exist. Then the expected number of calls to the resampling
oracles by MaximalSetResample is bounded by a polynomial in 1/ε and the logarithm of Shearer’s coefficients.

Unfortunately Shearer’s criterion is unwieldy and has not seen much use in applications of the LLL. Recently several
researchers have proposed criteria of intermediate strength between (GLL) and Shearer’s criterion [7], [22]. The first of
these, called the cluster expansion criterion, was originally devised by Bissacot et al. [7], and is based on insights from
statistical physics. This criterion has given improved results in several applications of the local lemma [8], [18], [28]. Previous
algorithmic work has also used the cluster expansion criterion in the variable model [1], [29] and for permutations [18].

The following theorem is another generalization of Theorem I.2, replacing (GLL) with the cluster expansion criterion,
given below in (CLL). To state the result, we require additional notation: let Ind denote the family of independent sets in
the graph G.

Theorem I.3. Suppose that the events E1, . . . , En satisfy the following criterion

∃y1, . . . , yn > 0 such that Pr
µ

[Ei] ≤
yi∑

J⊆Γ+(i),J∈Ind
∏
j∈J yj

(CLL)

and that the three subroutines described in Section I-A1 exist. Then the expected number of calls to the resampling oracles
by MaximalSetResample is O

(∑n
i=1 yi

∑n
j=1 ln(1 + yj)

)
.

In Section V, we prove slightly weaker versions of Theorem I.2 and Theorem I.3, in which we assume that the (GLL) or
(CLL) criteria hold with some slack. The analysis without slack is more involved, relying on analysis in Shearer’s setting,
and we defer it to the full version of the paper [19].

E. Techniques and related work

The breakthrough work of Moser and Tardos [27] stimulated a string of results on algorithms for the LLL. This section
reviews the results that are most relevant to our work. Several interesting techniques play a role in the analyses of these
previous algorithms. These can be roughly categorized as the entropy method [25], [2], witness trees or witness sequences
[27], [18], [21] and forward-looking combinatorial analysis [16].

As mentioned above, Moser and Tardos [27] showed that a very simple algorithm will produce a state in
⋂n
i=1Ei, assuming

the variable model and that the (GLL) criterion holds. This paper is primarily responsible for the development of witness
trees, and proved the “witness tree lemma”, which yields an extremely elegant analysis in the variable model. The witness
tree lemma has further implications. In particular, it allows them analyze separately for each event its expected number

of resamplings. Moser and Tardos also extended the variable model to incorporate a limited form of lopsidependency, and
showed that their analysis still holds in that setting.

The main advantage of our result over the Moser-Tardos result is that we address the occurrence of an event through the
abstract notion of resampling oracles rather than directly resampling the variables of the variable model. Furthermore we
give efficient implementations of resampling oracles for essentially all known probability spaces to which the LLL has been
applied. A significant difference with our work is that we do not have an analogue of the witness tree lemma; our approach
provides a simpler analysis when the LLL criterion has slack but requires a more complicated analysis to remove the slack
assumption. As a consequence, our bound on the number of resampling oracle calls is larger than the Moser-Tardos bound.

Earlier work of Moser [25] had developed the entropy method to analyze an algorithm for the “symmetric” LLL [13],
which incorporates the maximum degree of G and a uniform bound on Prµ[Ei]. The entropy method roughly shows that,
if the algorithm runs for a long time, a transcript of the algorithm’s actions provides a compressed representation of the
algorithm’s random bits, which is unlikely due to entropy considerations.

The Moser-Tardos algorithm is known to terminate under criteria more general than (GLL), while still assuming the variable
model. Pegden [29] showed that the cluster expansion criterion suffices, whereas Kolipaka and Szegedy [21] showed more
generally that Shearer’s condition suffices. We show that the cluster expansion criterion suffices in the more general context
of resampling oracles. Our result is weaker than Pegden’s only in that our bound on the number of resampling oracle calls
is larger, due to our lack of a witness tree lemma. We also show that Shearer’s criterion suffices in the context of resampling
oracles. Our result is weaker than the Kolipaka-Szegedy result in that we require Shearer’s condition to hold with a small
slack, once again due to the lack of a witness tree lemma. In Shearer’s context one may actually assume slack without loss
of generality, since Shearer’s criterion defines an open set. Nevertheless, quantitatively our result requires more resamplings
than the Kolipaka-Szegedy result.

Kolipaka and Szegedy [21] present another algorithm, called GeneralizedResample, whose analysis proves the LLL under
Shearer’s condition for arbitrary probability spaces. GeneralizedResample is similar to MaximalSetResample in that they
both work with abstract distributions and that they repeatedly choose a maximal independent set J of undesired events
to resample. However, the way that the bad events are resampled is different: GeneralizedResample needs to sample from
µ|∩j 6∈Γ+(J)Ej

, which is a complicated operation that seems difficult to implement efficiently. Thus MaximalSetResample can
be viewed as a variant of GeneralizedResample that makes it efficient in all known scenarios.

Harris and Srinivasan [18] show that the Moser-Tardos algorithm can be adapted to handle certain events in a probability
space involving random permutations. Their method for resampling an event is based on the Fischer-Yates shuffle. This
scenario can also be handled by our framework; their resampling method perfectly satisfies the criteria of a resampling
oracle. The Harris-Srinivasan’s result is stronger than ours in that they do prove an analog of the witness tree lemma.
Consequently their algorithm requires fewer resamplings than ours, and they are able to derive parallel variants of their
algorithm. The work of Harris and Srinivasan is technically challenging, and generalizing it to a more abstract setting seems
daunting.

Achlioptas and Iliopoulos [2], [3] proposed a general framework for finding “flawless objects”, based on actions for
addressing flaws. They show that, under certain conditions, a random walk over such actions rapidly converges to a flawless
object. This naturally relates to the LLL by viewing each event Ei as a flaw. At the same time, their framework is not tied to
the probabilistic formulation of the LLL and can derive results believed to be beyond the reach of the LLL such as the greedy
algorithm for vertex coloring. The framework has other restrictions and does not currently claim to recover any particular
form of the LLL. Nevertheless, their framework can accommodate applications of the LLL where lopsidependency plays
a role, such as rainbow matchings and rainbow Hamilton cycles. In contrast, our framework can recover the LLL in full
generality, even up to Shearer’s criterion, but it does not recover results outside the scope of the LLL such as greedy vertex
coloring. The analysis is inspired by Moser’s entropy method, but in our view the approach is similar to forward-looking
combinatorial analysis, which we discuss next.

Giotis et al. [16] show that a variant of Moser’s algorithm gives an algorithmic proof in the variable model of the symmetric
LLL. While this result is relatively limited when compared to the results above, their analysis is a clear example of forward-
looking combinatorial analysis. Whereas Moser and Tardos use a backward-looking argument to find witness trees in the
algorithm’s “log”, Giotis et al. analyze a forward-looking structure: the tree of resampled events and their dependences,
looking forward in time. This viewpoint seems more natural and suitable for extensions.

Our approach can be roughly described as forward-looking analysis with a careful modification of the Moser-Tardos
algorithm, formulated in the framework of resampling oracles. Our main conceptual contribution is the simple definition
of the resampling oracles, and a small modification of the Moser-Tardos algorithm (described in Section I-B) so that the
resamplings can be readily incorporated into the forward-looking analysis. The simplicity of analysis allows it accommodate
various LLL criteria, including Shearer’s criterion, which plays a fundamental role in the full proof of Theorem I.2. One

drawback of the forward-looking analysis is that it naturally leads to an exponential bound on the number of resamplings,
unless there is some slack in the criterion that controls the probabilities; this same issue arises in [2], [16].

Our second contribution is an idea that eliminates the need for slack in (GLL) and (CLL), and seems interesting in its
own right. We prove that, even if (GLL) or (CLL) are tight, we can instead perform our analysis using Shearer’s criterion,
which is never tight because it defines an open set. For example, consider the familiar case of Theorem I.1, and suppose that
(GLL) holds with equality, i.e., Prµ[Ei] = xi

∏
j∈Γ(i)(1 − xj) for all i. We show that the conclusion of the LLL remains

true even if each event Ei actually had the larger probability Prµ[Ei] ·
(
1 + (2

∑
i

xi

1−xi
)−1
)
. The proof of this fact crucially

uses Shearer’s criterion and it does not seem to follow from more elementary tools [13], [32]. All proofs involving Shearer’s
criterion are omitted from this extended abstract, but can be found in the full version of the paper [19].

II. RESAMPLING ORACLES AND LOPSIDED ASSOCIATION

One of the main contributions of this paper is the notion of resampling oracles. These are randomized functions that
address the occurrence of the undesired events Ei. A formal definition appears in Definition II.1 below.

Whereas most formulations of the LLL involve a dependency condition, such as (Dep) or (Lop), our results will assume
neither of these conditions and instead assume the existence of resampling oracles. However, there is a close relationship
between these assumptions: the existence of a resampling oracle for each event is equivalent to the condition (LopA), which
is a strengthening of (Lop). Once again, we emphasize that the efficiency of an implementation of a resampling oracle
is a separate issue. There is no general guarantee that resampling oracles can be implemented efficiently. Nevertheless,
this is not an issue in practice. In all applications of the LLL of which we are aware (with or without lopsidependency),
resampling oracles exist and can be implemented efficiently. Section III presents several efficient resampling oracles that we
have developed.

A. Existence of resampling oracles

In this section we define the notion of lopsided association and prove that it is equivalent to the existence of resampling
oracles. We begin with a formal definition of resampling oracles.

Definition II.1. Let E1, . . . , En be events on a space Ω with a probability measure µ. Let G = ([n], E) be a graph with
neighbors of i ∈ [n] denoted by Γ(i), and Γ+(i) = Γ(i) ∪ {i}. Let ri be a randomized procedure that takes a state ω ∈ Ω
and outputs a state ri(ω) ∈ Ω. We say that ri is a resampling oracle for Ei with respect to G, if

(R1) For ω ∼ µ|Ei
, we obtain ri(ω) ∼ µ. (The resampling oracle removes conditioning on Ei.)

(R2) For any j /∈ Γ+(i), if ω 6∈ Ej then also ri(ω) 6∈ Ej . (Resampling Ei cannot cause new non-neighbor events.)

Next, let us define the notion of a lopsided association graph. We denote by Ei[ω] the {0, 1}-valued function indicating
whether Ei occurs at a state ω ∈ Ω.

Definition II.2. A graph G with neighborhood function Γ is a lopsided association graph for events E1, . . . , En if

Pr
µ

[Ei ∩ F] ≥ Pr
µ

[Ei] · Pr
µ

[F] ∀i ∈ [n],∀F ∈ Fi (LopA)

where Fi contains all events F such that F [ω] is a monotone non-decreasing function of (Ej [ω] : j /∈ Γ+(i)).

Lemma II.3. Consider a fixed i ∈ [n] and assume Prµ[Ei] > 0. The following statements are equivalent:
• There exists a resampling oracle ri for event Ei with respect to a graph G (ignoring issues of computational efficiency).
• Prµ[Ei ∩ F] ≥ Prµ[Ei] Prµ[F] for any event F such that F [ω] is a non-decreasing function of (Ej [ω] : j /∈ Γ+(i)).

Corollary II.4. Resampling oracles r1, . . . , rn exist for events E1, . . . , En with respect to a graph G if and only if G is a
lopsided association graph for E1, . . . , En. Both statements imply that the lopsidependency condition (Lop) holds.

Proof: First, let us assume that the resampling oracle exists. Consider the coupled states (ω, ω′) where ω ∼ µ|Ei
and

ω′ = ri(ω). By (R1), ω′ ∼ µ. By (R2), for any event F monotone in {Ej : j /∈ Γ+(i)}, if F does not occur at ω then it
does not occur at ω′ either. This establishes that

Pr
µ

[F] = Eω′∼µ[F [ω′]] ≤ Eω∼µ|Ei
[F [ω]] = Pr

µ
[F | Ei]

which implies Prµ[F ∩ Ei] ≥ Prµ[F] Prµ[Ei]. In particular this implies (Lop), by taking F =
⋃
j∈J Ej .

The reverse implication follows essentially from LP duality. We can formulate the existence of a resampling oracle as the
following transportation problem. We have a bipartite graph G = (U ∪W,E), where U and W are disjoint, U represents
all the states ω ∈ Ω satisfying Ei, and W represents all the states ω ∈ Ω. Edges represent the possible actions of the

resampling oracle: (u,w) ∈ E if u satisfies every event among { Ej : j /∈ Γ+(i) } that w satisfies. Each vertex has an
associated weight: For w ∈W , we define pw = Prµ[w], and for u ∈ U , pu = Prµ[u]/Prµ[Ei] (i.e, pu is the probability of
u conditioned on Ei). We claim that the resampling oracle ri exists if and only if there is an assignment of non-negative
values on the edges fuw ≥ 0 (a feasible transportation) such that
• ∀u ∈ U,

∑
w:(u,w)∈E fuw = pu,

• ∀w ∈W,
∑
u:(u,w)∈E fuw = pw.

This is true because for any such transportation, the resampling oracle is defined naturally by following each edge from
u ∈ U with probability fuw/pu, and the resulting distribution is pw. Conversely, for a resampling oracle which, for a given
state u ∈ U , generates w ∈W with probability quw, we define fuw = puquw and this satisfies the transportation conditions
above.

A necessary and sufficient condition for the existence of such a transportation can be determined from LP duality (see,
e.g., Theorem 21.11 in [30]): A feasible transportation exists if and only if

∑
u∈U pu =

∑
w∈W pw and for every subset

A ⊆ U and its neighborhood Γ(A) = { w ∈W : ∃u ∈ A s.t. (u,w) ∈ E }, we have
∑
w∈Γ(A) pw ≥

∑
u∈A pu. (This is an

extension of Hall’s condition for the existence of a perfect matching.)
Observe that if u ∈ A, then we might as well include in A all the vertices u′ ∈ U that satisfy no more events among

{ Ej : j ∈ Γ+(i) } than those satisfied by u. This does not create any new neighbors in Γ(A), because if the set of events
among {Ej : j ∈ Γ+(i)} satisfied by u′ is a subset of those satisfied by u, then Γ(u′) ⊆ Γ(u). This makes A a set of
states corresponding to an event F ′ such that F ′[ω] is a non-increasing function of (Ej [ω] : j /∈ Γ+(i)). The neighborhood
Γ(A) consists of states satisfying at most those events among {Ej : j /∈ Γ+(i)} satisfied by some state in A. Consequently,
Γ(A) corresponds to exactly the same event F ′. As we argued, it is sufficient to satisfy the conditions for such pairs of sets
(A,Γ(A)).

Suppose now that Prµ[F ∩ Ei] ≥ Prµ[F] Prµ[Ei] for every event F monotone in (Ej : j /∈ Γ+(i)). This is equivalent
to Prµ[F ∩ Ei] = Prµ[Ei] − Prµ[F ∩ Ei] ≤ Prµ[Ei] − Prµ[F] Prµ[Ei] = Prµ[F] Prµ[Ei]. Assuming Pr[Ei] > 0, we can
rewrite this as Prµ[F | Ei] ≤ Prµ[F]. We take F to be the event complementary to the event F ′ defined by the states in
Γ(A). Using the above connection, we have

∑
u∈A pu = Prµ[F ′ | Ei] ≤

∑
w∈Γ(A) pw = Prµ[F ′]. This verifies the condition

for the existence of the transportation, and hence the existence of the resampling oracle.

B. Example: monotone events on lattices

To illustrate the (LopA) condition, let us discuss an example in which Lemma II.3 implies the existence of a non-trivial
resampling oracle, even though the lopsided association graph is empty. This example extends ideas of Lu et al. [23, Section
2.4].

The probability space is Ω = {0, 1}M . Let µ : {0, 1}M → [0, 1] be a probability distribution over {0, 1}M that is
log-supermodular, meaning that

µ(x ∨ y)µ(x ∧ y) ≥ µ(x)µ(y) ∀x, y ∈ {0, 1}M .

In particular, any product distribution is log-supermodular. Consider monotone increasing events Ei, i.e. such that x′ ≥ x ∈
Ei ⇒ x′ ∈ Ei. (Here x′ ≥ x is the partial ordering determined by the Boolean lattice, i.e., x′i ≥ xi for all i ∈M .) Note that
any monotone increasing function of such events is again monotone increasing. It follows from the FKG inequality [5] that
the condition of Lemma II.3 is satisfied for such events with an empty lopsided association graph. Therefore, resampling
oracles exists in this setting. However, the explicit description of its operation might be complicated and we do not know
whether it can be implemented efficiently in general.

Alternatively, the existence of the resampling oracle can be proved directly, using the following theorem of Holley [20,
Theorem 6].

Theorem II.5. Let µ1 and µ2 be probability measures on {0, 1}M satisfying

µ1(x ∨ y)µ2(x ∧ y) ≥ µ1(x)µ2(y) ∀x, y ∈ {0, 1}M . (1)

Then there exists a probability distribution ν : {0, 1}M × {0, 1}M → R satisfying

µ1(x) =
∑
yν(x, y)

µ2(y) =
∑
xν(x, y)

ν(x, y) = 0 unless x ≥ y.

The resampling oracle is described in Algorithm 2. The reader can verify that this satisfies the assumptions (R1) and
(R2), using Holley’s Theorem.

Algorithm 2 Resampling oracle for a monotone increasing event E. Let ν be the function guaranteed by Theorem II.5,
when µ1(x) = µ(x)1x∈E∑

e∈E µ(e) and µ2(y) = µ(y).

1: Function rE(x):
2: Verify that x ∈ E, otherwise return x.
3: Randomly select y with probability ν(x,y)∑

y′ ν(x,y′) .
4: return y.

III. IMPLEMENTATION OF RESAMPLING IN SPECIFIC SETTINGS

In this section, we present efficient implementations of resampling oracles in four application settings: the variable model
(which was the setting of Moser-Tardos [27]), random permutations (consider by Harris-Srinivasan [18]), perfect matchings
in complete graphs (some of whose applications are made algorithmic by Achlioptas-Iliopoulos [2]), and spanning trees in
complete graphs (which was not considered by previous algorithmic work).

To be more precise, resampling oracles also depend on the types of events and dependencies that we want to handle. In the
setting of independent random variables, we can handle arbitrary events with dependencies defined by overlapping relevant
variables, as Moser-Tardos did [27]. In the setting of permutations, we handle the appearance of patterns in permutations as
Harris-Srinivasan did [18]. In the settings of matchings and spanning trees, we consider the “canonical events” defined by
Lu et al. [23], characterized by the appearance of a certain subset of edges.

We also show in Section III-E how resampling oracles for a certain probability space can be extended in a natural way
to products of such probability spaces; for example, how to go from resampling oracles for one random permutation to
a collection of independent random permutations. These settings cover nearly all the applications of the lopsided LLL of
which we are aware.

A. Independent random variables

This is the most common setting, considered originally by Moser and Tardos [27]. Here, Ω has a product structure
corresponding to independent random variables { Xa : a ∈ U }. The probability measure µ here is a product measure. Each
bad event Ei depends on a particular subset of variables Ai, and two events are independent iff Ai ∩Aj = ∅.

Here our algorithmic assumptions correspond exactly to the Moser-Tardos framework [27]. Sampling from µ means
generating a fresh set of random variables independently. The resampling oracle ri takes a state ω and replaces the random
variables { Xa : a ∈ Ai } by fresh random samples. It is easy to see that the assumptions are satisfied: in particular, a
random state sampled from µ conditioned on Ei has all variables outside of Ai independently random. Hence, resampling
the variables of Ai produces the distribution µ. Clearly, resampling { Xa : a ∈ Ai } does not affect any events that depend
on variable sets disjoint from Ai.

This resampling oracle is also consistent with the notion of lopsidependency on product spaces considered by Moser and
Tardos. They call two events Ei, Ej lopsidependent if Ai ∩ Aj 6= ∅ and it is possible to cause Ej to occur by resampling
Ai in a state where Ei holds but Ej does not. (The definition in [27] is worded differently but equivalent to this). This is
exactly condition (R2)in the definition of resampling oracles.

B. Random permutations

The probability space Ω here is the space of all permutations π on a set [n], with a uniform measure µ. Bad events are
assumed here to be “simple” in the following sense: Each bad event Ei is defined by a “pattern”

P (Ei) =
{

(x1, y1), . . . , (xt(i), yt(i))
}
.

The event Ei occurs if π(xj) = yj for each 1 ≤ j ≤ t(i). Let vbl(Ei) = { x : ∃y s.t. (x, y) ∈ P (Ei) } denote the variables
of π relevant to event Ej . Let us define a relation i ∼ i′ to hold iff there are pairs (x, y) ∈ P (Ei) and (x′, y′) ∈ P (Ei′)
such that x = x′ or y = y′; i.e., the two events involve the same value in either the range or domain. This relation defines
a lopsidependency graph. It is known that the lopsided LLL holds in this setting.

Harris and Srinivasan [18] showed that a permutation avoiding all bad events can be found algorithmically, assuming any
of the usual LLL criteria: (GLL), (CLL), etc. We show that their resampling process, based on the Fischer-Yates shuffle,
satisfies the conditions of an resampling oracle. Pseudocode is shown in Algorithm III-B. To prove the correctness of this
resampling oracle within our framework, we need the following lemma.

Algorithm 3 Resampling oracle for permutations. The input is a permutation π and an event Ei. It is assumed that Ei
occurs in permutation π.

1: Function Shuffle(π,Ei):
2: X := vbl(Ei), i.e., the variables in π affecting event Ei;
3: Fix an arbitrary order X = (x1, x2, . . . , xt);
4: for i = t down to 1 do
5: Swap π(xi) with π(z) for z chosen uniformly at random among [n] \ {x1, . . . , xi−1};
6: end for
7: return π;

Lemma III.1. Let X be the variables upon which event E depends. Suppose that a permutation π has some arbitrary fixed
assignment on the variables in X , π|X = φ, and it is uniformly random among all permutations satisfying π|X = φ. Then
the output of Shuffle(π,E) is a uniformly random permutation.

This resampling oracle is a partial version of the Fischer-Yates shuffle. In contrast to the full shuffle, we assume that
some part of the permutation has been shuffled already: X is the remaining portion that still remains to be shuffled, and
conditioned on its assignment the rest is uniformly random. This would be exactly the distribution achieved after performing
the Fisher-Yates shuffle on the complement of X . The resampling oracle performs the rest of the Fisher-Yates shuffle, which
produces a uniformly random permutation. For completeness we give a self-contained proof.

Proof: Let X = {x1, . . . , xt}. By induction, after performing the swap for xi, the permutation is uniform among
all permutations with a fixed assignment of {x1, . . . , xi−1} (consistent with φ). This holds because, before the swap, the
permutation was by induction uniform conditioned on the assignment of {x1, . . . , xi} being consistent with φ, and we
choose a uniformly random swap for xi among the available choices. This makes every permutation consistent with φ on
{x1, . . . , xi−1} equally likely after this swap.

This verifies condition (R1)for the function Shuffle. The condition (R2)states that resampling an event cannot cause
non-neighbor events to occur. This is true because of the following lemma.

Lemma III.2. The resampling oracle Shuffle(π,Ei) applied to a permutation satisfying Ei does not cause any new event
outside of Γ+(i) to occur.

Proof: Suppose Ej changed its status during a call to Shuffle(π,Ei). This means that something changed among its
relevant variables vbl(Ej). This could happen in two ways:

(1): either a variable z ∈ vbl(Ej) was swapped because z ∈ X = vbl(Ei); then clearly j ∈ Γ+(i).
(2): a variable in vbl(Ej), although outside of X , received a new value by a swap with some variable in X = vbl(Ei).

Note that in the Shuffle procedure, every time a variable z outside of X changes its value, it is by a swap with a fresh
variable of X , i.e., one that had not been processed before. Therefore, the value that z receives is one that previously caused
Ei to occur. If it causes Ej to occur, it means that Ei and Ej share a value in the range space and we have j ∈ Γ+(i) as
well.

C. Perfect matchings

Here, the probability space Ω is the set of all perfect matchings in K2n, with the uniform measure. This is a setting
considered by Achlioptas-Iliopoulos [2], and it is also related to the setting of permutations. (Permutations on [n] can be
viewed as perfect matchings in Kn,n.) A state here is a perfect matching in K2n, which we denote by M ∈ Ω. We consider
bad events of the following form: EA for a set of edges A occurs if A ⊆ M . Obviously, Prµ[EA] > 0 only if A is a
(partial) matching. Let us define A ∼ B iff A ∪ B is not a matching. It was proved by Lu et al. [23] that this defines a
lopsidependency graph.

Algorithm 4 describes an resampling oracle in this setting.

Lemma III.3. Let A be a matching in K2n and let M be distributed uniformly among perfect matchings in K2n such that
A ⊆M . Then after calling the resampling oracle, rA(M) is a uniformly random perfect matching.

Proof: We prove by induction that at any point, M ′ is a uniformly random perfect matching conditioned on containing
A′. This is satisfied at the beginning: M ′ = M,A′ = A and M is uniformly random conditioned on A ⊆M .

Assume this is true at some point, we pick (u, v) ∈ A′ arbitrarily and (x, y) ∈M ′ \A′ uniformly at random. Denote the
vertices covered by M ′ \A′ by V (M ′ \A′). Observe that for a uniformly random perfect matching on V (M ′ \A′)∪{u, v},

Algorithm 4 Resampling oracle for perfect matchings
1: Function rA(M):
2: Check that A ⊆M , otherwise return M .
3: A′ := A;
4: M ′ := M ;
5: while A′ 6= ∅ do
6: Pick (u, v) ∈ A′ arbitrarily;
7: Pick (x, y) ∈M ′ \A′ uniformly at random, with (x, y) randomly ordered;
8: With probability 1− 1

2|M ′\A′|+1 ,
9: Add (u, y), (v, x) to M ′ and remove (u, v), (x, y) from M ′;

10: Remove (u, v) from A′;
11: end while
12: return M ′.

the edge (u, v) should appear with probability 1/(2|M ′ \ A′|+ 1) since u has 2|M ′ \ A′|+ 1 choices to be matched with
and v is 1 of them. Consequently, we keep the edge (u, v) with probability 1/(2|M ′ \ A′| + 1) and conditioned on this
M ′ \A′ is uniformly random by the inductive hypothesis. Conditioned on (u, v) not being part of the matching, we re-match
(u, v) with another random edge (x, y) ∈ M ′ \ A′ where (x, y) is randomly ordered. In this case, u and v get matched to
a uniformly random pair of vertices x, y ∈ V (M ′ \ A′), as they should be. The rest of the matching M ′ \ A′ \ {(x, y)} is
uniformly random on V (M ′ \A′ \ {x, y}) by the inductive hypothesis.

Therefore, after each step M ′ \ A′ is uniformly random conditioned on containing A′. At the end, A′ = ∅ and M ′ is
uniformly random.

Lemma III.4. The resampling oracle rA(M) applied to a perfect matching satisfying event EA does not cause any new
event EB such that B /∈ Γ+(A).

Proof: Observe that all the new edges that the resampling oracle adds to M are incident to some vertex matched by A.
So if an event EB was not satisfied before the operation and it is satisfied afterwards, it must be the case that B contains
some edge not present in A but sharing a vertex with A. Hence, A ∪B is not a matching and A ∼ B.

D. Spanning trees

Here, the probability space Ω is the set of all spanning trees in Kn. Let us consider events EA for a set of edges A, where
EA occurs for T ∈ Ω iff A ⊆ T . Define A ∼ B unless A and B are vertex-disjoint. Lu et al. [23, Lemma 7] show that this
in fact defines a dependency graph for spanning trees. It is worth nothing that this scenario illustrates an algorithmic use of
the original LLL (not the Lopsided LLL) for which the independent-variable model does not suffice and one must design a
non-trivial resampling oracle.

We now show how to implement the resampling oracle in this setting. We note that as a subroutine, we use an algorithm
to generate a uniformly random spanning tree in a given graph G. This can be done efficiently by a random walk, for
example.

Algorithm 5 Resampling oracle for spanning trees
1: Function rA(T):
2: Check that A ⊆ T , otherwise return T .
3: Let W = V (A), the vertices covered by A.
4: Let T1 =

(
V \W

2

)
∩ T , the edges of T disjoint from W .

5: Let F1 =
(
V \W

2

)
\ T , the edges disjoint from W not present in T .

6: Let G2 = (Kn \ F1)/T1 be a multigraph obtained by deleting F1 and contracting T1.
7: Generate a uniformly spanning tree T2 in G2.
8: return T1 ∪ T2.

Lemma III.5. If A is a fixed forest and T is a uniformly random spanning tree in Kn conditioned on A ⊆ T , then rA(T)
produces a uniformly random spanning tree in Kn.

Proof: First, observe that since T2 is a spanning tree of G2 = (Kn \F1)/T1, it is also a spanning tree of Kn/T1 where
T1 is a forest, and therefore T1 ∪ T2 is a spanning tree of Kn. We need to prove that it is a uniformly random spanning
tree.

First, we appeal to Lemma 6 of Lu et al. [23], which states that given a forest F in Kn with components of sizes
f1, f2, . . . , fm, the number of spanning trees containing F is exactly

nn−2
m∏
i=1

fi
nfi−1

.

Equivalently (since nn−2 is the total number of spanning trees), for a uniformly random spanning tree T , Pr[F ⊆ T] =∏m
i=1

fi
nfi−1 . This has the surprising consequence that for vertex-disjoint forests F1, F2, we have Pr[F1∪F2 ⊆ T] = Pr[F1 ⊆

T] ·Pr[F2 ⊆ T], i.e., the containment of F1 and F2 are independent events. (In a general graph, the appearances of different
edges in a random spanning tree are negatively correlated, but here we are in a complete graph.)

Let W = V (A) and let B be any forest on V \W , i.e., vertex-disjoint from A. By the above, the appearance of B
in a uniformly random spanning tree is independent of the appearance of A. Hence, if T is uniformly random, we have
Pr[B ⊆ T | A ⊆ T] = Pr[B ⊆ T]. This implies that the distribution of T ∩

(
V \W

2

)
is exactly the same for a uniformly

random spanning tree T as it is for one conditioned on A ⊆ T (formally, by applying the inclusion-exclusion formula).
Therefore, the forest T1 = T ∩

(
V \W

2

)
is distributed as it should be in a random spanning tree restricted to V \W .

The final step is that we extend T1 to a spanning tree T1∪T2, where T2 is a uniform spanning tree in G2 = (Kn \F1)/T1.
Note that we G2 is a multigraph, i.e., it is important that we preserve the multiplicity of edges after contraction. The
spanning trees T2 in G2 = (Kn \ F1)/T1 are in a one-to-one correspondence with spanning trees in Kn conditioned on
T ∩

(
V \W

2

)
= T1: This is because each such tree T2 extends T1 to a different spanning tree of Kn, and each spanning tree

where T ∩
(
V \W

2

)
= T1 can be obtained in this way. Therefore, for a fixed T1, T1 ∪T2 is a uniformly random spanning tree

conditioned on T ∩
(
V \W

2

)
= T1. Finally, since the distribution of T1 is equal to that of a uniformly random spanning tree

restricted to V \W , T1 ∪ T2 is a uniformly random spanning tree.

Lemma III.6. The resampling oracle rA(T) applied to a spanning tree satisfying EA does not cause any new event EB
such that B /∈ Γ+(A).

Proof: Note that the only edges that we modify are those incident to W = V (A). Therefore, any new event EB that
the operation of rA could cause must be such that B contains an edge incident to W and not contained in A. Such an edge
shares exactly one vertex with some edge in A and hence B ∼ A.

E. Composition of resampling oracles for product spaces

Suppose we have a probability space Ω = Ω1 × Ω2 × . . . × ΩN , where on each Ωi we have resampling oracles rij for
events Eij , j ∈ Ei, with respect to a causality graph Gi. Our goal is to show that there is a natural way to combine these
resampling oracles in order to handle events on Ω that are obtained by taking intersections of the events Eij . The following
theorem formalizes this notion.

Theorem III.7. Let Ω1, . . . ,ΩN be probability spaces, where for each Ωi we have resampling oracles rij for events
Eij , j ∈ Ei with respect to a causality graph Gi. Let Ω = Ω1 × Ω2 × . . .ΩN be the probability space with the respective
product measure. For any set J of pairs (i, j), j ∈ Ei where each i ∈ [N] appears at most once, define an event EJ on Ω
to occur in a state ω = (ω1, . . . , ωN) iff Eij occurs in ωi for each (i, j) ∈ J . Define a causality graph G on these events
by J ∼ J ′ iff there exist pairs (i, j) ∈ J, (i, j′) ∈ J ′ such that j ∼ j′ in Gi. Then there exist resampling oracles rJ for the
events EJ with respect to G, which are obtained by successive calls to rij , (i, j) ∈ J .

Proof: For J = {(i1, j1), (i2, j2), . . . , (ik, jk)}, we define

rJ(ω1, . . . , ωN) = (ri1j1(ω1), ri2j2(ω2), . . . , rikjk(ωk))

where we interpret ri`j` as the identity if there is no pair in J whose first element is i`. We claim that these are resampling
oracles with respect to G as defined in the theorem.

Let us denote by µ the default probability distribution on Ω, and by µi the respective probability distribution on Ωi. For
the first condition, suppose that ω ∼ µ|EJ

. By the product structure of Ω, this is the same as having ω = (ω1, . . . , ωN)
where the components are independent and ω` ∼ µ`|Ei`j`

for each (i`, j`) ∈ J , and ω` ∼ µ` for indices not appearing
in J . By the properties of the resampling oracles ri`j` , we have ri`j`(ω) ∼ µ`. Since the resampling oracles are applied
independently, we have rJ(ω) = (ri1j1(ω1), ri2j2(ω2), . . . , rikjk(ωk)) ∼ µ1 × µ2 × . . .× µN = µ.

For the second condition, note that if ω /∈ EJ′ and rJ(ω) ∈ EJ′ , it must be the case that there is (i`, j`) ∈ J and
(i`, j

′
`) ∈ J ′ such that ω` /∈ Ei`j′` and ri`j`(ω) ∈ Ei`j′` . However, this is possible only if j` ∼ j′` in the causality graph Gi` .

By the definition of G, this means that J ∼ J ′ as well.
As a result, we can extend our resampling oracles to spaces like N -tuples of independently random permutations,

independently random spanning trees, etc. We make use of this in our applications.

IV. APPLICATIONS

Let us present a few applications of our framework. Our application with rainbow spanning trees is new, even in the
existential sense. Our applications with Latin transversals and rainbow matchings are also new to the best of our knowledge,
although they could also have been obtained using existing algorithms [18], [2].

A. Rainbow spanning trees

Given an edge-coloring of Kn, a spanning tree is called rainbow if each of its edges has a distinct color. The existence
of a single rainbow spanning tree is completely resolved by the matroid intersection theorem: It can be decided efficiently
whether a rainbow spanning tree exists for a given edge coloring, and it can be found efficiently if it exists. However,
the existence of multiple edge-disjoint rainbow spanning trees is more challenging. An attractive conjecture of Brualdi and
Hollingsworth [9] states that if n is even and Kn is properly edge-colored by n−1 colors, then the edges can be decomposed
into n/2 rainbow spanning trees, each tree using each color exactly once. Until recently, it was only known that every such
edge-coloring contains 2 edge-disjoint rainbow spanning trees [4]. In a recent development, it was proved that if every color
is used at most n/2 times (which is true for any proper coloring) then there exist Ω(n/ log n) edge-disjoint rainbow spanning
trees [10]. In fact this result seems to be algorithmically efficient, although this was not claimed by the authors. We prove
that using our framework, we can find Ω(n) rainbow spanning trees under a slight strengthening of the coloring assumption.

Theorem IV.1. Given an edge-coloring of Kn such that each color appears on at most 1
32 (7

8)7n edges, at least 1
32 (7

8)7n
edge-disjoint rainbow spanning trees exist and can be found in O(n4) resampling oracle calls with high probability.

This result relies on Theorem I.3, our algorithmic version of the cluster expansion local lemma. We note that if there is
constant multiplicative slack in the assumption on color appearances, the number of resamplings improves to O(n2), using
the result in Theorem V.10 with constant ε slack.

Our approach to prove this theorem is simply to sample 1
32 (7

8)7n independently random spanning trees and hope that
they will be (a) pairwise edge-disjoint, and (b) rainbow. This unlikely proposition in fact happens to be true with positive
probability, thanks to the local lemma and the independence properties in random spanning trees that we mentioned in
Section III-D.

Proof: We apply our algorithm in the setting of t independent and uniformly random spanning trees T1, . . . , Tt ⊂ Kn,
with the following two types of bad events:
• Eief : For each i ∈ [t] and two edges e 6= f in Kn of the same color, Eief occurs if {e, f} ⊂ Ti;
• Eije : For each i 6= j ∈ [t] and an edge e in Kn, Eije occurs if e ∈ Ti ∩ Tj .

Clearly, if no bad event occurs then the t trees are rainbow and pairwise edge-disjoint.
By Lemma 6 in [23], the probability of a bad event of the first type is Pr[Eief] = 3/n2 if |e ∪ f | = 3 and 4/n2 if

|e ∪ f | = 4. The probability of a bad event of the second type is Pr[Eije] = (2/n)2 = 4/n2, since each of the two trees
contains e independently with probability 2/n. Hence, the probability of each bad event is upper-bounded by p = 4/n2.

In Section III-D we constructed a resampling oracle rA for a single spanning tree. Here we extend this to the setting of
multiple spanning trees as follows: For an event Eief , we define rief as an application of the resampling oracle r{e,f} to the
tree Ti. For an event Eije , we define rije as an application of the resampling oracle r{e} independently to the trees Ti and
Tj . It is easy to check using Lemma III.5 that for independent uniformly random spanning trees conditioned on either type
of event, the respective resampling oracle generates independent uniformly random spanning trees.

Let us define the following dependency graph; we are somewhat conservative for the sake of simplicity. The graph contains
the following kinds of edges:
• Eief ∼ Eie′f ′ whenever e ∪ f intersects e′ ∪ f ′;
• Eief , E

j
ef ∼ E

ij
e′ whenever e′ intersects e ∪ f ;

• Eije ∼ E
ij′

e′ , E
i′j
e′ whenever e′ intersects e.

We claim that the resampling oracle for any bad event can cause new bad events only in its neighborhood. This follows
from the fact that the resampling oracle affect only the trees relevant to the event (in the superscript), and the only edges
modified are those incident to those relevant to the event (in the subscript).

Let us now verify the cluster expansion criteria (so we can apply Theorem I.3). Let us assume that each color appears
on at most q edges, and we generate t random spanning trees. We claim that the neighborhood of each bad event can be
partitioned into 4 cliques of size (n− 1)(t− 1) and 4 cliques of size (n− 1)(q − 1).

First, let us consider an event of type Eief . The neighborhood of Eief consists of: (1) events Eie′f ′ where e′ or f ′ shares
a vertex with e ∪ f ; these events form 4 cliques, one for each vertex of e ∪ f , and the size of each clique is at most
(n− 1)(q− 1), since the number of incident edges to a vertex is n− 1, and the number of other edges of the same color is
at most q − 1. (2) events Eije′ where e′ intersects e ∪ f ; these events form 4 cliques, one for each vertex of e ∪ f , and each
clique has size at most (n − 1)(t − 1), since its events can be identified with the (n − 1) edges incident to a fixed vertex
and the remaining t− 1 trees.

Second, let us consider an event of type Eije . The neighborhood of Eije consists of: (1) events Eie′f ′ and Eje′f ′ where e
intersects e′ ∪ f ′; these events form 4 cliques, one for each vertex of e and either i or j in the superscript, and the size of
each clique is at most (n−1)(q−1) by an argument as above. (2) events Ei

′j
e′ , E

ij′

e′ where e′ intersects e; these events form
4 cliques, one for each vertex of e and either i′j or ij′ in the superscript. The size of each clique is at most (n− 1)(t− 1),
since the events can be identified with the (n− 1) edges incident to a vertex and the remaining t− 1 trees.

Considering the symmetry of the dependency graph, we set the variables for all events equal to yief = yije = y. The
cluster expansion criteria will be satisfied if we set the parameters so that

p ≤ y

(1 + (n− 1)(t− 1)y)4(1 + (n− 1)(q − 1)y)4
≤ y∑

I⊆Γ+(E),I∈Ind y
I
.

The second inequality holds due to the structure of the neighborhood of each event that we described above. We set
y = βp = 4β/n2 and assume t ≤ γn, q ≤ γn. The reader can verify that with the settings β = (8

7)8 and γ = 1
32 (7

8)7, we
get β

(1+4γβ)8 = 1. Therefore,

p ≤ βp

(1 + 4γβ)8
≤ y

(1 + (n− 1)(t− 1)y)4(1 + (n− 1)(q − 1)y)4

which verifies the assumption of Theorem I.3. Theorem I.3 implies that MaximalSetResample terminates after O((
∑
yief +∑

yije)2) resampling oracle calls with high probability. The total number of events here is O(tqn2) = O(n4) and for each
event the respective variable is y = O(1/n2). Therefore, the expected number of resampling oracle calls is O(n4).

B. Rainbow matchings

Given an edge-coloring of K2n, a perfect matching is called rainbow if each of its edges has a distinct color. This can
be viewed as a non-bipartite version of the problem of Latin transversals. It is known that given any proper (2n− 1)-edge-
coloring of K2n (where each color forms a perfect matching), there exists a rainbow perfect matching [33]. However, finding
rainbow matchings algorithmically is more difficult. Achlioptas and Iliopoulos [2] showed how to find a rainbow matching
in K2n efficiently when each color appears on at most γn edges, γ < 1

2e ' 0.184. Our first result is that we can do this
for γ = 27

128 ' 0.211. The improvement comes from the application of the “cluster expansion” form of the local lemma,
which is still efficient in our framework. (We note that an updated version of the Achlioptas-Iliopoulos framework [3] also
contains this result.)

Theorem IV.2. Given an edge-coloring of K2n where each color appears on at most 27
128n edges, a rainbow perfect matching

exists and can be found in O(n2) resampling oracle calls with high probability.

In fact, we can find many disjoint rainbow matchings — up to a linear number, if we replace 27
128 above by a smaller

constant.

Theorem IV.3. Given an edge-coloring of K2n where each color appears on at most 77

88n edges, at least 77

88n edge-disjoint
rainbow perfect matchings exist and can be found in O(n4) resampling oracle calls whp.

We postpone the proof to Section IV-C, since it follows from our result for Latin transversals there.
Proof of Theorem IV.2: We apply our algorithm in the setting of uniformly random perfect matchings M ⊂ K2n,

with the following bad events (identical to the setup in [2]): For every pair of edges e, f of the same color, Eef occurs
if {e, f} ⊂ M . If no bad event Eef occurs then M is a rainbow matching. We also define the following dependency
graph: Eef ∼ Ee′f ′ unless e, f, e′, f ′ are four disjoint edges. Note that this is more conservative than the dependency graph
we considered in Section III-C, where two events are only connected if they do not form a matching together. The more
conservative definition will simplify our analysis. In any case, our resampling oracle is consistent with this lopsidependency

graph in the sense that resampling Eef can only cause new events Ee′f ′ such that Eef ∼ Ee′f ′ . We show that this setup
satisfies the criteria of the cluster expansion lemma.

Lemma IV.4. For any edge-coloring of K2n such that every color appears at most q = 27
128n times, the lopsided association

graph above satisfies the assumptions of Theorem I.3 with p = 1
(2n−1)(2n−3) and y = (4

3)4p for each event.

Proof: Consider the neighborhood of a bad event Γ(Eef). It contains all events Ee′f ′ such that there is some intersection
among the edges e, f, e′, f ′. Such events can be partitioned into 4 cliques: for each vertex v ∈ e ∪ f , let Qv denote all the
events Ee′f ′ such that v ∈ e′ and f ′ has the same color as e′. The number of edges e′ incident to v is 2n− 1, and for each
of them, the number of other edges of the same color is by assumption at most q − 1. Therefore, the size of Qv is at most
(q − 1)(2n− 1).

In the following, we use the short-hand notation yI =
∏
i∈I yi. Consider the assumptions of the cluster expansion lemma:

for each event Eef , we should have
pef = Pr[Eef] ≤ yef∑

I⊆Γ+(Eef),I∈Ind y
I
.

We have pef = Pr[{e, f} ⊂ M] = 1
(2n−1)(2n−3) . Let us denote this probability simply by p. By symmetry, we set all the

variables yef to the same value, yef = y = βp for some β > 1. Note that an independent subset of Γ+(Eef) can contain
at most 1 event from each clique Qv . (The event Eef itself is also contained in these cliques.) Therefore,∑

I⊆Γ+(Eef),I∈Ind

yI =
∏

v∈e∪f

(1 +
∑

Ee′f′∈Qv

ye′f ′) ≤ (1 + (q − 1)(2n− 1)y)
4
.

We assume q ≤ γn (γ < 0.5) and y = βp = β
(2n−1)(2n−3) . We get

∑
I⊆Γ+(Eef),I∈Ind y

I ≤ (1 + 1
2γβ)4. The reader can

check that with β = (4
3)4 and γ = 27

128 = 1
2 (3

4)3, we have β
(1+ 1

2γβ)4 = 1. Therefore,

y∑
I⊆Γ+(Eef),I∈Ind y

I
≥ βp

(1 + 1
2γβ)4

≥ p

which is the assumption of Theorem I.3.
By Theorem I.3, MaximalSetResample with the resampling oracle for matchings and the dependency graph defined above

will find a rainbow perfect matching in time O(
∑
Eef

yef
∑
Eef

log(1 + yef)) = O((
∑
Eef

yef)2) with high probability.
The number of bad events Eef is O(n3), because each color class has O(n) edges so the number of edge pairs of equal
color is O(n3). We have yef = O(1/n2), and hence the total number of resamplings is O(n2) with high probability. This
proves Theorem IV.2.

C. Latin transversals

A Latin transversal in an n× n matrix A is a permutation π ∈ Sn such that the entries Ai,π(i) (“colors”) are distinct for
i = 1, 2, . . . , n. In other words, it is a set of distinct entries, exactly one in each row and one in each column. It is easy to
see that this is equivalent to a bipartite version of the rainbow matching problem: Aij is the color of the edge (i, j) and we
are looking for a perfect bipartite matching where no color appears twice. It is a classical application of the Lovász local
lemma that if no color appears more than 1

4en times in A then there exists a Latin transversal [14]. An improvement of
this result is that if no color appears more than 27

256n times in A then a Latin transversal exists [7]; this paper introduced
the “cluster expansion” strengthening of the local lemma. (Note that 27

256 = 33

44 .) These results were made algorithmically
efficient by the work of Harris and Srinivasan [18]. We note that our framework provides an alternative way to make these
results algorithmic, using the resampling oracle for permutations.

Beyond finding one Latin transversal, one can ask whether there exist multiple disjoint Latin transversals. A remarkable
existential result was proved by Alon, Spencer and Tetali [6]: If n = 2k and each color appears in A at most εn times
(ε = 10−1010

in their proof), then A can be partitioned into n disjoint Latin transversals. Here, we show how to find a linear
number of Latin transversals algorithmically.

Theorem IV.5. For any n×n matrix A where each color appears at most 77

88n times, there at least exist 77

88n disjoint Latin
transversals which can be found in O(n4) resampling oracle calls w.h.p.

We note that again, if there is constant multiplicative slack in the assumption on color appearances, the number of
resamplings improves to O(n2). This also implies Theorem IV.3 as a special case: For an edge-coloring of K2n where no
color appears more than 77

88n times, let us label the vertices arbitrarily (u1, . . . , un, v1, . . . , vn) construct a matrix A where

Aij is the color of the edge (ui, vj). If no color appears more than 77

88n times, by Theorem IV.5 we can find 77

88n Latin
transversals; these correspond to rainbow matchings in K2n.

Our approach to proving Theorem IV.5 is similar to the proof of Theorem IV.1: sample 77

88n independently random
permutations and hope that they will be (a) disjoint, and (b) Latin. For similar reasons to Theorem IV.1, the local lemma
works out and our framework makes this algorithmic.

Proof: Let t = 77

88n and let π1, . . . , πt be independently random permutations on [n]. We consider the following two
types of bad events:
• Eief : For each i ∈ [t] and e = (u, v), f = (x, y) ∈ [n]× [n] such that u 6= v, x 6= y,Auv = Axy , the event Eief occurs

if πi(u) = v and πi(x) = y;
• Eije : For each i 6= j ∈ [t] and e = (u, v) ∈ [n]× [n], the event Eije occurs if πi(u) = πj(u) = v.

Clearly, if none of these events occurs then the permutations π1, . . . , πt correspond to pairwise disjoint Latin transversals.
The probability of a bad event of the first type is Pr[Eief] = 1

n(n−1) and the probability for the second type is Pr[Eije] = 1
n2 .

Thus the probability of each bad event is at most p = 1
n(n−1) .

It will be convenient to think of the pairs e = (x, y) ∈ [n]× [n] as edges in a bipartite complete graph. As we proved in
Section III-B, the resampling oracle for permutations is consistent with the following lopsidependency graph graph.
• Eief ∼ Eie′f ′ whenever there is some intersection between the edges e, f and e′, f ′;
• Eief , E

j
ef ∼ E

ij
e′ whenever there is some intersection between e′ and e, f ;

• Eije ∼ E
ij′

e′ , E
i′j
e′ whenever e′ intersects e.

By Lemma III.2, the resampling oracle for a given event never causes a new event except in its neighborhood.
Let us now verify the cluster expansion criteria. The counting here is quite similar to the proof of Theorem IV.1, so we

skim over some details. The neighborhood of each event Eief consist of 8 cliques: 4 cliques of events of type Eie′f ′ and
4 cliques of events of type Eije , corresponding in each case to the 4 vertices of e ∪ f . In the first case, each clique has at
most n(q − 1) events, determined by selecting an incident edge and another edge of the same color. In the second case,
each clique has at most n(t− 1) events, determined by selecting an incident edge and another permutation.

The neighborhood of each event Eije also consists of 8 cliques: 4 cliques of events Eie′f ′ or Eje′f ′ , corresponding to the
choice of either i or j in the superscript, and one of the two vertices of e. The size of each clique is at most n(q − 1),
determined by choosing an incident edge and another edge of the same color. Then, we have 4 cliques of events Eij

′

e′ or
Ei
′j
e′ , determined by switching either i′ or j′ in the superscript, and choosing one of the vertices of e. The size of each

clique is at most n(t− 1), determined by choosing an incident edge and a new permutation in the superscript.
As a consequence, the cluster expansion criterion here is almost exactly the same as in the case of Theorem IV.1:

p ≤ y

(1 + n(t− 1)y)4(1 + n(q − 1)y)4
.

We have p = 1
n(n−1) here and we set y = βp. For t, q ≤ γn, it’s enough to satisfy β

(1+βγ)8 ≥ 1, which is achieved

by β = (8
7)8 and γ = 77

88 . Therefore, Theorem I.3 implies that MaximalSetResample will terminate within O((
∑
yief +∑

yije)2) = O(n4) resampling oracle calls with high probability.

V. ANALYSIS OF THE ALGORITHM

In this section, we present a simple self-contained analysis of the MaximalSetResample algorithm in the setting of the
Lovász Local Lemma with some slack in the (GLL) conditions. We use a framework of stable set sequences similar to
that of Kolipaka and Szegedy [21], which builds on Shearer’s work [31]. While the ultimate purpose of this machinery is
the handle the Lovász Lemma Lemma in Shearer’s optimal form, and to prove Theorem I.2 and Theorem I.3 without any
assumption of slack, we defer this to the full version of the paper [19].

We remark that much of the Kolipaka-Szegedy machinery is useful for us, even though the way we apply it is different.
Whereas Kolipaka-Szegedy uses witness trees/sequences growing backwards in time (as Moser and Tardos did), we analyze
similar sequences growing forward in time. There are both similarities and differences in how these two viewpoints lead to
proofs of algorithmic efficiency.

A. Stable set sequences and the coupling argument

Definition V.1. One execution of the outer repeat loop in MaximalSetResample is called an iteration. For a fixed sequence of
non-empty sets I = (I1, . . . , It), we say that the algorithm follows I if Is is the set resampled in iteration s for 1 ≤ s < t,
and It is a prefix of the sequence of events resampled in iteration t. (That is, It contains the first m events resampled in
iteration t, for some m ≥ 1.)

Recall that Ind = Ind(G) denotes the independent sets (including the empty set) in the graph G under consideration.

Definition V.2. I = (I1, I2, . . . , It) is called a stable set sequence if I1, . . . , It ∈ Ind(G) and Is+1 ⊆ Γ+(Is) for each
1 ≤ s < t. We call the sequence I proper if each set Is is nonempty.

Note that if Is = ∅ for some s, then It = ∅ for all t > s. Therefore, the nonempty sets always form a prefix of the stable
set sequence. Formally, we also consider an empty sequence as a stable set sequence of length 0.

Lemma V.3. If MaximalSetResample follows a sequence J = (J1, . . . , Jt), then J is a stable set sequence.

Proof: By construction, the set Js chosen in each iteration is independent in G. For each i ∈ Js, we execute the
resampling oracle ri. Recall that ri can only cause new events in the neighborhood Γ+(i), and this neighborhood will not
be explored again until the following iteration. The iteration terminates when no event outside Γ+(Js) occurs. This shows
that Js+1 ⊆ Γ+(Js). In the last iteration, this also holds for a subset of the resampled events.

We use the following notation: For i ∈ [n], pi = Prµ[Ei]. For S ⊆ [n], pS =
∏
i∈S pi. For a stable set sequence

I = (I1, . . . , It), pI =
∏t
s=1 p

Is . We relate stable set sequences to executions of the algorithm by the following coupling
argument. Although our use of stable set sequences is inspired by Kolipaka-Szegedy [21], their coupling argument is different
as theirs is backward-looking in nature and ours is forward-looking.

Lemma V.4. For any proper stable set sequence I = (I1, I2, . . . , It), the probability that the MaximalSetResample algorithm
follows I is at most pI .

Proof: Given I = (I1, I2, . . . , It), let us consider the following “I-checking” random process. We start with a random
state ω ∼ µ. In iteration s, we process the events of Is in the ascending order of their indices. For each i ∈ Is, we check
whether ω satisfies Ei; if not, we terminate. Otherwise, we apply the resampling oracle ri and replace ω by ri(ω). We
continue for s = 1, 2, . . . , t. We say that the I-checking process succeeds if every event is satisfied when checked and the
process runs until the end.

By induction, the state ω after each resampling oracle call is distributed according to µ: Assuming this was true in the
previous step and conditioned on Ei satisfied, we have ω ∼ µ|Ei

. By assumption, the resampling oracle ri removes this
conditioning and produces again a random state ri(ω) ∼ µ. Therefore, whenever we check event Ei, it is satisfied with
probability Prµ[Ei] (conditioned on the past). By a telescoping product of conditional probabilities, the probability that the
I-checking process succeeds is exactly

∏t
s=1

∏
i∈Is Prµ[Ei] =

∏t
s=1 p

Is = pI .
To conclude, we argue that the probability that MaximalSetResample follows the sequence I is at most the probability

that the I-checking process succeeds. To see this, suppose that we couple MaximalSetResample and the I-checking process,
so they use the same source of randomness. In each iteration, if MaximalSetResample includes i in Jt, it means that Ei
is satisfied. Both procedures apply the resampling oracle ri(ω), so the states in the next iteration are the same. Therefore,
the event that MaximalSetResample follows the sequence I is contained in the event that the I-checking process succeeds,
which happens with probability pI .

It is important to understand that the MaximalSetResample algorithm’s state ω does not satisfy ω ∼ µ in every iteration;
otherwise, that would mean that the algorithm is no better than repeated independent sampling from µ. Rather, it is the
I-checking process whose state ω always satisfies ω ∼ µ. Let us also remark that Lemma V.4 does not use any properties
of the sets Jt chosen by the MaximalSetResample algorithm (e.g. maximality).

Definition V.5. Let Stab denote the set of all stable set sequences and Prop the set of proper stable set sequences. For
I = (I1, . . . , It) ∈ Prop, let us call σ(I) =

∑t
s=1 |Is| the total size of the sequence.

Lemma V.6. The probability that MaximalSetResample resamples at least s events is at most
∑
I∈Prop:σ(I)=s pI .

Proof: If the algorithm resamples at least s events, it means that it follows some proper sequence I of total size
σ(I) = s. By the union bound, the probability of resampling at least s events is upper-bounded by

∑
I∈Prop:σ(I)=s pI .

As remarked in Section I, the original proof of the LLL (Theorem I.1) trivially generalizes to the scenario of directed
dependency graphs [5]. The analysis of this subsection also trivially generalizes. First, one changes the definition of Γ(i) to
denote the vertices j such that there is a directed arc from i to j. Next, since Ind(G) is not defined for directed graphs, we
simply omit the condition I1, . . . , It ∈ Ind(G), from Definition V.2.

B. Analysis in the LLL setting with slack

Let us prove the following (crude) bound on the sum over all stable set sequences. We note that this first bound is typically
exponentially large.

Lemma V.7. Provided that the pi satisfy the (GLL) criterion, pi ≤ xi
∏
j∈Γ(i)(1− xj), we have∑

I∈Prop

pI ≤
n∏
i=1

1

1− xi
.

The proof will use the following trivial fact.

Fact V.8. For any finite set S and any real values αi, we have
∏
i∈S(1 + αi) =

∑
S′⊆S

∏
i∈S′ αi.

Proof: It will be convenient to work with sequences of fixed length, where we pad by empty sets if necessary. Note
that by definition this does not change the value of pI : e.g., p(I1,I2) = p(I1,I2,∅,...,∅). Recall that Stab denotes the set of all
stable set sequences. We show the following statement by induction on `: For any fixed independent set J ,∑

I=(I1,...,I`)∈Stab
I1=J

pI ≤
∏
j∈J

xj
1− xj

. (2)

This is true for ` = 1, since p(J) = pJ ≤
∏
j∈J xj by (GLL).

Let us consider the expression for `+ 1.∑
I′=(I0,I1,...,I`)∈Stab

I0=J

pI′ = pJ
∑

I=(I1,...,I`)∈Stab
I1⊆Γ+(J)

pI

≤ pJ
∑

I1⊆Γ+(J)

∏
i∈I1

xi
1− xi

(by induction)

≤ pJ
∏

i∈Γ+(J)

(
1 +

xi
1− xi

)
(by Fact V.8 with αi = xi

1−xi
)

=
(∏
i′∈J

pi′
)
·
∏

i∈Γ+(J)

1

1− xi

≤
(∏
i′∈J

xi′
∏

j∈Γ(i′)

(1− xj)
)
·
∏

i∈Γ+(J)

1

1− xi
(by (GLL))

≤
∏
i∈J

xi
1− xi

because each factor 1
1−xi

for i ∈ Γ+(J) \ J is covered at least once by (1 − xj) where j ∈ Γ(i′) for some i′ ∈ J . This
proves (2).

Finally, adding up over all sets J ⊆ [n], we use Fact V.8 again to obtain∑
I=(I1,...,I`)∈Stab

pI ≤
∑
J⊆[n]

∏
j∈J

xj
1− xj

=

n∏
i=1

(
1 +

xi
1− xi

)
=

n∏
i=1

1

1− xi
.

Recall that the sequences on the left-hand side may contain empty sets. Rewriting this in terms of proper sequences, we
have ∑̀

k=1

∑
I=(I1,...,Ik)∈Prop

pI ≤
n∏
i=1

1

1− xi
.

Since this is true for every `, and the left-hand-side is non-increasing in `, the sequence as `→∞ has a limit and the bound
still holds in the limit.

As a corollary, we can show that our algorithm is efficient if (GLL) is satisfied with a slack.

Theorem V.9. If (GLL) is satisfied with an ε slack, i.e.

Pr
µ

[Ei] ≤ (1− ε) · xi
∏
j∈Γ(i)

(1− xj) ∀i ∈ [n],

then the probability that MaximalSetResample resamples more than s = 1
ε (
∑n
i=1 ln 1

1−xi
+ t) events is at most e−t.

Proof: By Lemma V.6, the probability that MaximalSetResample resamples at least s events is upper bounded by∑
I∈Prop:σ(I)=dse pI . By the slack assumption, we have pi ≤ (1−ε)p′i and pI ≤ (1−ε)σ(I)p′I , where p′i = xi

∏
j∈Γ(i)(1−xj).

Using Lemma V.7, we obtain ∑
I∈Prop:σ(I)=dse

pI ≤ (1− ε)s
∑
I∈Prop

p′I ≤ e−εs
n∏
i=1

1

1− xi
.

For s = 1
ε (
∑n
i=1 ln 1

1−xi
+ t), we obtain ∑

I∈Prop:σ(I)=dse

pI ≤ e−εs
n∏
i=1

1

1− xi
≤ e−t.

Therefore, the probability of resampling more than s events is at most e−t.
The analysis of this subsection also trivially generalizes to the scenario of directed dependency graphs. No changes are

necessary, other than the revised definition of Γ(i) and stable set sequences, as discussed in Section V-A. Lemma V.7 yields
an existential proof of Theorem I.1 for the scenario of directed dependency graphs, even if (GLL) holds without slack.
Theorem V.9 yields an efficient algorithm for the scenario of directed dependency graphs if (GLL) holds with some slack.

C. Algorithms with more general criteria

A very minor modification of this proof yields the same result for the cluster expansion variant of the local lemma, which
replaces the (GLL) criterion by (CLL). Recall that stable set sequences consist of independent sets in G, a fact which was
ignored in the proof above. Incorporating that fact into the inductive proof of Lemma V.7 shows that, assuming (CLL) holds,
we have ∑

I∈Prop

pI ≤
∑
I∈Ind

yI ≤
n∏
i=1

(1 + yi).

As in Theorem V.9, assuming that (CLL) holds with an ε slack implies an efficient running time bound, which can be
formulated as follows.

Theorem V.10. If (CLL) is satisfied with an ε slack, i.e.,

Pr[Ei] ≤ (1− ε) · yi∑
I⊆Γ+(i),I∈Ind y

I
,

then the probability that MaximalSetResample resamples more than 1
ε

(∑n
j=1 ln(1 + yj) + t

)
events is at most e−t.

Finally, it is possible to show that a similar result holds even with respect to Shearer’s criterion. Harnessing this result, we
prove that the assumption of slack in the LLL / cluster expansion criteria is actually not necessary and can be eliminated.
This leads to Theorem I.2 and Theorem I.3. We defer the details to a full version of the paper [19].

ACKNOWLEDGEMENTS

We thank Mohit Singh for discussions at the early stage of this work. We thank David Harris for suggesting the results
of Section III-E.

REFERENCES

[1] Dimitris Achlioptas and Themis Gouleakis. Algorithmic improvements of the Lovász local lemma via cluster expansion. In
Proceedings of FSTTCS, 2012. 2, 4

[2] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the Lovász local lemma. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 494–503, 2014.
2, 4, 5, 6, 8, 9, 12, 13

[3] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the Lovász local lemma. CoRR, abs/1406.0242v3,
2015. 5, 13

[4] Saieed Akbari and Alireza Alipour. Multicolored trees in complete graphs. J. Graph Theory, 54:3:221–232, 2007. 12

[5] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley, 2000. 1, 7, 16

[6] Noga Alon, Joel Spencer, and Prasad Tetali. Covering with latin transversals. Discrete Applied Mathematics, 57:1:1–10, 1995. 14

[7] R. Bissacot, R. Fernández, A. Procacci, and B. Scoppola. An improvement of the Lovász local lemma via cluster expansion. Combin.
Probab. Comput., 20:709–719, 2011. 4, 14

[8] Julia Böttcher, Yoshiharu Kohayakawa, and Aldo Procacci. Properly coloured copies and rainbow copies of large graphs with small
maximum degree. Random Structures and Algorithms, 40(4), 2012. 4

[9] Richard A. Brualdi and Susan Hollingsworth. Multicolored trees in complete graphs. J. Combin. Theory Ser. B, 68, 1996. 12

[10] James M. Carraher, Stephen G. Hartke, and Paul Horn. Edge-disjoint rainbow spanning trees in complete graphs, 2013. 12

[11] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms for the Lovász local lemma. SIAM
Journal on Computing, 42(6), 2013. 2

[12] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local lemma and graph coloring. In Proceedings
of PODC, 2014. 2

[13] Paul Erdös and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal et al., editor,
Infinite and finite sets, volume 10 of Colloquia Mathematica Societatis János Bolyai, pages 609–628. North-Holland, Amsterdam,
1975. 1, 4, 5, 6

[14] Paul Erdös and Joel Spencer. The Lopsided Lovász Local Lemma and Latin transversals. Discrete Applied Mathematics, 30:151–154,
1991. 2, 3, 14

[15] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is tight for SAT. In Proceedings of SODA, 2011. 3

[16] Ioannis Giotis, Lefteris Kirousis, Kostas I. Psaromiligkos, and Dimitrios M. Thilikos. On the algorithmic Lovász local lemma and
acyclic edge coloring. In Proceedings of ANALCO, 2015. 4, 5, 6

[17] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the Lovász local lemma. Journal of the ACM,
58(6), 2011. 2

[18] David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász local lemma on permutations. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 907–925, 2014. 2, 4, 5, 8, 12, 14

[19] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via resampling oracles. CoRR,
abs/1504.02044, 2015. 4, 6, 15, 18

[20] Richard Holley. Remarks on the FKG inequalities. Communications in Mathematical Physics, 36:227–231, 1974. 7

[21] Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proceedings of STOC, 2011. 2, 3, 4, 5, 15, 16

[22] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with improved applications. In Proceedings of
APPROX/RANDOM, 2012. 2, 4

[23] Lincoln Lu, Austin Mohr, and László Székely. Quest for negative dependency graphs. Recent Advances in Harmonic Analysis and
Applications, 25:243–258, 2013. 2, 7, 8, 9, 10, 11, 12

[24] Austin Mohr. Applications of the lopsided Lovász local lemma regarding hypergraphs. PhD thesis, University of South Carolina,
2013. 2

[25] Robin Moser. Exact Algorithms for Constraint Satisfaction Problems. PhD thesis, ETH Zürich, 2012. 4, 5

[26] Robin A. Moser. A constructive proof of the Lovász local lemma. In Proceedings of STOC, 2009. 2

[27] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local Lemma. Journal of the ACM, 57(2), 2010. 2,
3, 4, 8

[28] Sokol Ndreca, Aldo Procacci, and Benedetto Scoppola. Improved bounds on coloring of graphs. European Journal of Combinatorics,
33(4), 2012. 4

[29] Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM J. Discrete Math, 28:911–917, 2014. 2, 4, 5

[30] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2004. 7

[31] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3), 1985. 4, 15

[32] Joel Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69–76, 1977. 1, 4, 6

[33] David E. Woolbright and Hung-Lin Fu. On the existence of rainbows in 1-factorizations of K2n. Journal of Combinatorial Designs,
6:1:1–20, 1998. 13

	Introduction
	Our contributions
	Algorithmic assumptions
	Main Result

	Our algorithm: MaximalSetResample
	Generalizing the dependency condition
	Generalizing the LLL criterion
	Techniques and related work

	Resampling oracles and lopsided association
	Existence of resampling oracles
	Example: monotone events on lattices

	Implementation of resampling in specific settings
	Independent random variables
	Random permutations
	Perfect matchings
	Spanning trees
	Composition of resampling oracles for product spaces

	Applications
	Rainbow spanning trees
	Rainbow matchings
	Latin transversals

	Analysis of the algorithm
	Stable set sequences and the coupling argument
	Analysis in the LLL setting with slack
	Algorithms with more general criteria

	References

