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Abstract. We generalize the well-known Cauchy-Schwarz inequality to an inequality involving
four vectors. Although the statement is very simple and the proof is short, it does not seem to
appear elsewhere in the literature.

The well-known Cauchy-Schwarz inequality is

(CS) aTabTb ≥ (aTb)2 ∀a, b ∈ Rn.

Numerous variants and generalizations of this inequality are known; see for example the survey of
Dragomir [1] and the book of Steele [2].

In this note we consider generalizations to four vectors. For example, the following inequalities
are straightforward.

aTabTb + cTcdTd ≥ 2aTbcTd ∀a, b, c, d ∈ Rn(1)

aTabTb + cTcdTd ≥ 2aTcbTd ∀a, b, c, d ∈ Rn(2)

aTabTb + cTcdTd ≥ 2aTcbTd + (aTb)2 + (cTd)2 − (aTc)2 − (bTd)2 ∀a, b, c, d ∈ Rn.(3)

Inequality (1) follows by applying (CS) separately to a, b and c, d, then deriving (aTb)2 + (cTd)2 ≥
2aTbcTd from the arithmetic-mean geometric-mean inequality (AMGM). Inequality (2), which ap-
pears in Dragomir’s survey [1] as Theorem 6, follows by deriving a2i b

2
j + c2i d

2
j ≥ 2aibjcidj from

AMGM, then summing over all i and j. Inequality (3) follows by applying (CS) to a, b and c, d,
then deriving (aTc)2 + (bTd)2 ≥ 2aTcbTd from AMGM.

The purpose of this note is to prove the following inequality that superficially appears to be
quite similar, but whose derivation is not as obvious.

Theorem 1.

(4) aTabTb + cTcdTd ≥ 2aTc bTd + (aTb)2 + (cTd)2 − (aTd)2 − (bTc)2 ∀a, b, c, d ∈ Rn.

Simple special cases.

• Setting c = d = 0 recovers the Cauchy-Schwarz inequality.
• Setting d = b, we obtain

aTa bTb + cTc bTb ≥ 2aTc bTb ∀a, b, c ∈ Rn

=⇒ aTa + cTc

2
≥ aTc ∀a, c ∈ Rn.
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This is the “additive” form of the Cauchy-Schwarz inequality, which appears in Steele’s
book [2] as Eq. (1.6) and is the special case pi = 1, qi = 0 of Dragomir’s survey [1],
Theorem 6.

Now let us turn to the proof of (4). The proof unfortunately does not follow by the same
method as (3) because it is not necessarily true that (aTd)2 + (bTc)2 ≥ 2aTcbTd.

Proof. The Lagrange identity, which appears in Dragomir’s survey [1] as Eq. (1.3) and Steele’s book
[2] as Eq. (3.4), states that

aTabTb− (aTb)2 =
1

2

∑
i

∑
j

(aibj − ajbi)
2.

So our desired inequality is equivalent to proving the non-negativity of

(5)
1

2

∑
i,j

(aibj − ajbi)
2 +

1

2

∑
i,j

(cidj − cjdi)
2 − 2

∑
i

aici
∑
j

bjdj +
(∑

i

aidi

)2
+
(∑

i

bici

)2
.

Note that

(6)
∑
i

aici
∑
j

bjdj =
∑
i,j

aicibjdj =
∑
i,j

ajcjbidi.

So multiplying (5) by 2, gathering the summations and using the identity (6), our goal is to prove
the non-negativity of

(7)
∑
i,j

(
(aibj − ajbi)

2 + (cidj − cjdi)
2 − 2aicibjdj − 2ajcjbidi + 2aidiajdj + 2bicibjcj

)
.

The key to the proof is the following manipulation, which can be easily verified. For any i and j
we have

(aibj − ajbi)
2 + (cidj − cjdi)

2 − 2aicibjdj − 2ajcjbidi + 2aidiajdj + 2bicibjcj

= a2i b
2
j + a2jb

2
i + c2i d

2
j + c2jd

2
i − 2aibjajbi − 2cidjcjdi − 2aicibjdj − 2ajcjbidi + 2aidiajdj + 2bicibjcj

= (aibj − ajbi − cidj + cjdi)
2 + 2(aidi − bici)(ajdj − bjcj).

Therefore (7) equals∑
i,j

(
(aibj − ajbi − cidj + cjdi)

2 + 2(aidi − bici)(ajdj − bjcj)
)

∑
i,j

(aibj − ajbi − cidj + cjdi)
2 + 2 ·

(∑
i

(aidi − bici)
)2

.

This is a sum-of-squares, and hence non-negative. �
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