
JMLR: Workshop and Conference Proceedings vol 35:1–18, 2014

Near-Optimal Herding

Nick Harvey NICKHAR@CS.UBC.CA
University of British Columbia, Department of Computer Science

Samira Samadi SAMIRASA@CS.UBC.CA

University of British Columbia, Department of Computer Science

Abstract
Herding is an algorithm of recent interest in the machine learning community, motivated by infer-
ence in Markov random fields. It solves the following sampling problem: given a set X ⊂ Rd with
mean µ, construct an infinite sequence of points from X such that, for every t ≥ 1, the mean of
the first t points in that sequence lies within Euclidean distance O(1/t) of µ. The classic Percep-
tron boundedness theorem implies that such a result actually holds for a wide class of algorithms,
although the factors suppressed by the O(1/t) notation are exponential in d. Thus, to establish a
non-trivial result for the sampling problem, one must carefully analyze the factors suppressed by
the O(1/t) error bound.

This paper studies the best error that can be achieved for the sampling problem. Known anal-
ysis of the Herding algorithm give an error bound that depends on geometric properties of X but,
even under favorable conditions, this bound depends linearly on d. We present a new polynomial-
time algorithm that solves the sampling problem with error O

(√
d log2.5|X |/t

)
assuming that X

is finite. Our algorithm is based on recent algorithmic results in discrepancy theory. We also
show that any algorithm for the sampling problem must have error Ω(

√
d/t). This implies that our

algorithm is optimal to within logarithmic factors.

Keywords: Herding, discrepancy theory, deterministic sampling methods

1. Introduction

Herding is a topic that has attracted much interest in the machine learning community over the
past few years. It was originally proposed (Welling (2009)) as a method for the “sampling” from a
Markov random field that agrees with a given data set. The traditional approach for this scenario is
to use maximum likelihood estimation to infer parameters of the model, and then to sample from that
model. A drawback of the traditional approach is that the maximum likelihood estimation step is
computationally intractable in general. The Herding approach sidesteps this intractability problem
— it does not infer the model parameters, but instead deterministically produces a sequence of
“samples” whose moments rapidly converge to the moments of the given data set.

The Herding algorithm has several attractive properties. Computationally it is very simple —
it is a greedy algorithm whose pseudocode is only two lines. Yet despite its simplicity, it has a
dignified lineage. Herding is related to the Perceptron method (Gelfand et al. (2010)), to condi-
tional gradient methods (Bach et al. (2012)), and to quadrature methods (Bach et al. (2012); Huszár
and Duvenaud (2012)). Herding can naturally be extended to a kernel method (Chen et al. (2010)).

c© 2014 N. Harvey & S. Samadi.

HARVEY SAMADI

Finally, an intriguing property is that the samples produced by Herding converge faster than inde-
pendent random samples, in the sense that the error after tHerding samples is inversely proportional
to t, whereas the error of t random samples is inversely proportional to

√
t (Chen et al. (2010)). Due

to this intriguing property, recent work has studied using Herding ideas to improve convergence
of the Gibbs sampler (Bornn et al. (2013)); this relates to interesting directions in combinatorics
(Holroyd and Propp (2010)) and Markov chain Monte Carlo methods (Chen et al. (2011)).

The purpose of this paper is to rigorously analyze the theoretical underpinnings of the Herding
algorithm. In particular, since Herding’s convergence properties have received much attention, we
wish to determine the best convergence achievable by any algorithm. One of our main observations
is that there is a connection between the sampling question and discrepancy theory, an important
topic in combinatorics and geometry. We will exploit this connection in several parts of our results.

To begin, we present a fairly simple lower bound on the convergence rate of any algorithm
for the sampling question (see Section 4). We then observe that this lower bound is actually opti-
mal if a classic conjecture in discrepancy theory is true. Next, we present a partial result towards
this conjecture which is algorithmic and uses recent breakthroughs in discrepancy theory (Bansal
(2010); Lovett and Meka (2012)). This yields a new, polynomial-time algorithm to produce a se-
quence of samples whose convergence rate is within a logarithmic factor of optimal. In contrast,
the best known upper bound on the convergence of the Herding algorithm is significantly worse,
even under generous assumptions. We conjecture that the actual convergence of the Herding algo-
rithm is strictly worse than the convergence of our new algorithm, and we prove that this is true if
convergence is measured in the `∞-norm.

1.1. Outline

The rest of this paper is organized as follows. In Section 2, we present formal definitions and briefly
explain our main results. In Section 2.2, we present a brief overview of discrepancy theory which is
necessary to explain our results in detail. In Section 3, we present our main algorithm and analyze
its convergence rate. In Section 4, we provide the detail of our lower bound proof for Sampling
Problem. In Section 5, we conclude our work and discuss future directions.

2. Formal Definitions and Main Results

The following notation will be used throughout the paper. We write [n] for the set {1, 2, ..., n}. For
any matrix M we let Mi,∗ refer to the ith row of M , and M∗,j refer to the jth column of M . All
logarithms are in base 2. The `p-norm is denoted ‖·‖p. The ith standard basis vector is denoted ei.

2.1. Sampling Problem

Let X ⊂ Rd be a finite set with |X | = n. Let µ =
∑

x∈X x/n and δ = maxx∈X ‖x‖2. More
generally, one could assume that X is infinite and that it lies in an infinite-dimensional Hilbert
space. In this paper we will restrict to the case of finite X and finite dimensions.

Definition 1 (Sampling Problem) We wish to find an infinite sequence of points x1, x2, ... from the
setX . Each xi is called a pseudosample. The error of the first t pseudosamples is ‖

∑
i≤t xi/t−µ‖2.

2

NEAR-OPTIMAL HERDING

The goal is to ensure that, for all t ≥ 1, the error of the first t pseudosamples is at most α/t, where
α is a quantity that can depend arbitrarily on d, n and X .

A concise statement of the Herding algorithm is as follows:

xt+1 ∈ arg max
x∈X

〈 wt, x 〉 (1a)

wt+1 = wt + µ− xt+1 (1b)

The initial weight vector w0 is initialized somewhat arbitrarily; the literature has proposed setting
w0 = 0 or w0 = µ (Chen et al. (2010); Bach et al. (2012)). We can also assume1 that Herding
algorithm choses the smallest index in the set {arg maxx∈X 〈wt, x〉}. The prior analysis of this
algorithm can be stated as follows. Let r be the maximum value such that the `2-ball centered at µ
of radius r is contained in the convex hull of X . It has been shown2 that the error of the Herding
algorithm is O

(
(‖w0‖2 + δ2/r)/t

)
(Chen et al. (2010)).

Initially it may seem intriguing that the error is proportional to 1/t, but this is an instance of a
much more general phenomenon. It was observed (Gelfand et al. (2010)) that if (1a) is replaced with
any rule that ensures 〈wt, xt+1 〉 ≥ 0, then the Perceptron Boundedness Theorem (Block and Levin
(1970)) implies that the error is at most α/t for some quantity α. However, the proof of Block and
Levin uses compactness and does not give any quantitative bound on α. Giving an effective bound
on α was an open question for decades, until recently (Amaldi and Hauser (2005)) proved a concise
bound that is exponential in d.

Thus, the interesting aspect of the Sampling Problem is not that the error is proportional to
1/t, but rather determining a precise value of α such that the error is at most α/t. The purpose of
this paper is to address the following question, which seems fundamental.

Question 2 What is the best value of α (as a function of d, n or X) that can be obtained in the
Sampling Problem?

The analysis of the Herding algorithm gives a bound on α that depends on r, and hence on the
geometry of X . An undesirable aspect of this bound is that it does not reflect the intrinsic geometry:
it is highly sensitive to rescalings of X . Imagine multiplying the first coordinate of all points in X
by a quantity ε and keeping other coordinates unchanged — if the coordinates represent features
of the data, then this amounts to simply changing the units of the first feature. One can see that,
as ε → 0, r decreases by a factor of roughly ε, whereas δ remains mostly unchanged. Thus, such
scalings can arbitrarily increase the ratio δ/r, and hence the error bound of the Herding algorithm.

For any convex body K, there is a canonical transformation that negates the effects of such
unimportant rescalings. It is standard terminology to say that K is in John’s position if the largest
ellipsoid contained in K is a scalar multiple of the unit Euclidean ball (see Ball (1997); Vershynin
(2009)). So consider K to be the convex hull of X , and assume that the center of K is µ. Then the
quantity r defined above is the radius of the largest ball inside K. John’s theorem asserts that K is

1. This assumption is used in the proof of Theorem 5.
2. The bound claimed in that paper appears to be inaccurate. In Appendix C, we prove that the bound that we state here

is correct.

3

HARVEY SAMADI

µ

r

δ

Figure 1: The black colour shows the set X and its convex hull K. The blue colour shows the
smallest circle centred at the origin that contains K and its radius δ. The orange colour shows the
biggest circle centred at µ that is contained in K and its radius r.]

contained in the ball centered at µ of radius rd. Assuming that µ = 0, it follows that the quantity δ
defined above is at most rd, and hence3 δ/r ≤ d. Thus, under these assumptions, the error of the
Herding algorithm is

O
(
(‖w0‖2 + δd)/t

)
. (2)

Instead of simply assuming that X is in John’s position, one could imagine performing a
preprocessing step to transform X to John’s position, then running the Herding algorithm in the
transformed space. This would yield a 2-norm error bound in transformed space. However, trans-
lating back to the original space, one would obtain an error bound in a different norm. It is unclear
whether such an approach would provide a desirable 2-norm error bound in the original space.

In this paper, we are interested in bounds on α that essentially depend only on d, and are
not disrupted by unimportant rescalings. This suggests two natural questions. First, does a bound
depending only on d hold without assuming that the set X has been transformed to some canon-
ical position? Second, is the linear dependence on d in (2) optimal? Our first, and rather simple,
observation is:

Theorem 3 For each d, there exists a set X ⊂ Rd with maxx∈X ‖x‖2 = 1 such that every solution
to the Sampling Problem on X has error Ω(

√
d/t) for t = Θ(d2).

If we allow error bounds that depend on n, then we can show a nearly-matching upper bound.

Theorem 4 There is an algorithm with running time poly(d, n) that solves the Sampling Problem
with error O(

√
dδ log2.5(n)/t).

3. This bound is tight: a simplex centered at the origin has δ/r exactly equal to d.

4

NEAR-OPTIMAL HERDING

Theorem 3 is proven in Section 4 and Theorem 4 is proven in Section 3. We do not know
whether the algorithm of Theorem 4 has strictly better error than the Herding algorithm. However,
if we measure error in the `∞-norm then our algorithm is seen to be strictly better.

Theorem 5 For each d, we can construct a set X ∈ Rd such that the Herding algorithm has
maxt‖t · (

∑t
i=1 xi/t − µ)‖∞ = Ω(

√
d). On the other hand, the algorithm of Theorem 4 has

maxt‖t · (
∑t

i=1 xi/t− µ)‖∞ = O(log2.5(n)).

Theorem 5 is proven in Appendix A. We now begin discussing the proof of Theorem 4. In
order to do so, let us introduce a more stringent problem.

Definition 6 (Permutation Problem) Let X , µ, d and n be as before. We wish to find a bijection
π : {1, ..., n} → X . The error of the first t points is ‖

∑
i≤t π(i)/t−µ‖2. The goal is to ensure that,

for all t ≥ 1, the error of the first t points is at most α/t

It is easy to see that any solution to the Permutation Problem yields a solution to the Sampling
Problem with the same parameter α. To see this, consider the infinite sequence obtained by con-
catenating copies of X , each ordered by π. Every contiguous subsequence of length n sums to nµ.
So, for every length-t prefix of this infinite sequence, only the last tmod n vectors contribute to the
error. The error of those last vectors is exactly ‖

∑tmodn
i=1 (π(i)− µ)/t‖2, which is assumed to be at

most α/t.

Thus, to give an upper bound on the error in the Sampling Problem, it suffices to give an upper
bound on the error in the Permutation Problem. This is the approach used to prove Theorem 4. To
explain this approach in more detail, we must introduce tools from discrepancy theory.

2.2. Discrepancy Theory

Discrepancy theory is a major area of study in both combinatorics and geometry (Chazelle (2000);
Matousek (1999)). The powerful results in this area have applications in many theoretical areas of
computer science. We begin by mentioning one of the oldest results in this area Steinitz (1913).

Fix a convex body B ⊂ Rd that is 0-symmetric (i.e., B = −B) For any finite set V ⊂ B
with

∑
v∈V v = 0, let βV be the smallest value for which there is an ordering v1, v2, ... of V with∑

i≤t vi ∈ βV ·B for all t. The Steinitz constant of B, denoted S(B), is the supremum of βV over
all finite V ⊂ B. Note that S(B) depends only on d and B, and is not a function of |V |.

The connection between the Permutation Problem and discrepancy theory is now apparent.
Let Bd

2 be the Euclidean unit ball in Rd. Let X ′ be X translated so that its centroid µ is the origin,
and scaled so that X ⊂ Bd

2 . There is an ordering x1, x2, ... of X ′ such that
∑

i≤t xi ∈ S(Bd
2) · Bd

2

for all t. This gives a solution to the Permutation Problem on X with α = S(Bd
2) ·maxx∈X ‖x‖2.

It is conjectured that S(Bd
2) = O(

√
d) (see Bergström (1931); Baŕańy (2008)). If true, that

would imply a solution to the Permutation Problem, and hence to the Sampling Problem, with
α = O(

√
d) · maxx∈X ‖x‖2. This would match our lower bound in Section 4. The best known

bound on S(Bd
2) is the Steinitz Lemma: S(Bd

2) ≤ d (Baŕańy (2008)). Furthermore, the proof is
algorithmic, so this gives an efficient solution to the Sampling Problem with α = d ·maxx∈X ‖x‖2.

5

HARVEY SAMADI

This result is of mild interest, in that it answers the question raised in the previous section on whether
there is a solution with error linear in d without the various assumptions on K.

Our next result is as follows:

Theorem 7 Let V ⊂ Rd satisfy maxv∈V ‖v‖2 ≤ 1 and
∑

v∈V v = 0. Let n = |V |. Then there
is an ordering v1, v2, ... of V such that ‖

∑
i≤t vi‖2 = O(

√
d log2.5 n) for all t ≥ 1. Furthermore,

there is an algorithm with running time poly(d, n) to find such an ordering.

Due to the connection from the Sampling Problem to the Permutation Problem described
above, Theorem 7 implies a solution to Theorem 4. It does not imply anything about the Steinitz
constant S(Bd

2) because that quantity must not depend on n. To explain the proof of Theorem 7, we
must introduce some further definitions and notation (Banaszczyk (2012)).

LetB ⊂ Rd be a full-dimensional convex body that is 0-symmetric. LetB′ ⊂ Rd be bounded.
For n ∈ N, we define sv(B,B′;n), ss(B,B′;n) and st(B,B′;n) as follows:

• sv(B,B′;n) is the smallest λ > 0 such that for all x1, ..., xn ∈ B′ there exist ε1, ..., εn ∈
{−1, 1} such that

∑n
i=1 εixi ∈ λB. The symbol sv is an abbreviation of “signed vectors”.

• ss(B,B′;n) is the smallest λ > 0 such that for all x1, ..., xn ∈ B′ there exist ε1, ..., εn ∈
{−1, 1} such that

∑k
i=1 εixi ∈ λB for all k ∈ [n]. The symbol ss is an abbreviation of

“signed series”.
• st(B,B′;n) is the smallest λ > 0 such that for all x1, ..., xn ∈ B′ with

∑n
i=1 xi = 0 there

exists permutation π of [n] such that
∑k

i=1 xπ(i) ∈ λB for all k ∈ [n]. The symbol st is an
abbreviation of “Steinitz constant”.

Let us now state some results using this notation. Let Bp be the unit ball of the `p-norm in
Rd. Theorem 7 states that st(B2, B2;n) ≤ O(

√
d log2.5 n). It is known that sv(B∞, B∞;n) ≤

O(
√
d log (2n/d)) and that sv(B∞, B1;n) ≤ 2. These results can be found in standard refer-

ences (Alon and Spencer (2000)). It is also known that sv(B∞, B2;n) ≤ O(
√

log d) (Banaszczyk
(1998)). The central open question in this area is Komlós’ conjecture that sv(B∞, B2;n) ≤ O(1)
(Spencer (1985)).

Algorithmic proofs are known for some of the results mentioned above. Recent algorithmic
breakthroughs proved that sv(B∞, B∞;n) ≤ O(

√
d log(2n/d)) (Bansal (2010); Lovett and Meka

(2012)). These techniques also algorithmically prove sv(B∞, B2;n) ≤ O(log d), which is slightly
worse than Banaszczyk’s result. The core of these algorithmic results is the following lemma (Lovett
and Meka (2012)).

Lemma 8 (Partial Coloring Lemma) Let v1, ..., vd ∈ Rn be vectors and let x0 ∈ [−1, 1]n. Let
c1, ..., cd ≥ 0 be scalars such that

∑d
i=1 exp(−ci2/16) ≤ n/16. Let ε > 0. Then there exists a

randomized algorithm which with probability at least 0.1 finds a point x ∈ [−1, 1]n such that

(i): |〈x− x0, vi〉| ≤ ci‖vi‖2 for all i ∈ [d]

(ii): |xj | ≥ 1− ε for at least n/2 indices j ∈ [n].

The running time of the algorithm is poly(n, d, 1/ε).

We will also use this lemma as a key ingredient in our proof in Section 3.1.

6

NEAR-OPTIMAL HERDING

3. Main Algorithmic Result

3.1. Bounding ss

The first step to proving Theorem 7 is to bound ss(B∞, B2;n). Theorem 9 constructively proves
that ss(B∞, B2;n) ≤ O(log2.5 n). The vector χ appearing in this theorem is called a “coloring”.

Theorem 9 Let V be a matrix of size d × n such that maxj ‖V∗,j‖2 ≤ δ. Then there exists
χ ∈ {−1, 1}n such that ‖

∑k
j=1 V∗,jχj‖∞ ≤ O(δ log2.5 n) for all k ∈ [n]. Furthermore, there

exists a randomized algorithm to compute the coloring χ in time poly(n, d).

Proof sketch. The partial coloring lemma can be used iteratively to control the discrepancy of
the rows of matrix V ; this is the standard technique of Spencer used to bound sv(B∞, B2;n).
However, it does not suffice to bound ss(B∞, B2;n). We must additionally control the discrepancy
of all prefixes of rows of V . The idea is to construct from V a new matrix W by adding rows that
indirectly control the prefixes of rows of V . Some care is required to ensure that δ does not increase
dramatically. Finally, we iteratively apply the partial coloring lemma to W to obtain the desired
coloring.

Proof The proof has several steps:

Construction of W . We construct a new matrix W from V by adding new rows which are “sub-
rows” of the rows of V . Roughly speaking, for every row of V , we make many new copies of that
row. Each copy has most of its entries zeroed out, except those in a contiguous region of length 2k

that ends at a multiple of 2k.

More formally, define I :=
{

[j · 2k + 1, (j + 1) · 2k] ∩ [n] : j ≥ 0, k ≥ 0
}

, and note that
|I| ≤ 2n − 1. We may enumerate the entries of I as I1, I2, For each i ∈ [d] and for every
Ia ∈ I, let W i be a matrix of size |I| × n, constructed from the row Vi,∗ as follows.

∀a ∈ {1, ..., |I|} W i
a,l =

{
Vi,l if l ∈ Ia
0 otherwise

Note that Vi,∗ itself is one of the rows of W i. Finally, the matrix W is constructed by “stack-
ing” the matrices W i on top of each other. That is, the rows of W are precisely the set of rows that
appears in any W i. So the matrix W has size d′ × n, where d′ = d · |I| = O(nd).

Let δ′ be maxj ‖W∗,j‖2, the largest 2-norm of any column of W . We claim that δ′ ≤ δ ·√
dlog ne. To see this, note that for every l ∈ [n], we have |{ I ∈ I : l ∈ I }| ≤ dlog ne. Thus,

each entry Vi,j appear in at most dlog ne of the copies of row Vi,∗.

Applying the partial coloring lemma. The next step of the proof is to apply the partial coloring
lemma to the matrix W . We set the parameter ci = δ′/ ‖Wi,∗‖2, where C = 32 and δ′ is the
maximum 2-norm of any column of W .

7

HARVEY SAMADI

We now check the hypotheses of the partial coloring lemma. The argument is similar to
existing arguments (Bansal (2010); Lovett and Meka (2012)). We have

d′∑
i=1

‖Wi,∗‖22 =

n∑
j=1

‖W∗,j‖22 ≤ nδ′2.

In particular, there are at most n/2r rows Wi,∗ with ‖Wi,∗‖22 ∈ [2rδ′2, 2r+1δ′2]. So

d′∑
i=1

exp
(−ci2

16

)
<
∑
r∈Z

n

2r
exp

(−C2

2r+5

)
. (3)

We prove in Appendix B that the right-hand side (3) is at most n/16 if C = 32. This establishes the
hypotheses of the partial coloring lemma.

Iteratively applying the partial coloring lemma. This step is identical to a previous result
(Bansal (2010); Lovett and Meka (2012)). The idea is that a partial coloring ensures that at least half
of the coordinates are very close to either 1 or −1. If we recurse on the remaining coordinates we
can obtain a full coloring. The depth of the recursion is only dlog ne since the number of remaining
coordinates halves in each step. Each application of the partial coloring lemma increases the dis-
crepancy of row Wi,∗ by at most ci ‖Wi,∗‖2 = Cδ′. The final vector resulting from this recursion is
a vector χ ∈ [−1, 1]n satisfying |χj | ≥ 1− ε for all j ∈ [n], and:

|〈Wi,∗, χ 〉| ≤ Cδ′ · dlog ne = O(δ′ log n) ∀i ∈ [d′]. (4)

For further explanation, see Lovett and Meka (2012).

Rounding. The next step is to produce an integral coloring. As in prior work, we simply round
each coordinate of χ to either +1 or −1. The additional discrepancy introduced by this rounding
can be easily bounded. Every entry Vi,j satisfies Vi,j ≤ ‖V∗,j‖2 ≤ δ. Increasing |xi| from 1− ε to 1
changes the discrepancy by at most εδn. Choosing ε ≤ 1/nδ, the additional discrepancy produced
by this rounding is at most 1.

Discrepancy of prefixes. Finally, we must show that every prefix of every row of V has low
discrepancy under the coloring χ. Observe that any set P = {1, ..., k}, k ≤ n, can be written as the
disjoint union P = ∪a∈S Ia for some S ⊆ [|I|] with |S| ≤ O(log n). Thus, for any i ∈ [d],

|
∑k

j=1Vi,jχj | ≤
∑

a∈S |
∑

j∈IaVi,jχj |
=
∑

a∈S |〈W
i
a,∗, χ 〉|

≤ |S| ·O(δ′ log n)

= O(δ′ log2 n) = O(δ log2.5 n).

This completes the proof.

8

NEAR-OPTIMAL HERDING

3.2. Relating ss and st

The previous section gave an algorithmic proof that ss(B∞, B2;n) ≤ O(log2.5 n). The next step
in proving Theorem 7 is to relate ss to st; furthermore, the proof should be constructive. The
Chobanyan theorem is a classic theorem in discrepancy that relates ss and st. The proof of this
theorem that we found in the literature is not constructive (Baŕańy, 2008, Section 7), Chobanyan
(1994).

We derive an algorithmic version of the Chobanyan theorem, leading to the following result.
After this paper was published, S. Chobanyan notified us that an algorithmic form of his theorem
has appeared in the literature (Chobanyan et al., 2011, Section 6).

Theorem 10 Let V be a real matrix of size d × n with
∑

j V∗,j = 0. Let δ = maxj‖V∗,j‖2.
Assume that for every permutation π of [n] there exist ε1, ..., εn ∈ {−1, 1} (depending on π) such
that max1≤k≤n‖

∑k
j=1εjV∗,π(j)‖∞ ≤ A. Furthermore, assume that there is an algorithm with

running time poly(n, d) to compute the signs ε1, ..., εn. Then there is an algorithm to construct a
permutation π∗ of [n] such that max1≤k≤n‖

∑k
j=1V∗,π∗(j)‖∞ ≤ A + δ. This algorithm also has

running time poly(n, d).

Proof We describe an algorithm that outputs the desired permutation π∗. For each permutation π
of [n], define disc(π) = max1≤k≤n‖

∑k
j=1V∗,π(j)‖∞.

Consider an arbitrary permutation π1 of [n], and let B1 = disc(π1). If B1 ≤ A then simply
output π1. Otherwise, by the hypothesis of the theorem, there exist ε11, ..., ε

1
n ∈ {−1, 1} such that

max1≤k≤n‖
∑k

j=1ε
1
jV∗,π1(j)‖∞ ≤ A. We construct permutation π2 from π1 as follows. Let

M+ =
{
j ∈ [n] : ε1j = +1

}
and M− =

{
j ∈ [n] : ε1j = −1

}
.

We have ∑k
j=1V∗,π1(j) +

∑k
j=1ε

1
jV∗,π1(j) = 2 ·

∑
j∈M+∩[k] V∗,π1(j)∑k

j=1V∗,π1(j) −
∑k

j=1ε
1
jV∗,π1(j) = 2 ·

∑
j∈M−∩[k] V∗,π1(j).

Hence

‖
∑

j∈M+∩[k]V∗,π1(j)‖∞ ≤
A+B1

2

‖
∑

j∈M−∩[k]V∗,π1(j)‖∞ ≤
A+B1

2
.

The new permutation π2 is formed by concatenating the elements of M+, in the order given by
π1, followed by the elements of M−, in the reverse of the order given by π1. It follows from the
assumption

∑
j V∗,j = 0 that

max
1≤k≤n

‖
∑k

j=1V∗,π2(j)‖∞ ≤
A+B1

2
. (5)

Let B2 := disc(π2). If B2 ≤ A, we output π2. Otherwise, (5) gives B2 ≤ A+B1
2 , and so

A < B2 <
A+B1

2 < B1. We then repeat the procedure explained above to get another ordering π3
from π2.

9

HARVEY SAMADI

Let ` = log
(
(B1−A)/δ

)
and suppose we repeat this process ` times. Possibly some ordering

πi has disc(πi) ≤ A, in which case the algorithm sets π∗ = πi and terminates. If not, then since
Bi+1 − A < (Bi − A)/2, we have disc(π`) = B` ≤ A + δ. So the algorithm sets π∗ = π` and
terminates.

As a final remark, we should specify how to choose the initial ordering π1. A good choice is
to use the ordering produced by the algorithmic proof of the Steinitz lemma (Baŕańy (2008)). This
choice ensures that B1 = dδ, and so the number of iterations ` is at most log(B1/δ) ≤ log d.

3.3. Proofs of Theorem 4 and Theorem 7

The previous two sections have presented algorithmic proofs that ss(B∞, B2;n) ≤ O(log2.5(n))
and that st(B∞, B2;n) ≤ ss(B∞, B2;n). The proof of Theorem 7 now follows easily.

Proof (of Theorem 7). We may think of the set V as a d× n matrix by imposing an arbitrary order
on the vectors. Applying Theorem 9 with δ = 1 shows that there exists an efficient randomized
algorithm that, for any ordering on the columns of V , computes a coloring χ ∈ {−1, 1}n with
max1≤k≤n‖

∑k
j=1 V∗,jχj‖∞ ≤ O(log2.5 n).

The existence of this algorithm satisfies the key hypothesis of Theorem 10. Consequently
Theorem 10 asserts that there exists an algorithm with running time poly(n, d) that constructs a
permutation π of these vectors with

max
1≤t≤n

‖
∑t

j=1V∗,π(j)‖∞ ≤ O(log2.5 n). (6)

Using standard norm inequalities, we have that

max
1≤t≤n

‖
∑t

j=1V∗,π(j)‖2 ≤ O(
√
d log2.5 n),

as required. �

As observed earlier, Theorem 7 easily implies Theorem 4.

Algorithm 1: Our new algorithm for the Sampling Problem

Input: a set X = {x1, ..., xn} ⊆ Rd.
Let δ = maxi∈[n] ‖xi‖2 and µ =

∑
i∈[n] xi/n.

Let V = {v1, ..., vn} where vi = (xi − µ)/2δ.
Since

∑
i∈[n] vi = 0 and maxi∈[n] ‖vi‖2 ≤ 1, we may apply the algorithm of Theorem 7 to

get an ordering π : [n]→ [n] of the elements of V .
Output: The infinite sequence y1, y2, ... obtained by ordering the vectors in X according to the

ordering π, and then repeating this ordering infinitely many times. Formally, for all t ≥ 1,
the tth output point is yt = xπ((t−1) mod n)+1.

Proof (of Theorem 4). Let X ⊂ Rd and let us denote its members as x1, ..., xn. Let y1, y2, ...
be the infinite sequence computed by Algorithm 1. We must show that this sequence has error
O
(√
d log2.5(n)/t

)
.

10

NEAR-OPTIMAL HERDING

Consider any t ≥ 0, and let p and 0 ≤ r ≤ n− 1 be integers such that t = pn+ r. Note that∑n
j=1xj − nµ = 0. Consequently, the error of y0, ..., yt is

‖
∑t

j=1yj/t− µ‖2 = ‖
∑t

j=1yj − tµ‖2/t

= ‖(
∑pn

j=1yj − pnµ) + (
∑t

j=pn+1yj − rµ)‖2/t
= ‖p(

∑n
j=1xj − nµ︸ ︷︷ ︸

=0

) + (
∑r

j=1xπ(j) − rµ)‖2/t

= ‖
∑r

j=1xπ(j) − rµ‖2/t

By Theorem 7, the ordering π satisfies

max
1≤r≤n

‖
∑r

j=1vπ(j)‖2 ≤ O(
√
d log2.5 n)

=⇒ max
1≤r≤n

‖
∑r

j=1xπ(j) − tµ‖2 ≤ O(
√
dδ log2.5 n).

It follows that error is
‖
∑t

j=1yj/t− µ‖2 ≤ O
(√
dδ log2.5(n)/t

)
,

as required. �

4. Lower Bound for the Sampling Problem

In this section we prove that every algorithm for the Sampling Problem has error at least Ω(
√
dδ/t),

proving Theorem 3. This shows that the algorithm of Theorem 4 is optimal, up to logarithmic
factors.

Theorem 11 For any d, let n = d2 and define a matrix V of size d× (n+ d) by

Vd×(n+d) =

−1/n · · · −1/n 1 · · · 0

−1/n · · · −1/n
...

. . .
...

...
... 1 0

−1/n · · · −1/n 0 · · · 0 1

 .
Here, the first n columns are −1/n · 1 and the last d columns are e1, ..., ed. Then, for any sequence
x1, x2, ... generated from columns of this matrix, there exists t ∈ N such that ‖

∑t
i=1xt‖2 ≥ Ω(

√
d).

Proof Consider any sequence x1, x2, Fix t = n/2 and consider the first t elements x1, ..., xt in
the sequence. Let ai be the number of occurrences of ei in these t elements, and let a =

∑d
i=1ai.

Define z :=
∑t

i=1xi. Then

z =

a1 − (t− a)/n
a2 − (t− a)/n

...
ad − (t− a)/n

The ith coordinate of z is equal to ai − 1/2 + a/n. We consider two cases:

11

HARVEY SAMADI

Case 1: a ≥ n/3. Then, there exists an index l for which al ≥ n/3d. So

zl ≥ n/3d− 1/2 + 1/3 = n/3d− 1/6 ≥ d/3− 1/6.

Thus ‖z‖2 ≥ Ω(d) = Ω(
√
d).

Case 2: a ≤ n/3. Then, for all i ∈ [d]

ai − 1/2 ≤ zi ≤ ai − 1/2 + 1/3 = ai − 1/6.

Note that ai ∈ N so |zi| ≥ 1/6. So every coordinate of z has absolute value greater than 1/6. Thus

‖
∑t

i=1xt‖2 = ‖z‖2 = Ω(
√
d),

as required.

Proof (of Theorem 3). Let X consist of the columns of V . Note that µ =
∑

x∈X x = 0, and that
δ = maxx∈X ‖x‖2 = 1. Assume that we have an algorithm that solves the Sampling Problem on
X and generates pseudosamples x1, x2, By Theorem 11 there exists an index t ∈ N such that
‖
∑t

i=1xt‖2 ≥ Ω(
√
d). Therefore

‖
∑t

i=1xi/t− µ‖2 ≥ Ω(
√
dδ/t),

as required. �

5. Conclusions

5.1. Remarks

Our algorithm in Section 3 is described as a randomized algorithm. It can be derandomized by
replacing our use of the Lovett-Meka algorithm with a derandomized form of Bansal’s algorithm
(Bansal and Spencer (2013)). It is also plausible to improve the running time of our algorithm by
using recent results (T. Rothvoss (2014)) that should be faster than the Lovett-Meka algorithm.

Our bound ss(B∞, B2;n) = O(log2.5 n) can be improved if we do not require an efficient
algorithm. It is also known (Banaszczyk (1998)) that sv(B∞, B2;n) = O(

√
log n). Our results in

Section 3 show that
ss(B∞, B2;n) = O(log1.5 n) · sv(B∞, B2;n). (7)

Combining our result with Banaszczyk’s yields a solution to the Sampling Problem with error
O(δ
√
d log2(n)/t), but no known efficient algorithm achieves that bound.

Our lower bound in Theorem 3 is for the particular case that t = d2/2. It would be interesting
to get a similar bound for the cases t� d2 and t� d2.

5.2. Open questions

Our work leaves several questions unanswered. We do not prove that our algorithm of Section 3 has
better error than the Herding algorithm. In particular, it is conceivable that the Herding algorithm

12

NEAR-OPTIMAL HERDING

has optimal error O(δ
√
d/t), matching our lower bound. Alternatively, it is also conceivable that

the O(δd/t) bound on the Herding algorithm’s error is actually tight.

We do not know whether our bound in (7) is tight. It is conceivable that

ss(B∞, B2;n) = O(1) · sv(B∞, B2;n). (8)

It seems that techniques substantially different than ours would be required to prove this.

A major open question in discrepancy theory (Bergström (1931); Baŕańy (2008)) is whether

ss(B2, B2;n) ≤ O(
√
d). (9)

It would be very interesting if (8) is true, as then the Komlós conjecture would imply (9).

Our algorithm in Section 3 assumes that the input set X is finite. It is interesting to study if
we can generalize our algorithm for case of infinite X . It would also be interesting to study if our
algorithm gives good results for the intended applications of Herding in Markov random fields.

Our definition of the Sampling Problem states that µ is the mean of X , whereas a more general
formulation could incorporate a distribution p on X . It is interesting to see if one can modify our
algorithm for the more general case. Here we briefly suggest one possible approach. It seems that
the more general case should be reducible to the uniform distribution case. Assume that p assigns
probability p(xi) to each point xi ∈ X . If each p(xi) = ai

bt
for natural numbers ai and bi, then one

can set c = LCM(b1, ..., bn) and generate a new multi-set Y with c · aibi copies of xi. The uniform
distribution on Y is the same as the distribution p on the original set X . Now we only need to feed
set Y to our algorithm. There are two caveats with this approach. First, we have ignored irrational
numbers and second, we may have |Y| � |X |. It seems possible to mitigate the runtime increase
and to deal with irrational numbers through the use of standard sampling lemmas (Althöfer (1994)),
which can approximate p by a distribution for which c is small.

Acknowledgements

We thank Nando de Freitas, Nikhil Bansal, Mohit Singh, David Kirkpatrick and anonymous review-
ers.

13

HARVEY SAMADI

References

N. Alon and J. Spencer. The Probabilistic Method. John Wiley,, 2000.

I. Althöfer. On sparse approximations to randomized strategies and convex combinations. Linear
Algebra and its Applications, 199:339–355, 1994.

Edoardo Amaldi and Raphael Hauser. Boundedness theorems for the relaxation method. Mathe-
matics of Operations Research, 30:939–955, 2005.

F. Bach, S. Lacoste-Julien, and G. Obozinsk. On the equivalence between herding and conditional
gradient algorithms. In In Proc. ICML, 2012.

K. Ball. An elementary introduction to modern convex geometry. Random Structures and Algo-
rithms, 31, 1997.

W. Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex bodies. Ran-
dom Structures and Algorithms, 12(4):351–360, 1998.

W. Banaszczyk. On series of signed vectors and their rearrangements. Random Structures and
Algorithms, 40:301–316, 2012.

N. Bansal. Constructive algorithms for discrepancy minimization. In FOCS, 2010.

N. Bansal and J. Spencer. Deterministic discrepancy minimization. Algorithmica, 67(4):451–471,
2013.

I. Baŕańy. On the power of linear dependencies. Building Bridges, Bolyai Society Mathematical
Studies, 19:31–45, 2008.

Viktor Bergström. Zwei sätze über ebene vektorpolygone. Abh. Math. Sem. Univ. Hamburg, 8:
148–152, 1931.

H. D. Block and S. A. Levin. On the boundedness of an iterative procedure for solving a system of
linear inequalities. Proceedings of the American Mathematical Society, 26:229–235, 1970.

L. Bornn, Y. Chen, N. de Freitas, M. Eskelin, J. Fang, and M. Welling. Herded Gibbs sampling. In
International Conference on Learning Representations, 2013.

Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, 2000.

S. Chen, J. Dick, and A. B. Owen. Consistency of Markov chain quasi-monte carlo on continuous
state spaces. Annals of Statistics, 39:673–701, 2011.

Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding. In In Proc. UAI, 2010.

Levon Chobanyan, Sergei Chobanyan, and Giorgi Giorgobiani. A maximum inequality for rear-
rangements of summands and its applications to orthogonal series and scheduling theory. Bulletin
of the Georgian National Academy of Sciences, 5(1), 2011.

14

NEAR-OPTIMAL HERDING

S. Chobanyan. Convergence a.s. of rearranged random series in Banach space and associated
inequalities, volume 35 of Progress in Probability, pages 3–29. Birkhäuser Boston, 1994.

A. Gelfand, Y. Chen, L. van der Maaten, and M. Welling. On herding and the perceptron cycling
theorem. In In Proc. NIPS, 2010.

Alexander E. Holroyd and James Propp. Rotor walks and Markov chains. Algorithmic Probability
and Combinatorics, 520:105–126, 2010.

Ferenc Huszár and David Duvenaud. Optimally-weighted herding is Bayesian quadrature. In In
Proc. UAI, 2012.

S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the edges. In FOCS,
2012.

Jiri Matousek. Geometric Discrepancy: An Illustrated Guide. Springer, 1999.

J. Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289:679–706, 1985.

E. Steinitz. Bedingt konvergente reihen und konvexe systeme. J. Reine Ang. Mathematik, 143:
128–175, 1913.

T. Rothvoss. Constructive discrepancy minimization for convex sets. CoRR, abs/1404.0339, 2014.

R. Vershynin. Lecture notes in geometric functional analysis, 2009. manuscript.

M. Welling. Herding dynamical weights to learn. In Proceedings of the 26th International Confer-
ence on Machine Learning (ICML), 2009.

Appendix A. Proof of Theorem 5

Theorem 5 states that the algorithm of Section 3 has error O(log2.5(n)/t) in the `∞-norm. This can
easily be seen from (6). On the other hand, the following theorem shows that the Herding algorithm
has error Ω(

√
d/t) in the `∞-norm. These facts prove Theorem 5.

Theorem 12 Let V be a matrix of size d× n with

V =

A︷ ︸︸ ︷
1/
√
d

B︷ ︸︸ ︷
− ε · · · −ε

C︷ ︸︸ ︷
0 · · · 0

D︷ ︸︸ ︷
− 1 0 · ·· 0

E︷ ︸︸ ︷
ε · · · ε

0
. . .

...
...

...
... 0

...
1/
√
d −ε · · · −ε 0 · · · 0 0 · · · 0 −1 ε · · · ε

1 0 · · · 0 −ε · · · −ε 0 · · · 0 0 0 · · · 0

15

HARVEY SAMADI

in which |A| = 1, |B| = 1/(
√
dε), |C| = 1/ε, |D| = d− 1, and |E| = 1/ε. So n = d+ 1/

√
dε+

1/ε + 1/ε. This definition ensures that µ, the average of the columns, is 0. We define ε = /d
√
d.

Let x1, x2, ... be the pseudosamples generated by the Herding algorithm when we apply it to matrix
V , with w0 = 0. Then there exists T ∈ N such that ‖

∑T
i=1xi‖∞ ≥ Ω(

√
d).

Proof Set T = (2
√
d+ 1)(

√
d/2− 1). Assume that the Herding algorithm has chosen pseudosam-

ples x1, x2, ..., xT in the first T iterations. From the definition of the Herding algorithm we know
that wi = wi−1−xi for all 1 ≤ i ≤ T . Summing these T equalities wT = w0−(x1+x2+ ...+xT).
Substituting w0 = 0, we get that wT = −(x1 + x2 + ...+ xT). So in order to compute the value of∑T

i=1xi we only need to compute the vector wT .

We claim that for all 1 ≤ t ≤ T , wt is as follows. Choose 0 ≤ k ≤
√
d/2 − 1 such that

(2
√
d+ 1)(k − 1) + 1 < t ≤ (2

√
d+ 1)k + 1 then

wt =
[t−1︷ ︸︸ ︷
1− k/

√
d, · · ·, 1− k/

√
d ,

d−t︷ ︸︸ ︷
−k/
√
d, · · ·,−k/

√
d ,

1︷︸︸︷
−k

]T
in which there are t−1 coordinates of value 1−k/

√
d on the top, d−t coordinates of value−k/

√
d

in the middle and one coordinate of value −k at the bottom. We prove our claim by induction:

Initial case of induction; t = 1. From the definition of the Herding algorithm, x1 is defined to
be arg maxj∈[n]〈w0, V∗,j〉. Since w0 = 0, x1 = V1. So w1 = w0 − x1 = −V1. This is the same as
w1 in the above formula for k = 1.

Inductive step. Assuming that the hypothesis is true for some t = 1, 2, ..., l, we prove that it is
also true for t = l + 1. We consider two cases:

• t = (2
√
d+ 1)k+ 1 for some 0 ≤ k ≤

√
d/2− 1. In order to get xt+1 we need to compute

〈wt, Vj〉 for all j ∈ [n] and get the column that maximizes this value. We consider five
cases:

Case 1: Vj is selected from block A. In this case 〈wt, Vj〉 = k/
√
d+ k/d.

Case 2: Vj is selected from block B. In this case 〈wt, Vj〉 = −εk(
√
d+ 1 + 1/

√
d).

Case 3: Vj is selected from block C. In this case 〈wt, Vj〉 = kε.
Case 4: Vj is selected from block D. In this case 〈wt, Vj〉 = −1 + k/

√
d or k/

√
d.

Case 5: Vj is selected from block E. In this case 〈wt, Vj〉 = εk(
√
d+ 1 + 1/

√
d).

Substituting the values of ε, ε and ε, it is easy to check that the maximum value is achieved
by choosing xt+1 = V1. So wt+1 = wt − xt+1 =

[t−1︷ ︸︸ ︷
1− (k + 1)/

√
d, · · ·, 1− (k + 1)/

√
d ,

d−t︷ ︸︸ ︷
−(k + 1)/

√
d, · · ·,−(k + 1)/

√
d ,

1︷ ︸︸ ︷
−(k + 1)

]T
Note that t = (2

√
d+ 1)k+ 1 which gives t+ 1 = (2

√
d+ 1)k+ 2. Thus (2

√
d+ 1)((k+

1) − 1) + 1 < t < (2
√
d + 1)(k + 1) + 1 which gives the same value for wt+1 in the

hypothesis.
• (2

√
d+1)(k−1)+2 ≤ t ≤ (2

√
d+1)k for some 1 ≤ k ≤

√
d/2−1. Similar to the previous

case, we need to compute 〈wt, Vj〉 for all j ∈ [n] and get the column that maximizes this
value. We consider five cases:

16

NEAR-OPTIMAL HERDING

Case 1: Vj is selected from block A. In this case 〈wt, Vj〉 ≤ ε(k − 1)/
√
d+ k/d.

Case 2: Vj is selected from block B. In this case 〈wt, Vj〉 ≤
√
d(2− k)− k − k/

√
d.

Case 3: Vj is selected from block C. In this case 〈wt, Vj〉 = kε.
Case 4: Vj is selected from block D. In this case 〈wt, Vj〉 = −1 + k/

√
d or k/

√
d.

Case 5: Vj is selected from block E. In this case 〈wt, Vj〉 ≤ ε(
√
dk + k + k/

√
d− 1).

Similar to the previous case, it is easy to check that the maximum value is achieved in the
third case by choosing the xt+1 = −et from block D. (Recall that et denotes the tth standard
basis vector). So wt+1 = wt − xt+1 =

[t︷ ︸︸ ︷
1− k/

√
d, · · ·, 1− k/

√
d ,

d−1−t︷ ︸︸ ︷
1− k/

√
d, · · ·,−(k + 1)/

√
d ,

1︷ ︸︸ ︷
−(k + 1)

]T
in which the top t coordinate are 1−k/

√
d and the middle d−1−t coordinates are−k/d and

the last coordinate is −k. Note that t+ 1 is still in the same interval as before and therefore
the above vector gives the same value for wt+1 as in the hypothesis. This completes the
proof of our claim.

The proof completes by setting T = (2
√
d + 1)(

√
d/2 − 1) and k =

√
d/2 − 1. In this case

‖wT ‖∞ ≥
√
d/2− 1 = Ω(

√
d).

Appendix B. Bounding (3)

In this appendix, we show that (3) is satisfied. This calculation is just a slight modification of a
calculation appearing in Lovett and Meka (2012).

Dividing by n, it suffices to show that∑
r∈Z

1

2r
exp

(−C2

2r+5
) ≤ 1/16. (10)

First, assuming only that C ≥ 0, we have∑
r≥6

1

2r
exp

(−C2

2r+5

)
≤
∑
r≥6

1

2r
= 1/32. (11)

Next assume that C = 32. Then∑
r≤0

1

2r
exp

(−C2

2r+5

)
=
∑
i≥0

2i · exp
(−C2 · 2i

32

)
≤
∑
i≥0

exp
(
i− 32 · 2i

)
<
∑
i≥1

exp(−31i)

=
e−31

1− e−31
< 1/200.

Finally,
5∑
r=1

1

2r
exp

(−C2

2r+5

)
=

e−16

2
+
e−8

4
+
e−4

8
+
e−2

16
+
e−1

32
< 1/44. (12)

17

HARVEY SAMADI

Summing (11), (B) and (12) shows (10).

Sanjeev Arora, Semidefinite Programming, Discrepancy, Randomized Algorithms, Spencer’s
Theorem, Beck-Fiala, Convex Geometry, Random Walks, Derandomization

Appendix C. Herding algorithm error

Proof This is a modification of the proof in Chen et al. (2010). Assume that the Herding algorithm
generates pseudosamples x1, x2, ..., xt, ... and weights w0, w1, w2, ..., wt, We have that wi =
wi−1+µ−xi for all 1 ≤ i ≤ t. Summing these above equations we get thatwt = w0+tµ−

∑t
i=1 xi.

The error of the Herding algorithm for the first t samples is∥∥∥∥∥1

t

t∑
i=1

xi − µ

∥∥∥∥∥
2

=
1

t

∥∥∥∥∥
t∑
i=1

xi − tµ

∥∥∥∥∥
2

=
1

t
‖w0 − wt‖2 ≤

1

t
(‖w0‖2 + ‖wt‖2)

So in order to bound the error, we only need to bound ‖wt‖2. We claim that ‖wt‖2 ≤ O(δ2/r).

Let’s define the convex body C = K − µ. Since ‖x‖2 ≤ δ for all x ∈ K, ‖c‖2 ≤ 2δ for
all c ∈ C. Let ct = arg maxc∈C〈wt, c〉 for all t. The Herding algorithm update equation becomes
wt+1 = wt − ct. Since there is a ball of radius r with centre µ inside K and C is a shifting of K,
there is a ball of radius r with centre 0 inside C. Thus r · wt

‖wt‖2
∈ C.

Consider the sequence w0, w1, ... and let k be the first index for which ‖wk‖2 >
2δ2

r . Then

‖wk+1‖22 − ‖wk‖
2
2 = ‖ck‖22 − 2〈wk, ck〉 ≤ 4δ2 − 2〈wk, r ·

wk
‖wk‖2

〉 = 4δ2 − 2r ‖wk‖2 < 0.

Therefore ‖wk‖2 > ‖wk+1‖2. This means that as soon as the norm of a weight point gets bigger
than 2δ2

r , the norm starts decreasing until it gets smaller than 2δ2

r again. Since wk = wk−1 − ck−1,
we have

‖wk‖2 ≤ ‖wk−1‖2 + ‖ck−1‖2 ≤
2δ2

r
+ 2δ = O(

δ2

r
)

Note that this is the maximum value that the norm of any vector wt can get. Therefore the error of
Herding algorithm is bounded by∥∥∥∥∥1

t

t∑
i=1

xi − µ

∥∥∥∥∥
2

≤ 1

t
(‖w0‖2 + ‖wt‖2) ≤ O(‖w0‖2 +

δ2

r
)/t.

18

	Introduction
	Outline

	Formal Definitions and Main Results
	Sampling Problem
	Discrepancy Theory

	Main Algorithmic Result
	Bounding ss
	Relating ss and st
	Proofs of Theorem 4 and Theorem 7

	Lower Bound for the Sampling Problem
	Conclusions
	Remarks
	Open questions

	Proof of Theorem 5
	Bounding (3)
	Herding algorithm error

