
Tight analyses for subgradient descent I: Lower bounds1

Nicholas J. A. Harvey Christopher Liaw Sikander Randhawa

Department of Computer Science
University of British Columbia

Abstract

Consider the problem of minimizing functions that are Lipschitz and convex, but not necessarily
differentiable. We construct a function from this class for which the T th iterate of subgradient descent
has error Ω(log(T)/

√
T). This matches a known upper bound of O(log(T)/

√
T). We prove analogous

results for functions that are additionally strongly convex. There exists such a function for which the
error of the T th iterate of subgradient descent has error Ω(log(T)/T), matching a known upper bound of
O(log(T)/T). These results resolve a question posed by Shamir (2012).

1 Introduction
Subgradient descent (henceforth, GD) is a very simple and widely used iterative method for minimizing
a non-smooth convex function. In a nutshell, the method works by querying an oracle for a subgradient,
then taking a small step in the opposite direction. The simplicity and effectiveness of this algorithm has
established it as an essential tool in numerous applications.

The efficiency of GD is usually measured by the rate of decrease of the error — the difference in
value between the algorithm’s output and the function’s infimum. The optimal error rate is known under
various assumptions on f , the function to be minimized. In addition to convexity, common assumptions
are that f is smooth (the gradient is Lipschitz) or strongly convex (locally lower-bounded by a quadratic).
In applications, strongly convex functions often arise due to regularization, whereas smooth functions can
sometimes be obtained by smoothening approximations (e.g., convolution).

This paper focuses on the setting in which the function is non-smooth and Lipschitz, and the domain is
convex and compact. A difficulty with this setting is that the successive iterates of GD might not have mono-
tonically decreasing error. Consequently the final iterate might not have the lowest error. A workaround,
known as early as [10], is to output the average of the iterates. Existing analyses [10] show that after T
iterations of GD, the error of the average is Θ(1/

√
T), assuming that the function is Lipschitz and the step

size is chosen appropriately. This error rate is optimal for first-order algorithms. For functions that are also
strongly convex [6, 13] the average has error O(log(T)/T), although other algorithms [5] and averaging
schemes [13, 9, 17] achieve error Θ(1/T). The latter error rate is also optimal for first-order algorithms.

Shamir [16] asked the very natural question of whether the final iterate of GD achieves the optimal rate
in the non-smooth scenario, as it does in the smooth scenario. Substantial progress on this question was
made by Shamir and Zhang [17], who showed that the final iterate has error O(log(T)/

√
T) for Lipschitz

f , and O(log(T)/T) for f that is also strongly convex. Both of these bounds are a log(T) factor worse than
the optimal rate, so Shamir and Zhang [17] write

An important open question is whether the O(log(T)/T) rate we obtained on [the last iterate],
for strongly-convex problems, is tight. This question is important, because running SGD for

1 A preliminary version of this paper appeared in the proceedings of COLT 2019.

1

T iterations, and returning the last iterate, is a very common heuristic... In fact, even for the
simpler case of (non-stochastic) gradient descent, we do not know whether the behavior of the
last iterate... is tight.

Our work shows that the log(T) factor is necessary, both for Lipschitz functions and for strongly convex
functions. Thus, both of the upper bounds due to Shamir and Zhang are actually tight. This resolves the first
question of Shamir [16]. In fact, we show a much stronger statement: any convex combination of the last k
iterates must incur a log(T/k) factor. Thus, if an averaging scheme is used, then a constant fraction of the
iterates must be averaged to achieve the optimal rate.

2 Preliminaries
Let X be a convex, compact and non-empty subset of Rn and let f : X → R be a convex function. We
will assume2 that f is subdifferentiable on X , meaning that the subdifferential ∂f(x) is non-empty for all
x ∈ X . The goal is to solve the convex program minx∈X f(x). We will assume that a minimizer exists3.
We do not assume that an explicit representation of f is provided. Instead, the algorithm can only query f
via a subgradient oracle, which is a subroutine that, given x ∈ X , returns any vector g ∈ ∂f(x). The set X
is represented by a projection oracle, which is a subroutine that, given x ∈ Rn, returns the point in X that is
closest in Euclidean norm to x. The function f is called α-strongly convex if

f(y) ≥ f(x) + 〈 g, y − x 〉+
α

2
‖y − x‖2 ∀y, x ∈ X , g ∈ ∂f(x). (2.1)

Throughout this paper, ‖·‖ denotes the Euclidean norm in Rn, [T] denotes the set {1, ..., T}, and log denotes
the natural logarithm.

We will say that f is L-Lipschitz4 on X if ‖g‖ ≤ L for all x ∈ X and g ∈ ∂f(x). Let ΠX denote the
projection operator on X , which is defined by ΠX (y) = argminx∈X ‖x− y‖. The projected subgradient
descent algorithm is given in Algorithm 1. Notice that there the algorithm maintains a sequence of points
and there are several strategies to output a single point. The simplest strategy is to simply output xT+1.
However, one can also consider averaging all the iterates [12, 15] or averaging only a fraction of the final
iterates [13].

Notice that the final iteration number T could be chosen in advance and provided as input, or could be
determined dynamically during the course of the algorithm. We will refer to the former as the fixed-time
setting and the latter as the anytime setting. In the fixed-time setting the sequence ηt of step sizes has length
T and its values can depend on T , whereas in the anytime setting it should have infinite length and the values
cannot depend on T .

For Lipschitz functions, uniform averaging with ηt = Θ(1/
√
T) (fixed-time setting) [10] or ηt =

Θ(1/
√
t) (anytime setting) [4, Theorem 3.1] are known to achieve error rate O(1/

√
T). For functions

that are also strongly convex, uniform averaging with ηt = Θ(1/T) (fixed-time setting) and suffix averag-
ing with ηt = Θ(1/t) (anytime setting) are known [13] to achieve error rate O(1/T). Recently Jain et al.
[8] considered the error of the final iterate, in the fixed-time setting only. They showed that a non-obvious
choice of step size gives error rate of O(1/

√
T) for Lipschitz functions and O(1/T) for functions that are

also strongly-convex. Nesterov and Shikhman [11] described an algorithm different than GD for which the
tth iterate has error rate O(1/

√
T) in the Lipschitz setting.

2 This holds, for example, if f is finite and convex on an open superset of X [14, Theorem 23.4].
3 This holds, for example, if f is continuous, by Weierstrass’ theorem.
4 Our definition is slightly stronger than the standard definition |f(x) − f(y)| ≤ L ‖x− y‖ for all x, y ∈ X . However, if the

latter inequality holds on an open superset of X , then this implies our definition.

2

Algorithm 1 Projected subgradient descent for minimizing a non-smooth, convex function. The final itera-
tion number T could either be predetermined, or determined during the course of the algorithm.

1: procedure SUBGRADIENTDESCENT(X ⊆ Rn, x1 ∈ X , step sizes η1, η2, ...)
2: for t← 1, 2, ... do
3: Query subgradient oracle at xt for gt ∈ ∂f(xt)
4: yt+1 ← xt − ηtgt (take a step in the opposite direction)
5: xt+1 ← ΠX (yt+1) (project yt+1 onto the set X)
6: T ← t (the final iteration number)

7: return either

xT+1 (final iterate)
1

T+1

∑T+1
t=1 xt (uniform averaging)

1
T/2+1

∑T+1
t=T/2+1 xt (suffix averaging)

3 Statement of results
This paper proves the following lower bounds on the error of the final iterate for GD for non-smooth, convex
functions.

3.1 Strongly convex and Lipschitz functions

Theorem 3.1. For any T and any constant c > 0, there exists a convex function fT : X → R, where X is
the unit Euclidean ball in RT , such that fT is (3/c)-Lipschitz and (1/c)-strongly convex, and satisfies the
following. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/t. Let
x∗ = argminx∈X fT (x). Then

fT (xT+1)− fT (x∗) ≥ log T

4cT
(3.1)

More generally, any convex combination x̄ of the last k iterates has

fT (x̄)− fT (x∗) ≥ log(T)− log(k)

4cT
. (3.2)

Thus, suffix averaging must average a constant fraction of iterates to achieve the optimal O(1/T) error.

Remark 3.2. Let L = (3/c) and α = (1/c). Then, the lower bound from Eq. (3.1) can be rewritten as
L2

36α
log T
T . This is within a constant factor of the upper bound of 17L2

α
1+log T

T by Shamir and Zhang [17].

Remark 3.3. Theorem 3.1 proves a lower bound for the anytime setting. An analogous statement for the
fixed-time setting is discussed in Section 4.1.

Remark 3.4. Note that the domain of the function fT in Theorem 3.1 is a subset of RT . If, instead, we
assume that the domain of the function fT is a subset of Rd for some fixed d independent of T , then it
may be possible to obtain an improved rate. We conjecture that this is possible and that the optimal rate is
Θ(log(min{d, T})/T).

3.2 Lipschitz functions

Theorem 3.5. For any T and any constant c > 0, there exists a convex function fT : X → R, where
X is the unit Euclidean ball in RT , such that fT is (1/c)-Lipschitz, and satisfies the following. Suppose
that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/

√
t with c > 0. Let

x∗ = argminx∈X fT (x). Then

fT (xT+1)− fT (x∗) ≥ log T

32c
√
T
. (3.3)

3

More generally, any weighted average x̄ of the last k iterates has

fT (x̄)− fT (x∗) ≥ log(T)− log(k)

32c
√
T

. (3.4)

Furthermore, the value of fT strictly monotonically increases for the first T iterations:

fT (xt+1) ≥ fT (xt) +
1

64c
√
T (T − t+ 1)

∀t ∈ [T]. (3.5)

Remark 3.6. Let L = (1/c) and R = 1. Then, the lower bound from Eq. (3.3) can be rewritten as
(R/c + cL2) log T

64
√
T

. This is within a constant factor of the upper bound of (R/c + cL2)2+log T√
T

by Shamir
and Zhang [17].

Remark 3.7. Eq. (3.3), with the constant 64 instead of 32, follows by summing Eq. (3.5).

Remark 3.8. Theorem 3.5 proves a lower bound for the anytime setting. An analogous statement for the
fixed-time setting is discussed in Section 5.1.

Remark 3.9. Note that the domain of the function fT in Theorem 3.5 is a subset of RT . If, instead, we
assume that the domain of the function fT is a subset of Rd for some fixed d independent of T , then it
may be possible to obtain an improved rate. We conjecture that this is possible and that the optimal rate is
Θ(log(min{d, T})/

√
T).

3.3 A construction independent of T

In order to incur a log T factor in the error of the T th iterate, Theorem 3.1 and Theorem 3.5 construct a
function fT parameterized by T . It is also possible to create a single function f , independent of T , which
incurs an additional factor very slightly below log T for infinitely many T . Theorem 6.1 constructs such a
function that is both Lipschitz and strongly convex; this function is infinite-dimensional. This construction
gives an analogue of Theorem 3.1 with a function independent of T . A trivial modification of that argument
gives an analogue of Theorem 3.5.

4 Proof of Theorem 3.1
In this section we will prove Theorem 3.1 in the case where c = 1. This implies the general statement by
applying the following reduction, which is easily verifiable via induction.

Lemma 4.1. Consider executing Algorithm 1 on the convex function f : X 7→ R, using initial point
x1, step-sizes ηt, and subgradient oracle σ for which σ(x) ∈ ∂f(x). Suppose that it produces the iterates
x1, x2, Then, for any c > 0, executing Algorithm 1 on the function (1/c) · f , using initial point x1,
step-sizes c · ηt, and subgradient oracle (1/c) · σ also yields the iterates x1, x2,

Henceforth assume that c = 1. We define a function f = fT , depending on T , for which the final iterate
produced by Algorithm 1 has f(xT) = log(T)/4T and minx∈X f(x) ≤ 0, thereby proving (3.1). Let X be
the Euclidean unit ball in RT . Define f : X → R and hi ∈ RT for i ∈ [T + 1] by

f(x) = max
i∈[T+1]

Hi(x) where Hi(x) = hT
i x+

1

2
‖x‖2

hi,j =

aj (if 1 ≤ j < i)
−1 (if i = j ≤ T)
0 (if i < j ≤ T)

and aj =
1

2(T + 1− j)
(for j ∈ [T]).

It is easy to see that f is 1-strongly convex due to the 1
2 ‖x‖

2 term. Furthermore f is 3-Lipschitz over X

4

because ‖∇Hi(x)‖ ≤ ‖hi‖ + ‖x‖ ≤ ‖hi‖ + 1 and ‖hi‖2 ≤ 1 + 1
4

∑T
j=1

1
(T+1−j)2 < 1 + 1

2 . Finally, the
minimum value of f over X is non-positive because f(0) = 0.

Subgradient oracle. In order to execute Algorithm 1 on f we must specify a subgradient oracle. First, we
require the following claim, which follows from standard facts in convex analysis [7, Theorem 4.4.2].

Claim 4.2. ∂f(x) is the convex hull of { hi + x : i ∈ I(x) }, where I(x) = { i : Hi(x) = f(x) }.
Our subgradient oracle is simple: given x, it returns hi′ + x where i′ = min I(x).

Explicit description of iterates. Next we will explicitly describe the iterates produced by executing Algo-
rithm 1 on f . Define the points zt ∈ RT for t ∈ [T + 1] by z1 = 0 and

zt,j =

1− (t− j − 1)aj

t− 1
(if 1 ≤ j < t)

0 (if t ≤ j ≤ T).
(for t > 1).

We will show inductively that these are precisely the iterates produced by Algorithm 1 when using x1 = 0
and the subgradient oracle defined above. First some preliminary claims are necessary.

Claim 4.3. For t ∈ [T + 1], zt is non-negative. In particular, zt,j ≥ 1
2(t−1) for j < t and zt,j = 0 for j ≥ t.

Proof. By definition, zt,j = 0 for all j ≥ t. For j < t, we use that t− 1 < T + 1 to obtain

zt,j =
1− (t− j − 1)aj

t− 1
>

1

t− 1
·
(
1− (T + 1− j)aj

)
=

1

t− 1
· 1

2
.

Claim 4.4. ‖z1‖ = 0 and ‖zt‖2 ≤ 1
t−1 for t > 1. Thus zt ∈ X for all t ∈ [T + 1].

Proof. The claim obviously holds for z1 = 0, so assume t ≥ 2. We have zt,j = 0 for all j ≥ t, and for
j < t, we have

zt,j =
1− (t− j − 1)aj

t− 1
≤ 1

t− 1
.

Since zt is non-negative by Claim 4.3, it follows that ‖zt‖2 ≤ 1
t−1 .

Using the definition of the hi vectors we can determine the value and subdifferential at zt.

Claim 4.5. f(zt) = Ht(zt) for all t ∈ [T + 1]. The subgradient oracle for f at zt returns the vector ht + zt.

Proof. We claim that hT
t zt = hT

i zt for all i > t. This follows since zt is supported on its first t − 1
coordinates and since ht and hi agree on the first t− 1 coordinates (for i > t).

Next we claim that hT
t zt > hT

i zt for all 1 ≤ i < t.

(ht − hi)Tzt =

t−1∑
j=1

(ht,j − hi,j)zt,j (zt is supported on first t− 1 coordinates)

=

t−1∑
j=i

(ht,j − hi,j)zt,j (hi and ht agree on first i− 1 coordinates)

= (ai + 1)zt,i +

t−1∑
j=i+1

ajzt,j .

This is strictly positive by the definition of aj and since zt ≥ 0 by Claim 4.3.

These two statements imply that Ht(zt) ≥ Hi(zt) for all i ∈ [T + 1], and therefore f(zt) = Ht(zt).
Moreover I(zt) = { i : Hi(zt) = f(zt) } = {t, ..., T + 1}. Thus, when evaluating the subgradient oracle

5

at the vector zt, it returns the vector ht + zt.

Since the subgradient returned at zt is determined by Claim 4.5, and the next iterate of GD arises from
a step in the opposite direction, a straightforward induction proof allows us to show the following lemma.

Lemma 4.6. For the function f constructed in this section, the vector xt in Algorithm 1 equals zt, for every
t ∈ [T + 1].

Proof. By definition, z1 = x1 = 0. By Claim 4.5, the subgradient returned at x1 is h1 + x1 = h1, so
Algorithm 1 sets y2 = x1 − η1h1 = e1, the first standard basis vector (since h1 = −e1). Then Algorithm 1
projects onto the feasible region, obtaining x2 = ΠX (y2), which also equals e1 since y2 ∈ X . Since z2 also
equals e1, the base case is proven.

So assume zt = xt for 2 ≤ t < T ; we will prove that zt+1 = xt+1. By Claim 4.5, the subgradient
returned at xt is gt = ht + zt. Then Algorithm 1 sets yt+1 = xt − ηtgt. Since xt = zt and ηt = 1/t, we
obtain

yt+1,j = zt,j −
1

t
(ht,j + zt,j)

=
t− 1

t
zt,j −

1

t
ht,j

=
t− 1

t

{
1−(t−j−1)aj

t−1 (for j < t)
0 (for j ≥ t)

}
− 1

t

aj (for j < t)
−1 (for j = t)
0 (for j > t)

=

1

t

{
1− (t− j − 1)aj (for j < t)
0 (for j ≥ t)

}
− 1

t

aj (for j < t)
−1 (for j = t)
0 (for j > t)

=

1

t

1− (t− j)aj (for j < t)
1 (for j = t)
0 (for j ≥ t+ 1)

So yt+1 = zt+1. Since xt+1 = ΠX (yt+1) is defined to be the projection ontoX , and yt+1 ∈ X by Claim 4.4,
we have xt+1 = yt+1 = zt+1.

Now that we have determined the exact sequence of iterates chosen by the algorithm, the following
claim proves (3.2) for the case c = 1. Inequality (3.1) is simply the special case where k = 1.

Claim 4.7. For k ∈ [T], let x̄ =
∑T+1

t=T−k+2 λtxt be any convex combination of the last k iterates. Then

f(x̄) ≥ log(T)− log(k)

4T
.

Proof. By Lemma 4.6, xt = zt for all t ∈ [T + 1]. By Claim 4.3, every zt ≥ 0 so x̄ ≥ 0. Moreover, by
Claim 4.3 again, zt,j ≥ 1/2T for all T − k + 2 ≤ t ≤ T + 1 and 1 ≤ j ≤ T − k + 1. Consequently,
x̄j ≥ 1/2T for all 1 ≤ j ≤ T − k + 1. Thus,

f(x̄) ≥ hT
T+1x̄ (by definition of f)

=
T−k+1∑
j=1

hT+1,j x̄j︸︷︷︸
≥1/2T

+
T∑

j=T−k+2

hT+1,j x̄j︸ ︷︷ ︸
≥0

≥
T−k+1∑
j=1

aj ·
1

2T

6

=
1

4T

T−k+1∑
j=1

1

T + 1− j

≥ 1

4T

∫ T−k+1

1

1

T + 1− x
dx

=
log(T)− log(k)

4T

Remark 4.8. The arguments above stated that f(0) = 0 but did not prove that 0 is the actual minimizer.
We can modify the definition of f to ensure that f is non-negative, and therefore 0 is the minimizer. First
we define f(x) = max

{
maxi∈[T+1]Hi(x), 1

2 ‖x‖
2
}

. Clearly f is still 3-Lipschitz on X and 1-strongly
convex. The key is to verify that this modified definition does not change the subgradients ∂f(zt) for t ∈ [T].
Note that hT

t zt > 0, implying that f(zt) ≥ Ht(zt) >
1
2 ‖zt‖

2. Thus Claim 4.2 remains true for the points
zt for t ∈ [T]. So the subgradient oracle can remain unchanged on those points, and can return an arbitrary
subgradient on any other points. The remainder of the proof follows unchanged, so

f(xT+1) ≥
log T

4T
. (4.1)

4.1 Fixed-time setting

An analog of Theorem 3.1 holds in the fixed-time setting, using step sizes ηt = 1/T . The main change to
the proof is that we must define

zt,j =

1− (t− j − 1)aj

T − 1
(if 1 ≤ j < t)

0 (if t ≤ j ≤ T).
(for t > 1).

This definition satisfies zt,j ≥ 1/2(T − 1) for j < t and ‖zt‖2 ≤ 1/(T − 1). The same proof, mutatis
mutandis, shows that

fT (xT+1)− fT (x∗) ≥ log T

4(T − 1)

5 Proof of Theorem 3.5
This section is similar to the previous one, the main difference being that we define a function that is not
strongly convex, which yields a stronger lower bound. To prove Theorem 3.5 it again suffices to consider
the case c = 1 since the general statement again follows by Lemma 4.1. We define a function f = fT ,
depending on T , for which the final iterate produced by Algorithm 1 has f(xT) = log(T)/32

√
T and

minx∈X f(x) ≤ 0, thereby proving (3.3).

The function f is defined as follows. For i ∈ [T], define the positive scalar parameters

ai =
1

8(T − i+ 1)
bi =

√
i

2
√
T
.

As before, X denotes the Euclidean unit ball in RT . Define f : X → R and hi ∈ RT for i ∈ [T + 1] by

f(x) = max
i∈[T+1]

hT
i x where hi,j =

aj (if 1 ≤ j < i)
−bi (if i = j ≤ T)
0 (if i < j ≤ T)

.

7

This function f is 1-Lipschitz over X because

‖hi‖2 ≤
T∑
j=1

a2j + b2T =
1

64

T∑
j=1

1

j2
+

1

4
<

1

2
.

The minimum value of f over X is non-positive because f(0) = 0.

Subgradient oracle. Similar to Claim 4.2, [7, Theorem 4.4.2] implies

Claim 5.1. ∂f(x) is the convex hull of { hi : i ∈ I(x) }, where I(x) =
{
i : hT

i x = f(x)
}

.

Our subgradient oracle is simple: given x, it returns hi′ where i′ = min I(x).

Explicit description of iterates. Next we will explicitly describe the iterates produced by executing Algo-
rithm 1 on f . Define the points zt ∈ RT for t ∈ [T + 1] by z1 = 0 and

zt,j =

(
bj√
j
− aj

t−1∑
k=j+1

1√
k

)
(if 1 ≤ j < t)

0 (if t ≤ j ≤ T).

(for t > 1).

We will show inductively that these are precisely the iterates produced by Algorithm 1 when using x1 = 0
and the subgradient oracle defined above.

Claim 5.2. For t ∈ [T + 1], zt is non-negative. In particular, zt,j ≥ 1
4
√
T

for j < t and zt,j = 0 for j ≥ t.

Proof. By definition, zt,j = 0 for all j ≥ t. For j < t,

zt,j =

(
bj√
j
− aj

t−1∑
k=j+1

1√
k

)

=

(
1

2
√
T
− 1

8(T − j + 1)

t−1∑
k=j+1

1√
k

)
(by definition of aj and bj)

≥ 1

2
√
T
− 1

4(T − j + 1)

t− 1− j√
t− 1

(by Claim A.1)

≥ 1

2
√
T
− 1

4
√
T

(by Claim A.2, replacing t with t− 1)

=
1

4
√
T
.

Claim 5.3. zt,j ≤ 1/
√
T for all j. In particular, zt ∈ X (the unit ball in RT).

Proof. We have zt,j = 0 for all j ≥ t, and for j < t, we have

zt,j =

(
bj√
j
− aj

t∑
k=j+1

1√
k

)
≤ bj√

j
=

1

2
√
T
.

Since Claim 5.2 shows that zt ≥ 0, we have ‖zt‖ ≤ 1, and therefore zt ∈ X .

Using the definition of the hi vectors we can determine the value and subdifferential at zt.

Claim 5.4. f(zt) = hT
t zt for all t ∈ [T + 1]. The subgradient oracle for f at zt returns the vector ht.

Proof. We claim that hT
t zt = hT

i zt for all i > t. This follows since zt is supported on its first t − 1
coordinates, and since ht and hi agree on the first t − 1 coordinates (for i > t). Next we claim that

8

hT
t zt > hT

t zi for all 1 ≤ i < t. This also follows from the definition of zt and hi:

(ht − hi)Tzt =
t−1∑
j=1

(ht,j − hi,j)zt,j (zt is supported on first t− 1 coordinates)

=

t−1∑
j=i

(ht,j − hi,j)zt,j (hi and ht agree on first i− 1 coordinates)

= (ai + bi)zt,i +
t−1∑
j=i+1

ajzt,j

> 0,

since zt is non-negative by Claim 5.2.

These two claims imply that hT
t zt ≥ hT

i zt for all i ∈ [T + 1], and therefore f(zt) = hT
t zt. Moreover

I(zt) =
{
i : hT

i zt = f(zt)
}

= {t, ..., T + 1}. Thus, when evaluating the subgradient oracle at the vector
zt, it returns the vector ht.

Since the subgradient returned at zt is determined by Claim 5.4, and the next iterate of SGD arises from
a step in the opposite direction, a straightforward induction proof allows us to show the following lemma.

Lemma 5.5. For the function f constructed in this section, the vector xt in Algorithm 1 equals zt, for every
t ∈ [T + 1].

Proof. The proof is by induction. By definition x1 = 0 and z1 = 0, establishing the base case.

Assume zt = xt for t ≤ T ; we will prove that zt+1 = xt+1. Recall that Algorithm 1 sets yt+1 =
xt − ηtgt, and that ηt = 1√

t
. By the inductive hypothesis, xt = zt. By Claim 5.4, the algorithm uses the

subgradient gt = ht. Thus,

yt+1,j = zt,j −
1√
t
ht,j

=

{
bj√
j
− aj

∑t−1
k=j+1

1√
k

(for 1 ≤ j < t)
0 (for j ≥ t)

}
− 1√

t

aj (for 1 ≤ j < t)
−bt (for j = t)
0 (for j > t)

=

bj√
j
− aj

∑t
k=j+1

1√
k

(for j < t)
bt√
t

(for j = t)
0 (for j > t)

So yt+1 = zt+1. Since xt+1 = ΠX (yt+1) by definition, and yt+1 ∈ X by Claim 5.3, we have xt+1 =
yt+1 = zt+1.

Now that we have determined the exact sequence of iterates chosen by the algorithm, the following
claim proves (3.4) for the case c = 1. Inequality (3.3) is simply the special case where k = 1.

Claim 5.6. For k ∈ [T], let x̄ =
∑T+1

t=T−k+2 λtxt be any convex combination of the last k iterates. Then

f(x̄) ≥ log(T)− log(k)

32
√
T

.

Proof. By Lemma 5.5, xt = zt for all t ∈ [T + 1]. By Claim 5.2, every zt ≥ 0 so x̄ ≥ 0. Moreover, by
Claim 5.2 again, zi,j ≥ 1/4

√
T for all T − k + 2 ≤ t ≤ T + 1 and 1 ≤ j ≤ T − k + 1. Consequently,

9

x̄j ≥ 1/4
√
T for all 1 ≤ j ≤ T − k + 1. Thus,

f(x̄) ≥ hT
T+1x̄ (by definition of f)

=
T−k+1∑
j=1

hT+1,j x̄j +
T∑

j=T−k+2

hT+1,j x̄j︸ ︷︷ ︸
≥0

≥
T−k+1∑
j=1

aj
1

4
√
T

=
1

4
√
T

T−k+1∑
j=1

1

8(T − j + 1)

≥ 1

32
√
T

∫ T−k+1

1

1

T − x+ 1
dx

=
log(T)− log(k)

32
√
T

The following claim completes the proof of (3.5), for the case c = 1.

Claim 5.7. For any t ∈ [T], we have f(xt+1) ≥ f(xt) + 1/64
√
T (T − t+ 1).

Proof.

f(xt+1)− f(xt) = hT
t+1zt+1 − hT

t zt (by Claim 5.4)

=
t∑

j=1

(ht+1,jzt+1,j − ht,jzt,j) (due to support of zt+1 and zt)

=
t−1∑
j=1

(ht+1,jzt+1,j − ht,jzt,j) + (ht+1,tzt+1,t − ht,t zt,t︸︷︷︸
=0

)

=
t−1∑
j=1

aj(zt+1,j − zt,j) + atzt+1,t (by definition of ht+1 and ht)

≥
t−1∑
j=1

aj ·
(−aj√

t

)
+ at

(1

4
√
T

)
(by definition of zt+1 and zt, and Claim 5.2)

≥ − 1

64
√
t

t−1∑
j=1

(1

T − j + 1

)2
+

1

32
√
T (T − t+ 1)

(by definition of aj)

≥ 1

64
√
T (T − t+ 1)

(by Claim 5.8)

Claim 5.8. For any t ∈ [T],

1√
t

t−1∑
j=1

(1

T − j + 1

)2
≤ 1√

T
· 1

T − t+ 1
.

Proof. If t = 1, the sum is empty so the left-hand side is zero. If t > 1, then
t−1∑
j=1

(1

T − j + 1

)2
=

T∑
`=T−t+2

1

`2
≤ 1

T − t+ 1
− 1

T
<

t

T (T − t+ 1)
,

10

where the first inequality follows from Claim A.3. So it suffices to prove that
√
t

T (T − t+ 1)
≤ 1√

T
· 1

T − t+ 1
.

This obviously holds, since t ≤ T .

5.1 Fixed-time setting

An analog of Theorem 3.5 holds in the fixed-time setting, using step sizes ηt = 1/
√
T . The main change to

the proof is that we must define bi = 1/2 and

zt,j =

bi − (t− j − 1)aj√

T
(if 1 ≤ j < t)

0 (if t ≤ j ≤ T).
(for t > 1).

This definition satisfies zt,j ≥ 1/4
√
T for j < t and ‖zt‖2 ≤ 1. The same proof, mutatis mutandis, shows

that
fT (xT+1)− fT (x∗) ≥ log T

32
√
T

6 A construction independent of T
In order to achieve large error after T iterations of GD, Theorem 3.1 constructs a function parameterized by
T . One may wonder whether a single function could achieve error Ω(log(T)/T) for every T ≥ 1. This is
impossible because it clearly contradicts the fact [13] that suffix averaging achieves error O(1/T). In this
section, we will show a slightly weaker result: for every function g(T) = o(log(T)/T), we can construct
a strongly convex function f such that for every C > 0, there are infinitely many iterates xT for which
f(xT) > C · g(T).

In this section we will use convex functions defined on Hilbert spaces. The key definitions (convexity,
strong convexity, subgradients, etc.) are essentially unchanged from the finite dimensional setting; see,
e.g., Bauschke and Combettes [3] or Barbu and Precupanu [1]. As usual, `2 denotes the space of square-
summable sequences in RN.

The main result of this section is the following.

Theorem 6.1. For every c > 0, there existsX ⊂ `2, a convex function f : X → R, and a subgradient oracle
for f such that f is (3/c)-Lipschitz, f is (1/c)-strongly convex, infx∈X f(x) = 0, and with the following
property. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/t. Then,
for every non-negative g(T) = o (log(T)/T),

lim sup
T→∞

f(xT)

g(T)
= ∞. (6.1)

For functions that are not strongly convex, the following analogous result holds.

Theorem 6.2. For every c > 0, there exists X ⊂ `2, a convex function f : X → R, and a subgradient
oracle for f such that f is (1/c)-Lipschitz, infx∈X f(x) = 0, and with the following property. Suppose
that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/

√
t. Then, for every

non-negative g(T) = o
(

log(T)/
√
T
)
,

lim sup
T→∞

f(xT)

g(T)
= ∞.

11

The remainder of this section proves Theorem 6.1 for the case c = 1. We omit the proof for arbitrary
c > 0 and the proof of Theorem 6.2 because they are trivial modifications.

The main tool we use to prove Theorem 6.1 is Lemma 6.3, whose statement appears technical, but is
actually quite intuitive. In a nutshell, this lemma states that running Algorithm 1 on an infinite sum of
convex functions defined on disjoint coordinates is equivalent to running an instance of Algorithm 1 for
each summand in parallel. The proof of Lemma 6.3 appears in Subsection 6.2.

Lemma 6.3. Let C1, C2, ... be positive integers satisfying
∑∞

i=1 1/Ci ≤ 1. Let T1, T2, ... be positive
integers. Let {f (i)}∞i=1 be a family of non-negative, convex functions where f (i) : RTi → R. Let R > 0.
Let Xi = BTi(0, R), the closed Euclidean ball of radius R in RTi . Assume that that f (i) is L-Lipschitz on
Xi, and that f (i)(0) = 0. For any x ∈ `2, we will decompose it into finite-dimensional vectors as

x = (x[1], x[2], ...) where x[i] ∈ RTi . (6.2)

Then f : `2 → R and X are defined as

f(x) = f
(
x[1], x[2], ...

)
=

∞∑
i=1

1

C2
i

f (i)
(
Cix

[i]
)

and X =
∞∏
i=1

Xi
Ci
. (6.3)

The following hold:

(P1) X ⊂ `2
(P2) f is well-defined and finite on all of `2.
(P3) f is convex on `2.
(P4) f is subdifferentiable on X .
(P5) If f (i) is α-strongly convex on Xi for every i, then f is α-strongly convex on X .
(P6) f is L-Lipschitz on X . That is, for every x ∈ X and g ∈ ∂f(x), we have ‖g‖ ≤ L.
(P7) Let σi be a subgradient oracle for f (i) (i.e., σi(x) ∈ ∂f (i)(x) ∀x ∈ Xi). Let x(i)t denote the tth

iterate of Algorithm 1 on the function f (i) using the feasible region Xi, step sizes ηt, initial point x(i)1

and the subgradient oracle σi. Then, there is a subgradient oracle σ on X such that, when executing
Algorithm 1 on f with initial point

x1 = (x
[1]
1 , x

[2]
1 , ...) =

(x(1)1

C1
,
x
(2)
1

C2
, ...
)

(6.4)

and step sizes ηt, then the tth iterate satisfies

xt = (x
[1]
t , x

[2]
t , ...) =

(x(1)t
C1

,
x
(2)
t

C2
, ...
)

∀t ∈ N. (6.5)

In other words, x[i]1 = x
(i)
1 /Ci for all i ∈ N implies x[i]t = x

(i)
t /Ci for all t ∈ N and all i ∈ N.

Applying Lemma 6.3. Lemma 6.3 constructs a single infinite dimensional function from many finite di-
mensional functions (see (6.3)) while maintaining crucial properties such as convexity, Lipschitzness, and
boundedness. Importantly, running Algorithm 1 on this infinite dimensional function is “equivalent” to run-
ning an instance of Algorithm 1 for each finite dimensional function in parallel: The value of the tth iterate
of the infinite dimensional instance can be obtained by a weighted sum of the values of tth iterates of the
finite dimensional instances. To prove Theorem 6.1 we will construct a single function f using infinitely
many instances of the function fT from Section 4, with different values of T .

6.1 Proof of Theorem 6.1

Defining f . We would like to apply Lemma 6.3, so we must first satisfy its hypotheses. The simplest
step is defining the constants Ci = 2i; this clearly satisfies the requirement

∑∞
i=1

1
Ci
≤ 1. Next, since

12

g = o(log(t)/t), Claim A.5 implies existence of a positive function h such that g(t) = o
(

log(t)/(t · h(t))
)

and limt→∞ h(t) =∞. Thus, there exists a value Ti such that

Ti ≥ i and g(t) ≤ 1

4C2
i

(
log t

t · h(t)

)
∀t ≥ Ti. (6.6)

The set Xi is simply the unit ball BTi(0, 1) in RTi . The function f (i) is the Ti-dimensional non-negative
function fTi defined in Remark 4.8. The function f is defined as in (6.3). Since f is a conic combination of
the f (i) (see (6.3)), it follows that f is non-negative and f(0) = 0. Thus 0 is a minimizer of f over X .

Applying Lemma 6.3. Recall that each f (i) is 3-Lipschitz and 1-strongly convex over Xi. Furthermore
∂f (i)(x) 6= ∅ for all x ∈ Xi. Let σi be the subgradient oracle for f (i) described in Remark 4.8. Let x(i)t
denote the tth iterate of Algorithm 1 when executed on f (i) using the subgradient oracle σi, initial point
x
(i)
1 = 0, and step size ηt = 1/t. The conclusions of Lemma 6.3 are:

• f is well defined over X .
• f is 3-Lipschitz and 1-strongly convex over X .
• ∂f(x) 6= ∅ for all x ∈ X .
• There exists a subgradient oracle σ for f over X such that, when executing Algorithm 1 on f with

subgradient oracle σ, initial point x1 = 0, and step size ηt = 1/t, the tth iterate xt ∈ X satisfies
x
[i]
t = x

(i)
t for all i ∈ N.

The key point is: after running GD on the infinite-dimensional function f , the tth iterate xt has its ith

component x[i]t equal to the tth iterate x(i)t produced by running GD on the finite-dimensional function f (i).

Proving Eq. (6.1). Consider any M > 0 and any N ∈ N. Recalling that limT→∞ h(T) = ∞, it follows
that

∃n ∈ N s.t. h(T) > M ∀T ≥ n. (6.7)

Let N ′ = max {3, n,N}. Then we have the following:

f
(
xTN′+1

)
=

∞∑
i=1

1

C2
i

f (i)
(
x
[i]
TN′+1

)
(by definition of f in (6.3))

=
∞∑
i=1

1

C2
i

f (i)
(
x
(i)
TN′+1

)
(by Lemma 6.3)

≥ 1

C2
N ′
f (N

′)
(
x
(N ′)
TN′+1

)
(each f (i) is non-negative)

≥ 1

4C2
N ′

log TN ′

TN ′
(by Eq. (4.1))

≥ 1

4C2
N ′

log(TN ′ + 1)

TN ′ + 1
(log(x)/x is decreasing for x > e)

≥ g(TN ′ + 1) · h(TN ′ + 1) (by Eq. (6.6))

> M · g(TN ′ + 1),

since TN ′ + 1 ≥ N ′ by (6.6), and N ′ ≥ n by definition, then using Eq. (6.7).

To summarize, this argument shows that, for every M > 0 and for every N ∈ N, there exists t ≥ N
(namely, t = TN ′ + 1) such that f(xt) > M · g(t). This proves Eq. (6.1).

13

6.2 Proof of Lemma 6.3

Consider any x ∈ X . Following (6.2), it decomposes as x = (x[1], x[2], ...). The definition of X implies that
x[i] ∈ Xi/Ci. Recall that Ci ≥ 1,

∑
i≥1 1/Ci ≤ 1 and Xi ⊆ BTi(0, R). Thus

‖x‖2 =
∑
i≥1

∥∥∥x[i]∥∥∥2 ≤ ∑
i≥1

R2

C2
i

≤ R2,

which proves (P1).

To prove (P2) we must show that limn→∞
∑n

i=1
1
C2

i
f (i)(Cix

[i]) is convergent for all x ∈ `2. Since each

f (i) is non-negative, the series is monotonic, so it suffices to show that it is bounded. We have

f(x) =
∑
i≥1

1

C2
i

f (i)(Cix
[i]) =

∑
i : ‖x[i]‖>R

1

C2
i

f (i)(Cix
[i]) +

∑
i : ‖x[i]‖≤R

1

C2
i

f (i)(Cix
[i]).

The first sum is finite since x ∈ `2. On the other hand, for any y ∈ Xi, we have f (i)(y) ≤ LR since
f (i)(0) = 0, f (i) is L-Lipschitz on Xi = BTi(0, R). Thus 0 ≤ f (i)(Cix[i]) ≤ LR for all i. It follows that∑

i : ‖x[i]‖≤R

1

C2
i

f (i)(Cix
[i]) ≤ LR

∑
i≥1

1

C2
i

≤ LR.

This shows that f(x) is finite, proving (P2).

For any x, y ∈ `2 and λ ∈ [0, 1], we have

f (i)(λCix+ (1− λ)Ciy) ≤ λf (i)(Cix
[i]) + (1− λ)f (i)(Ciy

[i]) ∀i ≥ 1

by convexity of f (i). If we sum these inequalities over i ≥ 1 with coefficients 1/C2
i then the sums converge

by (P2). Thus f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), thereby proving (P3).

The following claim will be useful for the remaining properties. Its proof can be found in Subsection 6.3.

Claim 6.4. Let x = (x[1], x[2], ...) ∈ X . Then ∂f(x) =
∏∞
i=1

1
Ci
∂fi(Cix

[i]).

From this claim, (P4) is immediate. For any x = (x[1], x[2], ...) ∈ X , we have Cix[i] ∈ Xi. Since f (i) is
subdifferentiable on Xi (because it is finite and convex on all of RTi), we have ∂f (i)(x) 6= ∅ ∀x ∈ Xi. So
Claim 6.4 and the axiom of choice imply that ∂f(x) 6= ∅, which establishes (P4).

Next we consider (P5). We will use the fact that a function h(x) on a Hilbert space is α-strongly convex
iff h(x)− α ‖x‖2 /2 is convex [3, Proposition 10.6]. Then

f(x)− α

2
‖x‖2 =

∞∑
i=1

[
1

C2
i

f (i)(Cix
[i])− α

2

∥∥∥x[i]∥∥∥2] =

∞∑
i=1

[
1

C2
i

(
f (i)(Cix

[i])− α

2

∥∥∥Cix[i]∥∥∥2)] .
This last sum is convex because f (i) − α

2 ‖·‖
2 is convex, since f (i) is α-strongly convex.

Next we prove (P6). Consider any x = (x[1], x[2], ...) ∈ X and any g ∈ ∂f(x). Then Claim 6.4 implies
that g = (g[1]/C1, g

[2]/C2, ...) where g(i) ∈ ∂fi(Cix(i)). Hence,

‖g‖2 =

∞∑
i=1

∥∥g(i)∥∥2
C2
i

≤
∞∑
i=1

L2

C2
i

≤ L2.

Lastly, we will prove (P7). The definition of the subgradient oracle σ is straightforward:

σ(x) = σ
(
(x[1], x[2], ...,)

)
=

(
σ1(C1x

(1))

C1
,
σ2(C2x

(2))

C2
, ...

)
.

14

This definition is valid due to Claim 6.4. The proof of (6.5) is by induction. The base case holds by definition
of x1 in (6.4). So suppose (6.5) holds for xt. Then,

yt+1 = xt − ηtσ(xt) (gradient step in Algorithm 1)

=
(x(1)t
C1

,
x
(2)
t

C2
, ...
)
− ηtσ

((x(1)t
C1

,
x
(2)
t

C2
, ...
))

(by induction hypothesis)

=
(x(1)t
C1

,
x
(2)
t

C2
, ...
)
− ηt

(σ1(x(1)t)

C1
,
σ2(x

(2)
t)

C2
, ...
)

(by definition of σ)

=

(
1

C1

(
x
(1)
t − ηtσ1(x

(1)
t)
)
,

1

C2

(
x
(2)
t − ηtσ2(x

(2)
t)
)
, ...

)
=

(
1

C1
y
(1)
t+1,

1

C2
y
(2)
t+1, ...

)
(gradient step in Algorithm 1).

The next step of Algorithm 1 is the projection: xt+1 ← ΠX (yt+1). This projection may be performed
component-wise by Claim 6.5 (since xt ∈ X ⊂ `2 by (P1) and σ(xt) ∈ `2 by (P6), so yt+1 ∈ `2). Thus

xt+1 =

(
ΠX1/C1

(y(1)t+1

C1

)
,ΠX2/C2

(y(2)t+1

C2

)
, ...

)

=

(
ΠX1(y

(1)
t+1)

C1
,
ΠX2(y

(2)
t+1)

C2
, ...

)
(dilation property of projections [2, Prop. 3.2.3])

=

(
x
(1)
t+1

C1
,
x
(2)
t+1

C2
, ...

)
(by Algorithm 1)

This proves (6.5) for xt+1, completing the induction, and completing the proof of (P7).

Claim 6.5. For i ≥ 1, let Yi ⊆ RTi be a closed, convex set containing 0. Let Y =
∏∞
i=1 Yi. Then we have

ΠY(z) =
(
ΠY1(z[1]),ΠY2(z[2]), ...

)
for all z ∈ `2.

Proof. This follows from [3, Proposition 23.31].

6.3 Proof of Claim 6.4

Claim 6.4 follows easily from the following general lemma.

Lemma 6.6. Let h : `2 → R be defined as h(y[1], y[2], ...) =
∑∞

n=1 hn(y[n]) where each hn : RTn → R is
a convex function. Then

∂h(y[1], y[2], ...) ⊆
∏
i≥1

∂hi(y
[i]) ∀y ∈ `2. (6.8)

Moreover, if
∑

i≥1
∥∥g[i]∥∥ <∞ for all y = (y[1], y[2], ...) ∈ Y ⊆ `2 and all g[i] ∈ ∂hi(y[i]), then

∂h(y[1], y[2], ...) ⊇
∏
i≥1

∂hi(y
[i]) ∀y ∈ Y. (6.9)

Proof (of Claim 6.4). We simply apply Lemma 6.6 with hi = 1
C2

i
f (i) ◦ CiIi where Ii is the identity map

in RTi , Y = X =
∏
i≥1Xi/Ci, and h = f =

∑
i≥1 f

(i). Clearly hi is convex. Using earlier conclusions
from Lemma 6.3, we know that h is well-defined on `2 by (P2) and Y ⊂ `2 by (P1). Lastly, consider any
y = (y[1], y[2], ...) ∈ Y and g[i] ∈ ∂hi(y

[i]). By Claim A.4 we have ∂hi(y[i]) = 1
Ci
∂f (i)(Ciy

[i]). By
definition of X we have Ciy[i] ∈ Xi. Since f (i) is L-Lipschitz on Xi, it follows that

∥∥g[i]∥∥ ≤ L/Ci, and so∑
i≥1
∥∥g[i]∥∥ ≤ L. Thus all hypotheses of Lemma 6.6 are satisfied.

15

Applying the lemma, for every x ∈ X , we have

∂f(x) =
∞∏
i=1

∂hi(x
[i]) =

∞∏
i=1

1

Ci
∂fi(Cix

[i]),

by Lemma 6.6 and Claim A.4.

The next proof is similar to an argument in Bauschke and Combettes [3, Proposition 16.8], although
their setting is simpler since they consider functions with only finitely many components.

Proof (of Lemma 6.6). First we prove (6.8). Consider any g = (g[1], g[2], ...) ∈ ∂h(y). We must show that
g[i] ∈ ∂hi(y[i]) for all i. For any z ∈ RTi , we may define ỹ = (y[1], ..., y[i−1], z, y[i+1], ...). Clearly ỹ ∈ `2.
Since g is a subgradient of h at y, we have h(ỹ) − h(y) ≥ 〈 ỹ − y, g 〉. Since y and ỹ agree except on the
ith component, this inequality is equivalent to hi(z) − hi(y[i]) ≥ 〈 z − y[i], g[i] 〉. Since z is arbitrary, this
implies that y[i] ∈ ∂hi(y[i]) as desired.

Next consider any y ∈ Y .

g ∈
∏
i≥1

∂hi(y
[i]) ⇒ 〈 y[i] − ỹ[i], g[i] 〉+ hi(y

[i]) ≤ hi(ỹ[i]) ∀i ∈ N, ∀ỹ ∈ `2

⇒
∑
i≥1
〈 y[i] − ỹ[i], g[i] 〉+

∑
i≥1

hi(y
[i]) ≤

∑
i≥1

hi(ỹ
[i]) ∀ỹ ∈ `2

⇔ 〈 y − ỹ, g 〉+ h(y) ≤ h(ỹ) ∀ỹ ∈ `2
⇔ g ∈ ∂h(y)

Here the second implication uses that
∑

i≥1〈 y[i] − ỹ[i], g[i] 〉 is absolutely convergent by Cauchy-Schwarz:∑
i≥1
〈 y[i] − ỹ[i], g[i] 〉 ≤ ‖y − ỹ‖

∑
i≥1

∥∥∥g[i]∥∥∥ .
This proves (6.9) due to the assumption that the last sum is finite.

References
[1] Viorel Barbu and Teodor Precupanu. Convexity and optimization in Banach spaces. Springer Science

& Business Media, 2012.

[2] H. H. Bauschke. Projection Algorithms and Monotone Operators. PhD thesis, Simon Fraser Univer-
sity, 1996.

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2017.

[4] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3–4), 2015.

[5] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Machine Learning Research, 15(1):2489–2512, 2014.

[6] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex opti-
mization. Machine Learning, 69(2-3):169–192, 2007.

[7] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algorithms
I. Springer-Verlag, 1996.

16

[8] Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of sgd information
theoretically optimal. In Conference on Learning Theory, pages 1752–1755, 2019.

[9] Simon Lacoste-Julien, Mark W. Schmidt, and Francis R. Bach. A simpler approach to obtain-
ing an O(1/t) convergence rate for the projected stochastic subgradient method, December 2012.
arXiv:1212.2002.

[10] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley,
1983.

[11] Yu. Nesterov and V. Shikhman. Quasi-monotone subgradient methods for nonsmooth convex mini-
mization. Journal of Optimization Theory and Applications, 165(3):917–940, Jun 2015.

[12] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

[13] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. In Proceedings of ICML, 2012.

[14] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[15] David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

[16] Ohad Shamir. Open problem: Is averaging needed for strongly convex stochastic gradient descent?
Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23:47.1–47.3, 2012.

[17] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. Proceedings of the 30th International Conference on Machine
Learning, PMLR, 28(1):71–79, 2013.

A Standard or Elementary Results
Claim A.1. For 1 ≤ a ≤ b,

∑b
k=a

1√
k
≤ 2 b−a+1√

b
.

Proof.
b∑

k=a

1√
k
≤
∫ b

a−1

1√
x
dx = 2(

√
b−
√
a− 1) = 2

b− a+ 1√
b+
√
a− 1

≤ 2
b− a+ 1√

b
.

Claim A.2. For any 1 ≤ j ≤ t ≤ T , we have t−j
(T−j+1)

√
t
≤ 1√

T
.

Proof. The function g(x) = x−j√
x

has derivative

g′(x) =
1√
x

(
1− x− j

2x

)
=

1√
x

(1

2
+

j

2x

)
.

This is positive for all x > 0 and j ≥ 0, and so
t− j√
t
≤ T − j√

T
,

for all 0 < t ≤ T . This implies the claim.

17

Claim A.3. Assume 0 ≤ k and k + 1 ≤ m.
m∑

`=k+1

1

`2
≤ 1

k
− 1

m
.

Proof. The sum may be upper-bounded by an integral as follows:
m∑

`=k+1

1

`2
≤
∫ m

k

1

x2
dx =

1

k
− 1

m
.

Claim A.4 ([7, Theorem VI.4.2.1]). Let A : Rn → Rm be a linear map and let g be a finite convex
function on Rm. Then ∂(g ◦A)(x) = A

T
∂g(Ax) for all x ∈ Rm.

Claim A.5. Suppose that g and φ are positive functions satisfying g(x) = o(φ(x)). Then we may write
g(x) = o(φ(x)/h(x)) for some positive function h satisfying limx→∞ h(x) =∞.

Proof. Let h(x) =
√
φ(x)/g(x). Then limx→∞ h(x) =∞ because g = o(φ(x)). We have

lim
x→∞

g(x)

φ(x)/h(x)
= lim

x→∞

√
g(x)

φ(x)
= 0,

because g(x) = o(φ(x)).

18

	1 Introduction
	2 Preliminaries
	3 Statement of results
	3.1 Strongly convex and Lipschitz functions
	3.2 Lipschitz functions
	3.3 A construction independent of T

	4 Proof of Theorem 3.1
	4.1 Fixed-time setting

	5 Proof of Theorem 3.5
	5.1 Fixed-time setting

	6 A construction independent of T
	6.1 Proof of Theorem 6.1
	6.2 Proof of Lemma 6.3
	6.3 Proof of Claim 6.4

	A Standard or Elementary Results

