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Abstract

Given a graph G = (V, E) and k source-sink pairs of vertices, this papers investigates
the maximum rate r at which all pairs can simultaneously communicate. We view this
problem from two perspectives and compare their advantages. In the multicommodity flow
formulation, a solution provides dedicated bandwidth r between each source-sink pair. In
the information flow formulation, a vertex can transmit a function of the information it
received thereby allowing multiple source-sink pairs to share bandwidth. For directed acyclic
graphs with n vertices, we show that the rate achievable in the information flow formulation
can be a multiplicative factor n larger than the rate achievable in the multicommodity
flow formulation. It is well known [5] that for undirected graphs with n vertices, in the
multicommodity flow formulation, the maximum rate achievable can be an O(1/ log|V |)
multiplicative factor smaller than the value of the sparsest cut. We extend this result to show
that the maximum rate achievable in the information flow setting can be an O(1/ log|V |)
multiplicative factor smaller than the sparsest cut value.

For directed acyclic graphs G, we define a parameter called the value of the most meager
cut which is an upper bound for the maximum rate achievable in the information flow setting.
We also present an example illustrating that this upper bound is not always tight.

1 Introduction

We consider the k-pairs communication problem. The k-pairs communication problem has been
studied in two different models: the multicommodity flow model and the network coding model.
In this section we describe the k-pairs communication problem and then describe each of these
models.

Given a graph G = (V,E) and k pairs of vertices {(s1, t1), (s2, t2), . . . , (sk, tk)}, the k-pairs
communication problem is to provide a way for all k pairs to communicate simultaneously at
a specified rate. The graph G may be either directed or undirected. When the distinction is
important, we will specify which sort of graphs are under consideration, and we will use the
term arc for directed edges. Each source si has access to an independent information source and
each sink ti wishes to be able to receive enough information to replicate this information source.
The rate of the ith information source is denoted dem(i). Each edge (u, v) ∈ E represents a rate
c(u, v) zero-error communication channel with latency l(u, v) between u and v. Unless otherwise
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specified we assume that all information sources and channels operate at the same rate. If edge
latencies are not specified then the network is assumed to be delay-free.

In the multicommodity flow formulation of the k-pairs communication problem, the rate
dem(i) is called the demand between si and ti. A flow fi of rate ri is a collection of paths Pi

from si to ti and a positive real value fi(P ) for each P ∈ Pi such that
∑

P∈P
fi(P ) = ri.

A multicommodity flow F = {f1, f2, . . . , fk} is said to be feasible if

∑

P :e∈P

∑

i:P∈Pi

fi(P ) ≤ c(e) ∀e ∈ E,

where c(e) is the called the capacity of the edge e. The maximum total multicommodity flow
problem is to maximize the sum of the flow rates between the source-sink pairs. The maximum
concurrent multicommodity flow problem is to find a feasible flow maximizing the minimum
fraction of demand routed between each source-sink pair.

In the network coding (or information flow) formulation of the problem, vertices in G are
allowed to replicate and encode information they receive before transmitting a signal on an
outgoing edge. The model is simplest to describe on a directed acyclic graph. In Section 4,
we describe the extension of the model to undirected graphs. For simplicity, we assume that
every communication pair is demanding a rate 1 connection and each edge is a rate 1 channel.
Note that it is straightforward to transform a problem with k communication pairs requesting
arbitrary integer rates to a problem with more communication pairs each requesting a rate 1
connection. Similarly, by scaling the rates appropriately and adding multiple links between pairs
of vertices, one can simulate arbitrary integer capacities on the edges.

Assume G = (V,E) is a directed acyclic graph. For each of the k communication pairs there
is a source si with a message Mi and a sink ti that needs to be able to reconstruct Mi from the
information it receives on incoming edges. Each source generates a new message at each time
step. A solution is a choice of a finite alphabet Σ from which the messages are drawn. The
alphabet is assumed to be a finite set, possibly with additional structure such as field operations
on its elements. The solution also specifies a function f(u,v) : Σk → Σ for each edge (u, v) ∈ E
such that

• For each edge (u, v) ∈ E the function f(u,v) : Σk → Σ is computable from the messages for
which u is a source and the information u receives on incoming edges.

• Each sink ti can compute message Mi from the information it receives on incoming edges.

Any integral multicommodity flow solution can be transformed into a network information
flow solution that performs only trivial coding operations. More generally, a fractional multi-
commodity flow solution can be transformed into a network information flow solution over a
sufficiently large alphabet: the alphabet is treated as a vector space, and thus components of a
symbol can be routed independently. The key distinction between network coding solutions and
multicommodity flow solutions is that a network code allows messages Mi and Mj to “share”
capacity on an edge (u, v) by letting f(u,v) be a function that depends on both Mi and Mj . For
example, a network code could set f(u,v)(M1,M2, . . . ,Mk) = Mi + Mj .
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2 Related Work

This papers relates to two well studied problems: network information flow problems and mul-
ticommodity flow problems.

Network coding and the network information flow model were introduced by Ahlswede et
al. [1] and have been primarily studied in the multicast scenario on directed acyclic graphs. An
important special case is the multicast problem, in which a single source transmits the same k
messages to each sink (i.e., k rate 1 connections must be established to each sink). Multicast
problems have a network coding solution if and only if the min-cut between the source and each
sink has capacity at least k [1, 6, 3, 2]. Solving the multicast problem without coding is equivalent
to fractionally packing the maximum number of Steiner trees rooted at the source. Jaggi et al.
[2] showed that the best achievable rate to all sinks using network coding can be a factor
Ω(log |V |) larger than the maximum fractional Steiner packing value. Recently, the problem of
multicast communication on an undirected graph was considered [7, 8]. Their work shows two
important results: the gap (i.e., ratio) between the maximum achievable network coding rate
and the fractional Steiner packing value is at most 2 and can be as large as 9/8. Furthermore,
the breakthrough work of Lau [4] proves that the gap between the maximum integer Steiner
packing value and the edge-connectivity of the terminals is at most 26; this immediately implies
that the best achievable rate with network coding is at most 26 times the maximum integer
Steiner packing value. These results suggest that the advantage of network coding diminishes
on undirected graphs. In experimental work, Wu et al. [10] tested the advantage of network
coding over Steiner tree packing on the network graphs of six internet service providers and
found that network coding did not provide significantly improved communication rates.

Whereas network information flow is a fairly recent area, multicommodity flow is a well-
studied problem, having been considered by Ford and Fulkerson as early as 1954 [9, Chapter
70]. It was observed by Ford and Fulkerson that their famous max-flow min-cut theorem does
not extend to multicommodity flow scenarios: the existence of si-ti flows of value dem(i) does
not imply the existence of a multicommodity flow solution since those flows may not be disjoint.
Another necessary condition for the existence of a multicommodity flow is the so-called cut
condition, which states that the capacity of each cut must be at least the total demand of the
source-sink pairs separated by that cut. The cut condition was conjectured to be sufficient, but
a counterexample was found in 1963. A much stronger result was shown in the seminal work
of Leighton and Rao [5]: there exist graphs with n vertices in which the minimum “sparsity”
of a cut can be larger than the maximum concurrent multicommodity flow value by a factor
of Ω(log n). Section 5 discusses this result in more detail and generalizes it to the network
information flow model.

3 Directed Acyclic k-Pairs Communication

In this section, we describe a k-pairs communication instance IDAG in a directed graph where
network coding provides a significant benefit over traditional multicommodity flow. More pre-
cisely, network coding allows a factor of Θ(n) more messages to be transmitted to their sinks,
where n is the number of vertices in the graph.

Fix an arbitrary positive integer k and define G to be a directed graph with vertex set

V = {s1, . . . , sk, u, v, t1, ..., tk} .
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Figure 1: The graph G described in Section 3. We wish to send a message from si to ti for
each i. The best multicommodity flow solution can transmit at most one message to its sink,
since the arc (u, v) can send at most one message. A network coding solution can overcome this
limitation by sending the xor of all the messages on the arc (u, v). A sink can reverse the effect
of this xor and extract its desired message by using the messages it receives directly from the
other sources.

The communication pairs are { (si, ti) : 1 ≤ i ≤ k }. The arcs are

A = E1 ∪ E2 ∪ {(u, v)} ,

E1 = { (si, u) : 1 ≤ i ≤ k } ∪ { (v, tj) : 1 ≤ j ≤ k } ,

E2 = { (si, tj) : i 6= j } .

The graph G is depicted in Figure 1.

Lemma 1. For instance IDAG, the maximum total multicommodity flow rate is 1 and the maxi-
mum concurrent multicommodity flow rate is O(1/n).

Proof. Note that for each i, there is only one si-ti path, and this path traverses the “bottleneck”
arc (u, v). Since all arcs (and in particular arc (u, v)) have unit capacity, the maximum total
value of a multicommodity flow is 1. Since there are Θ(n) si-ti pairs, the maximum concurrent
multicommodity flow rate achievable is Θ(1/n).

Thus without coding, at most one message can be successfully transmitted to its sink. With
network coding, we now show that all k messages can be transmitted to their respective sinks.

Lemma 2. For instance IDAG, the maximum concurrent information flow rate achievable is Θ(1)
and the maximum total information flow rate is Θ(n).

Proof. We describe a network coding solution that allows each communication pair to simulta-
neously communicate at rate 1. The alphabet Σ is equal to {0, 1}. Each source vertex transmits
its message on all outgoing arcs. The vertex u computes the xor of all messages that it receives
and transmits the resulting value to vertex v. Vertex v forwards this message to all the sinks.
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Since each sink tj obtains the message from every source si (i 6= j) using the E2 arcs, it can
compute the xor of all messages it receives and thereby recover the message from sj . Thus all
k = Ω(n) messages can be transmitted to their respective sinks by network coding.

Combining Lemmas 1 and 2, we get the following gap.

Theorem 3. There exists instances of the k-pairs communication problem on directed acyclic
graphs for which maximum total information flow rate is Ω(n) times the maximum total mul-
ticommodity flow rate and the maximum concurrent information flow rate is Ω(n) times the
maximum concurrent multicommodity flow rate.

4 Network Coding on Undirected Graphs

This section defines our information flow model for the k-pairs communication problem on an
undirected graph. This model necessarily differs from the model for directed acyclic graphs
since we must eliminate the possibility of feedback in the coding functions. In order to achieve
this, we consider a solution over time and assume that all edges have latency 1. To make this
precise we consider a representation of the information flow in G between time 0 and some time
T using a layered graph G(T ) = (V (T ), E(T )). For each time 0 ≤ t ≤ T , there is a set of
nodes Vt which is a copy of the vertex set V of G. For v ∈ V , let vt denote the copy of v that
is in Vt. For each edge {u, v} ∈ G and each time t ≥ 1, there is an arc (ut−1, vt) and an arc
(vt−1, ut). Let Et be the set of arcs between nodes in Vt−1 and nodes in Vt. For the purposes of
this paper it suffices to allow each directed arc to have the same capacity as the associated edge,
i.e., c(ut−1, vt) = c(vt−1, ut) = c(u, v). Thus, for some finite alphabet Σ we assume that each
directed arc transmits one symbol from Σ at each time step. In the information flow formulation,
as before, each vertex vt ∈ Vt is allowed to transmit on its outgoing edge (vt, ut+1) at time t a
function f(vt,ut+1) of the information vt received from nodes in Vt−1.

Having specified a procedure for transforming an undirected graph G into a directed acyclic
graph G(T ) which models the flow of information through G over time, we must now specify
how we model the production and reception of messages by the senders and receivers over
time. For these purposes, we assume that for each sender-receiver pair (si, ti) = (u, v) we have
k(u, v) = dem(i)·r ·(T−L) messages M1(u, v),M2(u, v), . . . , Mk(u,v)(u, v), each of which consists
of a single symbol from the alphabet, Σ. Here r is a parameter specifying the rate of the solution,
and L ¿ T is a parameter which may be thought of as specifying the length of a “warm-up”
(resp. “cool-down”) period during which messages need not be received (resp. sent). This is
to model the fact that messages which must travel many hops through the network cannot
possibly be received during the first few steps of the timeline, nor can they be sent during the
last few steps of the timeline. By defining k(u, v) to be equal to dem(i) · r · (T −L) we model a
communication pair which must send/receive dem(i) · r messages during each period except the
warm-up/cool-down periods.

Definition 1. Given a communication problem represented by an undirected graph G = (V, E),
communication pairs (si, ti), demands dem(i), and capacities c(e), we say that rate r is achiev-
able if as T →∞, there is a function L = L(T ) = o(T ) such that the following holds. First, for
every communication pair (si, ti) = (u, v), let

k(u, v) = dem(i) · r · (T − L).
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Now let
M(u, v) = {M1(u, v),M2(u, v), . . . , Mk(u,v)(u, v)}

be a set of k(u, v) messages. (The set M(u, v) may be empty for some (u, v) pairs.) Finally let

M =
⋃

(u,v)∈V×V

M(u, v)

be the set of all such messages. There must exist two mappings σ, τ : M→ V (G(T )) satisfying
the following criteria:

1. For all m = Mj(u, v) ∈M, σ(m) = ut for some t and τ(m) = vt for some t.

2. There exists a network code for G(T ) which solves the network information flow problem
in G(T ) with message set M, in which the source and sink for message m are σ(m), τ(m)
respectively.

Note that one restriction of our model is that we restrict node v to only transmit a function
of the information it received in the previous time step. Thus, node v is not allowed to use any
information in its memory when computing the messages to be transmitted on its outgoing edges.
Moreover, the assumption that messages must be sent and received at vertices in V (G(T )) is
essentially tantamount to requiring that the messages must be transmitted and decoded in real-
time. A more relaxed model would feature a “super-source” node u∗ for each vertex u ∈ V (G),
attached to the nodes ut of G(T ) by infinite-capacity edges, and a “super-sink” node v∗ for each
v ∈ V (G), attached to the nodes vt of G(T ) by infinite-capacity edges The sender and receiver for
message m = Mj(u, v) would be u∗, v∗, respectively. This more relaxed model would correspond
to a scenario in which information flows through the graph over time, but the receivers are not
required to decode any messages until the end of the time-line when all information has been
received. Another possible model could allow “memory edges”, with bounded or potentially
infinite capacity, between any vertices vt and vt+1. These memory edges model the notion that
a vertex of G may be able to store information and use it at a later time.

5 Undirected k-Pairs Communication Problem

In this section we consider the relationship between the capacity of cuts in the graph G and the
maximum concurrent information flow between all pairs of vertices in G. For this discussion we
will need to define cuts in undirected and directed acyclic graphs.

5.1 Cuts in Undirected Graphs

In an undirected graph a cut can be defined in two ways. First, for a subset U ⊆ V , the cut
defined by U is the set of edges with one endpoint in U and one endpoint in V . Second, and
more generally, a set A ⊆ E is a cut if it separates at least one source-sink pair. In general, we
can define the capacity of the cut, the demand crossing the cut and the sparseness of the cut
for either definition of a cut.

Let U be a subset of the vertices of G and let A ⊆ E be the set of edges with one endpoint
in U and one endpoint in (U, V − U). The capacity C(U, V − U) = C(A) of the cut defined by
U is the sum of the capacities of the edges in A. The demand D(U, V − U) = D(A) across the
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cut defined by U is equal to the total demand between source-sink pairs separated by A. The
ratio of the capacity of the cut A to the demand between source-sink pairs separated by A is
called the sparseness of A.

Definition 2 (Sparseness). Let U ⊂ V be a subset of the vertices and let A ⊂ E be the set of
edges with one endpoint in U and one endpoint in V − U . The sparseness of the cut defined by
U is

S(U, V − U) = S(A) =
C(A)
D(A)

.

For a graph G, the value of the sparsest cut is defined as:

SG = min
A⊆E

S(A).

5.2 Cuts in Directed Graphs

If G is a directed graph, it is possible to define the sparseness of a cut as above, but for our
purposes we will be more concerned with a different parameter, which we will call “meagerness,”
whose definition is very similar to the definition of sparseness.

Definition 3 (isolation, meagerness). Given an edge set A ⊂ E and a subset of source-sink
pairs P = {(si, ti) : i ∈ I}, we say A isolates P if for i, j ∈ I, every path from si to tj intersects
A. We denote

∑
i∈I dem(i) by D(P ). The meagerness of the cut A, denoted by M(A), is defined

to be ∞ if A does not separate any source-sink pair (si, ti), and is otherwise defined by:

M(A) = min
{

C(A)
D(P )

: A isolates P

}
,

where the minimum is taken over all sets of source-sink pairs. The value of the most meager
cut in G is denoted by

MG = min
A⊆E(G)

M(A).

Note that meagerness is a weaker notion than sparsity, i.e., MG ≥ SG for any graph G.

5.3 Sparse Cuts and Concurrent Flows

The value of the sparsest cut is an upper bound on the rate of the maximum concurrent mul-
ticommodity flow, and the value of the most meager cut is an upper bound on the rate of the
maximum concurrent information flow. We state this as a lemma for reference later.

Lemma 4. Given an undirected graph G, the rate of the maximum concurrent multicommodity
flow is at most SG. Given a directed acyclic graph H, the rate of the maximum concurrent
information flow is at most MH .

An important result of Leighton and Rao [5] shows that the rate δ of the maximum concurrent
multicommodity flow can be significantly smaller than the value of the sparsest cut. In particular,
there exists a graph G for which

δ = O

(
1

log n

)
SG.
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In this section we extend this result to the network coding setting. First we describe the
undirected k-commodity flow instance of Leighton and Rao [5] on the graph G = (V, E). Second,
we modify this instance slightly so that the sparsest cut value is 1. Next we consider the
directed acyclic graph G(T ) that represents the information flow over time for this instance. We
demonstrate that the maximum rate of network information flow achievable is O

(
1

log |V |
)
.

Let G = (V, E) be a 3-regular expander. For each pair of vertices in G there is a demand of
rate 1. Since G is an expander, there exists a ρ = Θ(1) such that for all U ⊆ V the number of
edges crossing the cut between U and V − U is at least ρ ·min{|U |, |V − U |}.

We scale the capacity of each edge of G in order to make the sparsest cut value equal to 1.
Let the capacity of each edge (u, v) ∈ E be c(u, v) = n−1

ρ where n = |V |.
Lemma 5 (Leighton-Rao [5]). The value of the sparsest cut SG in G is 1.

Proof. The value of the sparsest cut in G can be bounded from below as follows.

SG = min
A⊆E

C(A)
D(A)

= min
U⊆V

C(U, V − U)
D(U, V − U)

≥ min
U⊆V

(
(n− 1)/ρ

) · (ρ ·min{|U |, |V − U |})

|U | · |V − U |
= min

U⊆V

(n− 1)
max{|U |, |V − U |}

This quantity is minimized when |U | = 1 and |V − U | = n− 1.

SG ≥ n− 1
n− 1

= 1

Theorem 6. The maximum rate of network information flow achievable in G (in the sense of
Definition 1) is O

(
1

log n

)
.

Proof. For some rate r > 0, let T, L, k(u, v),M(u, v), and M be as in Definition 1, and assume
that rate r is achievable and that this is verified by two functions σ, τ satisfying the two criteria
in that definition. Let T0 denote a random variable uniformly distributed in the set {1, 2, . . . , T}.
Let V − ⊂ V (G(T )) denote the set of vertices wt where 1 ≤ t < T0, and let V + = V (G(T ))\V −.
Finally let

M0 =
{

m ∈M : σ(m) ∈ V −, τ(m) ∈ V +
}

.

We begin by computing the expected cardinality of M0. This is the sum, over all messages
m ∈M, of the probability that m ∈M0. Now let m = Mj(u, v), and let d(u, v) be the length of
the shortest path joining u and v in G. Let ut = σ(m), vt′ = τ(m). We must have t′−t ≥ d(u, v),
as otherwise there would be no path in G(T ) from σ(m) to τ(m), violating the fact that there
exists a network code for G(T ) which solves the network information flow problem with message
set M, sources σ(m), and sinks τ(m). Thus

Pr(m ∈M0) = Pr(t < T0 ≤ t′) = (t′ − t)/T ≥ d(u, v)/T,
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and summing over all messages m ∈M we obtain

E(|M0|) = r · (T − L) ·
∑

u,v∈V (G)

d(u, v)
T

= r · (1− o(1)) ·
∑

u,v∈V (G)

d(u, v). (1)

We claim that the sum on the right side of (1) is Ω(n2 log(n)). To prove this, it suffices to show
that for each u ∈ V (G), the number of vertices within distance log2(n/6) of u is at most n/2.
This follows directly from the Moore bound: since G is 3-regular, the number of vertices at
distance exactly d from u is at most 3 · 2d−1, for all d ≥ 1.

Now let a fixed value of T0 be chosen, such that |M0| is greater than or equal to its expected
value, i.e.

|M0| = Ω(rn2 log(n)).

The set of edges separating V − from V + is ET0 = {(uT0−1, vT0) : (u, v) ∈ E(G)}. It must be
possible to reconstruct every message in M0 from the set of messages traversing the edge set
ET0 ; thus the combined capacity of these edges must be Ω(rn2 log(n)). However, we know that

C(ET0) = 2C(E(G)) = 3n(n− 1)/ρ = O(n2).

Hence it must be the case that r = O
(

1
log n

)
.

6 Maximum Concurrent Information Flow Rate 6= Meagerness

Recall Lemma 4, which presents upper bounds on the rates of the maximum concurrent multi-
commodity flow and the maximum concurrent information flow in a graph G. In the remarks
immediately following Lemma 4, we presented an example due to Leighton and Rao which
demonstrates that this upper bound is not tight, in the multicommodity flow setting. In this
section, we will present an example illustrating that Lemma 4 also fails to give a tight bound
in the information flow setting. Specifically, we will give an example of a directed acyclic graph
G in which the meagerness of every cut is at least 1, yet the maximum concurrent information
flow rate is 2/3. The graph is illustrated in Figure 2. All edges have unit capacity, and all three
commodities have unit demand.

Lemma 7. The value of the most meager cut in G is 1.

Proof. Suppose A is a cut which isolates a set P of source-sink pairs. If |P | = 1, then |A| ≥ 1
since each source si is joined to the corresponding sink ti by at least one path in G. If |P | = 2
and (s3, t3) ∈ P then |A| ≥ 2 since s3 is joined to t3 by two edge-disjoint paths. If |P | = 2
and (s3, t3) 6∈ P , then P = {(s1, t1), (s2, t2)} and |A| ≥ 2 because A must contain the edges
(s1, t2) and (s2, t1). Finally, if |P | = 3, then P consists of all source-sink pairs in G. In this case,
|A| ≥ 4 because A must contain the edges (s1, t2) and (s2, t1) as well as an edge cut separating
s3 from t3. In all cases, |A| ≥ |P | which verifies that the value of the most meager cut in G is
at least 1. In fact it is equal to 1, for instance because the cut A = {(s3, v)} isolates the pair
P = {(s1, t1)}.
Theorem 8. There does not exist a network code for G which achieves rate 1.

Proof. Let f : Σ3 → Σ be the function computed by the edge e = (s3, u) ∈ E(G). In other
words, f(a, b, c) is the message sent on edge e when a, b, c are the messages originating at s1, s2, s3,
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Figure 2: The graph G.

respectively. The functions g, h, k, q, r : Σ3 → Σ are associated to their corresponding edges as
shown in Figure 2. Let g̃ : Σ → Σ denote the function mapping the message f(a, b, c), which u
receives from s3, to the message g(a, b, c), which it sends to t2. For any given message a ∈ Σ,
let d̃a : Σ → Σ denote the function specified as follows: d̃a(x) is the output at node t2 when
it receives message q(a) from s1 and message x from u. (Here we are writing q(a) rather than
q(a, b, c) since the function q : Σ3 → Σ is only allowed to depend on its first argument.)

We claim that each of the functions d̃a and g̃ is a bijection. Since each of these functions
maps Σ to Σ, it is sufficient to prove that both d̃a and g̃ are surjective. But considering the fact
that

d̃a(g̃(f(a, b, c))) = b, (2)

we see that the composition d̃a ◦ g̃ is surjective, which implies that each of the maps individually
must be surjective.

Next we claim that for any elements a, b, c0, c1 ∈ Σ, it must be the case that f(a, b, c0) =
f(a, b, c1). Indeed, using equation (2) together with the fact that both d̃a and g̃ are bijective,
we obtain

f(a, b, c0) = f(a, b, c1) = g̃−1(d̃−1
a (b)).

Arguing symmetrically, we may also conclude that h(a, b, c0) = h(a, b, c1) for all elements
a, b, c0, c1 ∈ Σ. Fixing a and b to be any pair of elements of Σ, this means that the values of
f(a, b, c) and h(a, b, c) do not vary as c runs through all the elements of Σ; consequently, the
output of node t3 doesn’t vary as c runs through Σ. This contradicts the fact that the output
of node t3 is equal to c.

Given that Theorem 8 shows that network coding cannot achieve rate 1 in G, one may wish
to know the maximum achievable rate. Observe that this rate is at least equal to 2/3, the rate
of the maximum concurrent multicommodity flow in G. (This flow sends 2/3 units of flow along
the unique path from s1 to t1 and along the unique path from s2 to t2, and it sends 1/3 units
of flow along each of the two paths from s3 to t3.) The following theorem demonstrates that
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this lower bound of 2/3 is actually tight, i.e. no network code can achieve a higher rate of
information flow. In the theorem, we assume that the messages are drawn from an alphabet Σ
and that the values transmitted along the edges are drawn from a possibly different alphabet
Σ′.

Theorem 9. If |Σ| > |Σ′|2/3, there does not exist a network code for G that solves the corre-
sponding network information flow problem.

Proof. Define d̃a : Σ′ → Σ and g̃ : Σ′ → Σ′ as before. It is no longer the case that d̃a and
g̃ must be bijections, since it is possible that |Σ′| > |Σ|. However, equation (2) is still valid.
Consequently, if a, b0, c0, b1, c1 are any elements of Σ satisfying f(a, b0, c0) = f(a, b1, c1) we must
have

b0 = d̃a(g̃(f(a, b0, c0))) = d̃a(g̃(f(a, b1, c1))) = b1.

Given a, b ∈ Σ, let us define a set

F (a, b) = {f(a, b, c) : c ∈ Σ}.
We have seen that for any elements a, b0, c0, b1, c1 ∈ Σ,

f(a, b0, c0) = f(a, b1, c1) =⇒ b0 = b1,

from which we may conclude that F (a, b0), F (a, b1) are disjoint subsets of Σ′ when b0 6= b1. Thus
∑

b∈Σ

|F (a, b)| ≤ |Σ′|

for each a ∈ Σ, and hence ∑

a,b∈Σ

|F (a, b)| ≤ |Σ||Σ′|.

Dividing both sides by |Σ|2, we obtain
∑

a,b |F (a, b)|
|Σ|2 ≤ |Σ′|

|Σ| < |Σ|1/2.

The arithmetic-mean-geometric-mean inequality implies that

∏

a,b∈Σ

|F (a, b)|1/|Σ|2 ≤
∑

a,b |F (a, b)|
|Σ|2 ,

and combining this with the preceding inequality we obtain
∏

a,b∈Σ

|F (a, b)| < |Σ||Σ|2/2.

Now define H(a, b) = {h(a, b, c) : c ∈ Σ} and argue symmetrically to derive the bound
∏

a,b∈Σ

|H(a, b)| < |Σ||Σ|2/2.

Multiplying these two bounds we obtain
∏

a,b∈Σ

|F (a, b)×H(a, b)| < |Σ||Σ|2 ,

11



from which it follows that at least one of the |Σ|2 terms in the product on the left side must be
less than |Σ|. Fix a pair of messages a, b such that |F (a, b) ×H(a, b)| < |Σ|. As c ranges over
all elements of Σ, the ordered pair (f(a, b, c), h(a, b, c)) ranges over a subset of F (a, b)×H(a, b),
hence it ranges over a set of values whose cardinality is strictly smaller than |Σ|. The output of
node t3 is determined by the ordered pair (f(a, b, c), h(a, b, c)), hence it can take on fewer than
|Σ| distinct values as c ranges over Σ. This contradicts the fact that the output of node t3 is
equal to c.

7 Conclusions

We have considered the use of network coding and multicommodity flows for the k-pairs commu-
nication problem. For directed graphs, we have shown that a network coding solution can yield
a factor of Θ(n) higher rate than the best multicommodity flow solution, in some instances.

For multicommodity flows in undirected graphs, the following relations between cuts and
concurrent flows are well known: the value of the sparsest cut is an upper bound on the rate of
a maximum concurrent multicommodity flow, this bound is tight to within a factor of O(log n),
and the ratio O(log n) is best possible for some graphs. We have considered the question of
whether analogous relations exist between cuts and network coding solutions. We have defined
a notion of meagerness, similar to sparsity, such that the value of the most meager cut is an
upper bound on the maximum rate achievable by a network coding solution, and have presented
an example illustrating that this bound is not always tight. We have also demonstrated that
there exist undirected graphs in which the value of the sparsest cut is equal to 1, yet no network
coding solution can achieve a rate higher than O(1/ log(n)). This leads us to the following
conjecture.

Conjecture 1. For a k-pairs communication problem in an undirected graph, the maximum
rate achievable by a network coding solution equals the maximum rate achievable by a fractional
multicommodity flow.
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