
Efficient Recovery From Organizational Disconnects in SkipNet
Nicholas J. A. Harvey, Michael B. Jones, Marvin Theimer, Alec Wolman

Abstract: SkipNet is a scalable overlay network that provides
controlled data placement and routing locality guarantees by or-
ganizing data primarily by lexicographic ordering of string names.
A key side-effect of the SkipNet design is that all nodes from
an organization form one or a few contiguous overlay segments.
When an entire organization disconnects from the rest of the sys-
tem, repair of only a few pointers quickly enables efficient routing
throughout the disconnected organization; full repair is done as a
subsequent background task. These same operations can be later
used to efficiently reconnect an organization’s SkipNet back into
the global one.

1 Introduction

SkipNet is a scalable, peer-to-peer overlay network that
organizes nodes into a circular distributed data structure
that concurrently supports two separate, but related address
spaces. In one space, nodes belong to multiple rings where
ring members are lexicographically ordered according to
nodes’ string names. In the other space, nodes are labeled
with uniformly distributed numeric IDs. These numeric IDs
define which rings a node belongs to in the first space. The
combination of the two spaces enables SkipNet to provide
efficient message routing as well as support several impor-
tant locality properties.

Most notable of these properties is the ability to control
the placement of data. SkipNet supports simultaneous use
of multiple distributed hash tables (DHTs) that span varying
subsets of the overlay nodes. In particular, DHTs can be de-
fined over any set of nodes that share the same string name
prefix. For example, if nodes belonging to the same orga-
nization all share an organization-specific name prefix then
clients of the overlay can define DHTs whose data is load
balanced across the nodes of a particular organization while
still being accessible from any node in the overlay network.

SkipNet’s design also allows it to guarantee that message
routes traverse only intermediate nodes sharing the same
name prefix as do the source and destination nodes. Thus
local access to data stored within an organization can be
obtained without having to worry about the associated mes-
sage traffic having to traverse external nodes that might be
either hostile or unavailable.

One of the more common forms of Internet failure is dis-
connection of an organization due to router misconfigura-
tions and link and router faults [6, 7]. When such a discon-
nection occurs, SkipNet’s locality properties enable a grace-
ful degradation of functionality wherein local overlay traf-
fic and hence access to data stored in locally defined DHTs
still remains possible. Assuming that organizations assign
node names with one or a few organizational prefixes, an
organization’s nodes are naturally arranged into one or a
few contiguous overlay segments. Should an organization

1Authors’ address: Microsoft Research, Microsoft Corporation, Red-
mond, WA, 98052, {nickhar, mbj, theimer, alecw}@microsoft.com

become disconnected, its segments remain internally well-
connected and intra-segment traffic can be routed with the
same O(log N) hop efficiency as before.

By forming only a few key routing pointers between the
“edge” nodes of each segment, the entire organization can
be connected into a separate SkipNet that can route traffic
with similar efficiency: cross-segment traffic incurs an addi-
tional penalty that is proportional to the number of segments
traversed. A background process repairs the additional rout-
ing pointers, thereby eliminating the cross-segment penalty.
SkipNet’s structure enables this repair process to be done
in a manner that avoids unnecessary duplication of work.
When the organization reconnects to the Internet, these
same repair operations can be used to merge the organiza-
tion’s segments back into the global SkipNet.

In contrast, most previous scalable, peer-to-peer overlay
designs [9, 10, 11, 13] place nodes in the overlay topology
according to a unique random numeric ID only. Disconnec-
tion of an organization in most of these systems will result
in its nodes fragmenting into many disjoint overlay pieces.
During the time that these fragments are reforming into a
single overlay, network routing efficiency may be poor or
unbalanced, or may even fail.

SkipNet’s basic design and performance are described in
Section 2; a complete description can be found in in Har-
vey et al. [3, 4]. Section 3 describes the repair algorithms
for disconnection and reconnection, and presents some per-
formance evaluation results. Section 4 concludes the paper.

2 SkipNet Overview

SkipNet is a scalable peer-to-peer overlay network designed
to support two key locality properties: content locality and
path locality. These locality properties address two notable
disadvantages of many existing overlay designs: it is dif-
ficult to control where data is stored and it is difficult to
guarantee that routing paths remain within an administra-
tive domain. Content locality is the ability to place data
either on specific overlay nodes or to load balance it across
the nodes within a specific organization. Path locality is the
ability to guarantee that when two overlay nodes within the
same organization communicate, any intermediate routing
hops also remain within that same organization.

Content and path locality provide a number of key ben-
efits with respect to availability, performance, manageabil-
ity, and security. As we and others [4, 5, 12] have noted,
much of the data stored within peer-to-peer systems can
still be expected to exhibit significant locality in clients’ ac-
cess patterns. Thus, for example, organizations may wish to
make data globally available while still storing it locally in
order to obtain better intra-organizational availability and
performance. Content and path locality support this style
of non-uniform peer-to-peer system. In particular, they also

X

T

O
M

D

Z

A

V

Level

2 T T

1 M X

0 D Z

Level

2 D D

1 Z O

0 X T

Figure 1: SkipNet nodes ordered by name ID. Routing tables
of nodes A and V are shown.

enable an organization to become disconnected from the In-
ternet while still allowing overlay members of the organiza-
tion to communicate with each other and access data stored
within the organization. Explicit content placement onto a
single node or across a well-defined set of nodes also en-
hances overall system manageability because the relevant
nodes can be provisioned to support the anticipated access
frequency for the set of data items being stored. Finally,
path locality provides significant security benefits since po-
tentially malicious routers in other administrative domains
cannot affect intra-domain traffic.

2.1 The Basic SkipNet Structure

SkipNet’s basic design is derived from ideas underlying the
in-memory Skip List data structure [8]. The key idea we
take from Skip Lists is the notion of maintaining a sorted
list of all data records as well as pointers that “skip” over
varying numbers of records. We transform the concept of
a Skip List to a distributed system setting by replacing data
records with computer nodes, using the string name IDs of
the nodes as the data record keys, and forming a ring instead
of a list. The ring must be doubly-linked to enable path
locality, as is explained in Section 2.2.

In the basic SkipNet design each node stores 2 log N
pointers, where N is the number of nodes in the overlay sys-
tem. Each node’s set of pointers is called its routing table,
or R-Table, since the pointers are used to route message traf-
fic between nodes. The pointers at level h of a given node’s
routing table point to nodes that are roughly 2h nodes to the
left and right of the given node.

Figure 1 depicts a SkipNet containing eight nodes and
shows the routing table pointers that nodes A and V main-
tain. The SkipNet in Figure 1 is a “perfect” SkipNet: each
level h pointer traverses exactly 2h nodes. Figure 2 depicts
the same SkipNet of Figure 1, arranged to show all node in-
terconnections at every level simultaneously. All nodes are
connected by the root ring formed by each node’s pointers
at level 0. The pointers at level 1 point to nodes that are 2
nodes away and hence the overlay nodes are implicitly di-
vided into two disjoint rings. Similarly, pointers at level 2
form four disjoint rings of nodes, and so forth. Note that
rings at level h + 1 are obtained by splitting a ring at level
h into two disjoint sets, each ring containing every second
member of the level h ring.

V

Level: L = 0

L = 1

L = 3

L = 2

Ring 0 Ring 1

Ring 00 Ring 01 Ring 10 Ring 11

Ring

000

Ring

001

Ring

010

Ring

011

Ring

100

Ring

101

Ring

110

Ring

111

A

M

Z

T

OD

O

Z

M

A

X

T

V

D

X

TA

M

Z

V

D

X

DO

Z

V

O

M

X

TA

Root Ring

Figure 2: The full SkipNet routing infrastructure for an 8
node system, including the ring labels.

Maintaining a perfect SkipNet in the presence of inser-
tions and deletions is very expensive. To facilitate efficient
insertions and deletions, we derive a probabilistic SkipNet
design. Each ring at level h is split into two rings at level
h + 1 by having each node randomly and uniformly choose
to which of the two rings it belongs. With this probabilistic
scheme, insertion/deletion of a node only affects two other
nodes in each ring to which the node has randomly chosen
to belong. Furthermore, a pointer at level h still skips over
2h nodes in expectation, and routing is possible in O(log N)
forwarding hops with high probability.

Each node’s random choice of ring memberships can be
encoded as a unique binary number, which we refer to as the
node’s numeric ID. As illustrated in Figure 2, the first h bits
of the number determine ring membership at level h. For
example, node X’s numeric ID is 011 and its membership at
level 2 is determined by taking the first 2 bits of 011, which
designate Ring 01. One way to obtain a unique, random
numeric ID is by using a collision-resistant hash (such as
SHA-1) of the node’s DNS name.

Because the numeric IDs of nodes are unique they can be
thought of as a second address space that is maintained by
the same SkipNet data structure. Whereas SkipNet’s string
address space is populated by node name IDs that are not
uniformly distributed throughout the space, SkipNet’s nu-
meric address space is populated by node numeric IDs that
are uniformly distributed. The uniform distribution of nu-
meric IDs in the numeric space is what ensures that our rout-
ing table construction yields routing table entries that skip
over the appropriate number of nodes.

2.2 Routing by Name ID

Routing/searching by name ID in SkipNet is based on the
same basic principle as searching in Skip Lists: Follow
pointers that route closest to the intended destination. At
each node, a message will be routed along the highest-level
pointer that does not point past the destination value. Rout-
ing terminates when the message arrives at a node whose
name ID is closest to the destination.

Since nodes are ordered by name ID along each ring
and a message is never forwarded past its destination, all
nodes encountered during routing have name IDs between
the source and the destination. Thus, when a message origi-
nates at a node whose name ID shares a common prefix with

the destination, all nodes traversed by the message have
name IDs that share that same prefix. Rings are doubly-
linked so that routing can use either right or left pointers
depending upon whether the source’s name ID is smaller or
greater than the destination’s.

The number of message hops when routing by name ID
is O(log N) with high probability. For a proof, see [3].

2.3 Routing by Numeric ID

It is also possible to route messages efficiently to a given
numeric ID. In brief, the routing operation begins by exam-
ining nodes in the level 0 ring until a node is found whose
numeric ID matches the destination numeric ID in the first
digit. At this point the routing operation jumps up to this
node’s level 1 ring, which must also contain the destination
node. The routing operation then examines nodes in this
level 1 ring until a node is found whose numeric ID matches
the destination numeric ID in the second digit. As before,
we know that this node’s level 2 ring must also contain the
destination node, and thus the routing operation proceeds in
this level 2 ring.

This procedure repeats until we cannot make any more
progress — we have reached a ring at some level h such
that none of the nodes in that ring share h + 1 digits with
the destination numeric ID. We must now deterministically
choose one of the nodes in this ring to be the destination
node. Our algorithm defines the destination node to be the
node whose numeric ID is numerically closest to destination
numeric ID amongst all nodes in this highest ring.

As an example, imagine that the numeric IDs in Figure 2
are 4 bits long and that node Z’s ID is 1000 and node O’s
ID is 1001. If we want to route a message from node A to
destination 1011 then A will first forward the message to
node D because D is in ring 1. D will then forward the mes-
sage to node O because O is in ring 10. O will forward the
message to Z because it is not in ring 101. Z will forward
the message onward around the ring (and hence back) to O
for the same reason. Since none of the members of ring 10
belong to ring 101, node O will be picked as the final mes-
sage destination because its numeric ID is closest to 1011
of all ring 10 members.

The number of message hops when routing by numeric
ID is O(log N) with high probability. For a proof, see [3].

2.4 Constrained Load Balancing

One of the most interesting capabilities that SkipNet sup-
ports is constrained load balancing (CLB). This is the abil-
ity to concurrently support multiple DHTs, each of which
may span a client-specified set of nodes that all share the
same name prefix. CLB is possible because SkipNet main-
tains two separate, but related address spaces, one of which
supports efficient range queries over node name IDs. To
implement CLB, we divide a data object’s name into two
parts: a part that specifies the set of nodes over which DHT
load balancing should be performed (the CLB domain) and
a part that is used as input to the DHT’s hash function (the
CLB suffix). In SkipNet the special character ‘!’ is used as
a delimiter between the two parts of the name.

For example, suppose we stored a document us-
ing the name msn.com/DataCenter!TopStories.html. The

CLB domain indicates that load balancing should oc-
cur over all nodes whose names begin with the prefix
msn.com/DataCenter. The CLB suffix, TopStories.html, is
used as input to the DHT hash function, and this determines
the specific node within msn.com/DataCenter on which the
document will be placed.

To search for a data object that has been stored using
CLB, we first search for any node within the CLB domain
using search by name ID. To find the specific node within
the domain that stores the data object, we perform a search
by numeric ID within the CLB domain for the hash of the
CLB suffix.

The search by name ID is unmodified from the descrip-
tion in Section 2.2, and takes O(log N) message hops. The
search by numeric ID is constrained by a name ID prefix
and thus at any level must effectively step through a doubly-
linked list rather than a ring. Upon encountering the right
boundary of the list (as determined by the name ID prefix
boundary), the search must reverse direction in order to en-
sure that no node is overlooked. Reversing directions in this
manner affects the performance of the search by numeric ID
by at most a factor of two, and thus O(log N) message hops
are required in total.

2.5 Enhancements

Links in the routing structure shown in Figure 2 are de-
termined strictly by nodes’ name IDs and numeric IDs,
which means that the SkipNet overlay is constructed with-
out consideration of the physical network topology. To im-
prove routing performance, SkipNet maintains two addi-
tional proximity routing tables, one per address space, that
provide pointers that reflect network proximity of nodes
much the way that Pastry’s proximity-aware routing tables
do [2]. Further details can be found in both [4] and [3].

An important point to understand is that both proximity
tables are used only to optimize routing efficiency. Message
routing reverts to using an R-Table pointer whenever use
of a proximity table pointer would violate path locality or
the relevant proximity table pointer is invalid (e.g. due to
organizational disconnect).

To maintain the root ring correctly, each SkipNet node
also maintains a leaf set that points to additional nodes
along the root ring, for redundancy. In our current imple-
mentation we use a leaf set size of 16, just as Pastry does.
Whereas root ring pointers are monitored and repaired in
an expedited manner, all other SkipNet state is updated and
repaired in a background fashion.

3 Failure Recovery Algorithms

When an organization is disconnected from the Internet, its
nodes will be able to communicate with each other over
IP but will not be able to communicate with nodes outside
the organization. If the organization’s nodes’ names em-
ploy only a few organizational prefixes then the nodes are
mostly contiguous in SkipNet, and hence the global Skip-
Net will partition itself into several disjoint, but internally
well-connected, segments. This is illustrated in Figure 3.

Because of SkipNet’s path locality property, message
traffic within each segment will be unaffected by discon-

Global
SkipNet

Global
SkipNet

Microsoft
SkipNet

Microsoft
SkipNet
s1

s2

s3

s0

d1

d0

n1

n2 d2

d3com.hotmail

com.amazon

at.ac.tuwien za.gov

edu.cmu

com.sun

com.microsoft

com.ibm

com.intel

com.google

jp.sony

Figure 3: Two partitioned SkipNets to be merged.

nection and will continue to be routed with O(log M) ef-
ficiency, where M is the number of nodes within the seg-
ment. Assuming that the disconnecting organization consti-
tutes a small fraction of the global SkipNet, cross-segment
traffic among the global portions of the SkipNet will also re-
main largely unaffected because most cross-segment point-
ers among global segments will remain valid. This will not
be true for the segments of the disconnected organization.

Gracefully handling a partition in the underlying IP net-
work has two aspects: continuing to provide internal con-
nectivity for the duration of the partition, and efficiently re-
pairing the overlay when the underlying IP network parti-
tion heals. Maintaining internal connectivity of the over-
lay requires that communications be possible both within
each overlay segment and across segments that still have IP
connectivity to each other. Repairing the overlay when the
partition heals involves reestablishing communications be-
tween overlay segments that were formerly unreachable by
IP. Thus, the primary repair task after both disconnection
and reconnection is the merging of overlay segments.

The algorithms employed in both the disconnection and
reconnection cases are very similar: SkipNet segments must
discover each other and then be merged together. For the
disconnect case, the organization segments are merged into
a separate SkipNet and the global segments are merged to
reform the global SkipNet. For the reconnect case, all seg-
ments from the two separate SkipNets are merged into a
single SkipNet.

3.1 Discovery Techniques

When an organization disconnects from the Internet there
is no guarantee that the resulting non-contiguous segments
will have pointers into each other. Therefore its segments
may not be able to find each other using only SkipNet point-
ers. To solve this discovery problem we assume that or-
ganizations will divide their nodes into a relatively small
number of name segments and that they designate some
number of nodes in each segment as “well-known”. For in-
stance, Microsoft might maintain well-known members of
segments with name prefixes microsoft.com, hotmail.com,
xbox.jp, etc. Each node in an organization maintains a list
of these well-known nodes and uses them as contact points
between the various overlay segments.

When an organization reconnects to the Internet, the
organizational and global SkipNets discover each other
through their segment edge nodes. Since each node main-

ConnectRootLevel(n1, n2) {
edgeNodes = GatherEdgeNodeInfo(n1, n2, null)
Connect edge node pairs.

}

GatherEdgeNodeInfo(n1, n2, msg) {
n2 routes msg to n1 in its SkipNet.
Msg will arrive at d1.
d1 appends d1 and next neighbor, d0, to msg contents.
d1 sends msg directly to n1 over IP.
n1 routes msg to d0 in its SkipNet.
Msg will arrive at s1.
if (memberOf(s0, msg contents)) // => all segments

return msg contents // traversed
else // => Message needs to discover more edge nodes

s1 appends s1 and next neighbor, s0, to msg contents.
return GatherEdgeNodeInfo(s0, d0, msg)

}

Figure 4: SkipNet root ring connection algorithm.

tains a leaf set, if a node discovers that one side of its leaf
set, but not the other, is completely unreachable then it con-
cludes that a disconnect event has occurred and that it is
an edge node of a segment. These edge nodes keep track
of their unreachable leaf set pointers and periodically ping
them for reachability; should a pointer become reachable,
the node initiates the merge process. Note that merging
two previously independent SkipNets together—for exam-
ple, when a new organization joins the system—is function-
ally equivalent to reconnecting a previously connected one,
except that an alternate means of discovery is needed.

3.2 Connecting Root Ring Segments

The segment merge process is comprised of two steps: re-
pair of the root ring pointers and repair of the pointers for
all higher-level rings. The first step can be done quickly, as
it only involves repair of the root ring pointers of the edge
nodes of each segment. Once the first step has been done
it will be possible to route messages correctly among nodes
in different segments and to do so with O(S log M) effi-
ciency, where S is the total number of segments and M is
the maximum number of nodes within a segment. As a con-
sequence, the second, more expensive step can be done as a
background task, as described in Section 3.3.

The key idea for connecting SkipNet root ring segments
is to discover the relevant edge nodes by having a node in
one segment route a message towards the name ID of a node
in the other segment. This message will be routed to the
edge node in the first segment that is lexicographically near-
est to the other node’s name ID. By repeating this process
one can enumerate all edge nodes and hence all segments.

The actual inter-segment pointer updates are then done
as a single atomic operation among the segment edge nodes,
using distributed two-phase commit. This avoids routing in-
consistencies where a message destined for a specific node
on one segment inadvertently ends up at a different node in
another overlay segment because the segments to be merged
do not yet form a fully connected root ring.

To illustrate, Figure 3 shows two SkipNets to be merged,
a Microsoft SkipNet and a global SkipNet, each containing
two different name segments. Suppose that node n1 knows
of node n2’s existence. Node n1 will send a message to
node n2 (over IP) asking it to route a search message to-
wards n1 in the global SkipNet. n2’s message will end up
at node d1 and, furthermore, d1’s neighbor on the global

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000
Nodes

R
ou

tin
g

H
op

s

After Root Ring Merge

After All Levels Merged

Figure 5: Number of routing hops taken to route inter-
organizational messages, as a function of network size, after an
organization’s internal SkipNet has been reconnected to the global
SkipNet root ring and after the merge has been fully completed.

SkipNet will be d0. d1 sends a reply to n1 (over IP) telling
it about d0 and d1. n1 routes a search message towards d0
on the Microsoft SkipNet to discover s1 and s0 in the same
manner. The procedure is iteratively invoked using s0 and
d0 to gain information about s2, s3, d2, and d3. Figure 4
presents the algorithm in pseudo-code.

Immediately following root ring connection, messages
sent to cross-segment destinations will be routed efficiently.
Cross-segment messages will be routed to the edge of each
segment they traverse and will then hop to the next segment
using the root ring pointer connecting the segments. This
leads to O(S log M) routing efficiency. When an organi-
zation reconnects its fully repaired SkipNet root ring to the
global one, traffic destined for nodes external to the organi-
zation will be routed in O(log M) hops to an edge node of
the organization’s SkipNet. The root ring pointer connect-
ing the two SkipNets will be traversed and then O(log N)
hops will be needed to route traffic within the global Skip-
Net. Note that traffic that does not have to cross between
the two SkipNets will not incur this routing penalty.

To experimentally confirm the behavior of SkipNet’s dis-
connection and merge algorithms we implemented them
and then ran them in an extended version of the packet-level
discrete event simulator available from [10]. The simulator
was extended to support disconnection of AS subnetworks.
The details of our experiments and experimental setup are
described in [3]. Figure 5 shows the routing performance
we observed between a previously disconnected organiza-
tion and the rest of the system once the organization’s Skip-
Net root ring has been connected to the global SkipNet root
ring. We also show the routing performance observed when
all higher level pointers have been repaired.

3.3 Repairing Routing Pointers following
Root Ring Connection

Once the root ring connection phase has completed we can
update all remaining pointers that need repair using a back-
ground task. We present here an algorithm for doing this
that avoids unnecessary duplication of work through appro-
priate ordering of repair activities.

The key idea is that we recursively repair pointers at one
level by using correct pointers at the level below to find the
desired nodes in each segment. All pointers at one level
must be repaired across a segment boundary before repair

1

10

0

010011
Level 2
Pointers

Level 1
Pointers

Level 0
Pointers

Numeric
ID 10...

Numeric
ID 01...

Numeric
ID 00...

Numeric
ID 11...

1

11

0

011000

Numeric
ID 11...

Numeric
ID 01...

Numeric
ID 10...

Numeric
ID 00...

Left Segment Being Connected Right Segment Being Connected

Segment boundary

...

Figure 6: Nodes whose pointers have been repaired at the bound-
ary of two SkipNet segments.

// Called initially with level h=0 at node
// to the left of the merge point
PostMergeRepair(h) {

Find closest node to left whose numeric ID matches
mine in the first h bits and whose ID differs from
mine in the next bit, by following level h
pointers to the left.

On my node:
cont = FixMyRightPointer(h+1)
if (cont) PostMergeRepair(h+1)

In parallel, on the other node:
cont2 = FixMyRightPointer(h+1)
if (cont) PostMergeRepair(h+1)

}

FixMyRightPointer(h) {
Search right using level h-1 pointers until a node is

found that matches my numeric id in h bits.
Connect our level h pointers.
if (pointers are already equal)

return false
else

return true
}

Figure 7: Level h ring repair algorithm for a single inter-segment
boundary.

of a higher level can be initiated. To illustrate, consider Fig-
ure 6, which depicts a single boundary between two Skip-
Net segments after pointers have been repaired. Figure 7
presents an algorithm in pseudo-code for repairing pointers
above the root ring across a single boundary. We begin by
discussing the single boundary case, and later we extend our
algorithm to handle the multiple boundary case.

Assume that the root ring pointers have already been cor-
rectly connected. There are two sets of two pointers to con-
nect between the segments at level 1: the ones for the rout-
ing ring labeled 0 and the ones for the routing ring labeled
1 (see Figure 2). We can repair the level 1 ring labeled 0
by traversing the root (level 0) ring from one of the edge
nodes until we find nodes in each segment belonging to the
ring labeled 0. The same procedure is followed to correctly
connect the level 1 ring labeled 1. After the level 1 rings,
we use the same approach to repair the four level 2 rings.

Because rings at higher levels are nested within rings at
lower levels, repair of a ring at level h + 1 can be initiated
by one of the nodes that had its pointer repaired for the en-
closing ring at level h. A repair at level h+1 is unnecessary
if the level h ring (a) contains only a single member or (b)
does not have an inter-segment pointer that required repair.
The latter termination condition implies that most rings—

and hence most nodes—in the global SkipNet will not, in
fact, need to be examined for potential repair.

The total work involved in this repair algorithm is
O(M log(N/M)), where M is the size of the disconnect-
ing/reconnecting SkipNet segment and N is the size of the
external SkipNet. Note that rings at level h + 1 can be re-
paired in parallel once their enclosing rings at level h have
been repaired across all segment boundaries. Thus, the re-
pair process for a given segment boundary parallelizes to
the extent supported by the underlying network infrastruc-
ture. The analysis behind these claims is omitted for space
reasons and can be found in [3].

To repair multiple segment boundaries, we simply call
the algorithm described above once for each segment
boundary. In the current implementation, we perform this
process iteratively, waiting for the repair operation to com-
plete on one boundary before initiating the repair at the next
boundary. In future work, we plan to investigate initiating
the segment repair operations in parallel — the open ques-
tion is how to avoid repair operations from different bound-
aries interfering with each other.

3.4 Repairing Proximity Table Entries

In normal operation, the routing table entries in both of a
node’s proximity routing tables are updated periodically us-
ing information gathered from the node’s R-Table. Once
the R-Table repair algorithms above have run then these pe-
riodic updates will likewise repair the node’s proximity ta-
bles with no resulting increase in maintenance traffic.

4 Conclusion

Real-world data access patterns exhibit locality and hence
we argue that peer-to-peer overlay networks should provide
support for both content and path locality. One common
form of locality that we expect is placement of globally ac-
cessible data within the organizations that own that data. We
also expect that organizations will tend to access their own
data more heavily than that of other organizations. Con-
sequently there is value in enabling an organization’s over-
lay network to continue functioning internally even when
its member nodes have become partitioned from the rest of
the overlay network.

SkipNet supports content and path locality by means of
two separate, but related address spaces, one of which or-
ders nodes lexicographically by their string names. The
combination of the two spaces enables the definition of mul-
tiple globally accessible DHTs whose storage scopes span
subsets of all overlay nodes. Assuming that organizations
assign their nodes’ names with a small number of unique or-
ganizational prefixes, they can thus store data locally while
still making it globally available.

One of the more common forms of Internet failure is dis-
connection of an organization. The primary contribution
of this paper is a description of how SkipNet enables effi-
cient recovery from these failures. Because of the assump-
tion that organizations’ nodes will share one or a few name
prefixes, a disconnect will result in a small number of in-
ternally well-connected overlay segments, each of which is

able to route internal messages efficiently. Only a few rout-
ing pointers need to be repaired to connect segments into a
functioning overlay network able to route with mildly de-
graded efficiency throughout the organization. Similarly,
once a network partition has healed, the same approach can
be used to reconnect the organization’s SkipNet back into
the global one.

Because efficient routing is quickly obtained, full repair
of all nodes’ routing tables can be done as a background task
for both disconnection and reconnection. SkipNet’s struc-
ture enables these repairs to be ordered in a manner that
avoids unnecessary duplication of work.

Several important issues remain. Most notably, we have
not yet explored how to initiate and perform multiple seg-
ment repair operations in parallel. Another problem is that
segment edge nodes can become routing hot spots for both
successful, as well as failed, cross-segment traffic. Finally,
we also plan to find out how SkipNet behaves in practice
by using it as the underpinning for the Herald global event
notification service [1], which is currently being built to run
on a large test bed cluster of machines.

References
[1] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a

global event notification service. In HotOS VIII, May 2001.
[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-aware

routing in structured peer-to-peer overlay networks. Tech-
nical Report MSR-TR-2002-82, Microsoft Research, 2002.
http://www.research.microsoft.com/∼antr/PAST/location.pdf.

[3] N. J. A. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with Practical
Locality Properties. Technical Report MSR-TR-2002-92, Microsoft
Research, 2002.

[4] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man. SkipNet: A Scalable Overlay Network with Practical Locality
Properties. In Proceedings of 4th USITS, Mar. 2003.
http://research.microsoft.com/sn/Herald/papers/usits abstract.html.

[5] P. Keleher, S. Bhattacharjee, and B. Silaghi. Are virtualized overlay
networks too much of a good thing? In First International Workshop
on Peer-to-Peer Systems (IPTPS ’02), March 2002.

[6] C. Labovitz and A. Ahuja. Experimental Study of Internet Stabil-
ity and Wide-Area Backbone Failures. In Fault-Tolerant Computing
Symposium (FTCS), June 1999.

[7] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet
services fail, and what can be done about it? In Proceedings of 4th
USITS, Mar. 2003.

[8] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In
Workshop on Algorithms and Data Structures, pages 437–449, 1989.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of the ACM
SIGCOMM ’01 Conference, August 2001.

[10] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Interna-
tional Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Nov. 2001.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. In Proceedings of the ACM SIGCOMM ’01 Conference, pages
149–160, August 2001.

[12] A. Vahdat, J. Chase, R. Braynard, D. Kostic, and A. Rodriguez. Self-
organizing subsets: From each according to his abilities, to each ac-
cording to his needs. In First International Workshop on Peer-to-Peer
Systems (IPTPS ’02), March 2002.

[13] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-
tructure for fault-resilient wide-area location and routing. Technical
Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.

