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Abstract

A folklore result uses the Lovász local lemma to analyze the discrepancy of hypergraphs with bounded degree
and edge size. We generalize this result to the context of real matrices with bounded row and column sums.

1. Introduction

In combinatorics, discrepancy theory is the study of red-blue colorings of a hypergraph’s vertices such
that every hyperedge contains a roughly equal number of red and blue vertices. A classic survey on this
topic is [3].

Many combinatorial discrepancy results have a more general form as a geometric statement about
discrepancy of real vectors [3, §4]. Some examples include the Beck-Fiala theorem [2] and Spencer’s “six
standard deviations” theorem [9]. One exception is the following folklore result on the discrepancy of
hypergraphs of bounded degree and edge size [10, pp. 693] [4, Proposition 12].

Theorem 1. Let H be a hypergraph of maximum degree ∆ and maximum edge size R. Then there is a
red-blue coloring of the vertices such that, for every edge e, the numbers of red and blue vertices in e differ
by at most 2

√
R ln(R∆).

The proof is a simple consequence of the Lovász local lemma.
We show that this theorem also has a more general form as a geometric statement about discrepancy

of real vectors. Theorem 2 recovers Theorem 1 (up to constants) by letting Vi,j ∈ {0, 1} indicate whether
vertex j is contained in edge i. As usual, let [m] = {1, . . . ,m} and let ‖·‖p denote the `p-norm.

Theorem 2. Let V be an m × n real matrix, let vi denote its ith row and let vj denote its jth column.
Suppose that

•
∥∥vi∥∥

1
≤ R,

• |Vi,j | ≤ 1 for all i, j, and

• ‖vj‖1 ≤ ∆ for all j.

Assume that R ≥ 4 and ∆ ≥ 2. There exists y ∈ {−1,+1}n with ‖V y‖∞ ≤ O(
√
R log(R∆)).

It is worth calling attention to the main principle underlying this theorem. Ordinarily, one thinks of
applying the local lemma in scenarios where the dependencies between the events are described by a sparse
graph. In our scenario, that would usually be taken to mean that each column has small support. The main
principle of our theorem is that, in our scenario, sparsity can be measured by the `1-norm of the columns
rather than by the support size (the so-called `0-norm).
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2. The Proof

In order to prove Theorem 2, it is convenient to eliminate negative values and to rescale the entries.
Our main technical result is as follows. Let lg x denote the base-2 logarithm of x.

Theorem 3. Let A be a non-negative real matrix of size m×n, and let a1, . . . , an ∈ Rm≥0 denote its columns.
Suppose that

• ‖
∑
j aj‖∞ ≤ 1,

• Ai,j ≤ β for all i, j, and

• ‖aj‖1 ≤ δ for all j.

Assume that β ≤ min {δ/2, 1/4}. Define α :=
√

lg(δ/β2) >
√

2. Then there exists a vector y ∈ {−1,+1}n
such that

‖Ay‖∞ ≤ 16α
√
β.

Theorem 2 is derived from Theorem 3 by rescaling the vectors and separately considering the positive
and negative coordinates.

Proof of Theorem 2. Define v+
j , v

−
j ∈ Rn by

(v+
j )i = max {(vj)i/R, 0}

(v−j )i = max {−(vj)i/R, 0} .

Let aj ∈ R2n be the vector obtained by concatenating v+
j and v−j , and let A be the non-negative matrix

whose jth column is aj . Then 0 ≤ Ai,j ≤ 1/R, ‖aj‖1 = ‖vj‖1 /R ≤ ∆/R, and ‖
∑
j aj‖∞ ≤ 1. Applying

Theorem 3 with δ = ∆/R and β = 1/R, there must exist a vector y ∈ {−1,+1}m with

‖Ay‖∞ ≤ 16α
√
β = O(

√
lg(R∆)/R).

Since ‖V y‖∞ ≤ 2R ‖Ay‖∞, we obtain that ‖V y‖∞ = O(
√
R lg(R∆)).

We now turn to the proof of Theorem 3. Suppose we choose the vector y ∈ {−1,+1}n uniformly at
random. The discrepancy of row i is the value |

∑
j Ai,jyj |. Our goal is to bound ‖Ay‖∞ = maxi |

∑
j Ai,jyj |,

which is the maximum discrepancy of any row.
One challenge in analyzing ‖Ay‖∞ is that the entries of A can have various magnitudes, so one row’s

discrepancy can have various degrees of dependence on all other rows’ discrepancy. The Lovász local lemma
treats events as either dependent or independent, and cannot easily deal with mild amounts of dependence.

A natural approach to address this issue is to partition each row of A into sets whose entries all have
roughly the same magnitude. Define b := b− lg βc ≥ 2, so that every entry of every A is at most 2−b. For
k ≥ b, let

Si,k = { j : b− lgAi,jc = k }

be the locations of the entries in row i that take values in (2−(k+1), 2−k].
To bound the discrepancy of row i, we will actually bound the discrepancy of each set Si,k (i.e.,

|
∑
j∈Si,k

Ai,jyj |). The amount of discrepancy of Si,k that we will allow is a quantity Tk that is carefully
chosen such that the total discrepancy of row i will be small, but yet the Lovász local lemma can still be
applied. By the triangle inequality, the total discrepancy of row i is at most the sum of the discrepancies of
each Si,k.

Define
ε := 8α

√
β > 8

√
β. (1)
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Let Ei,k be the event that the discrepancy of Si,k exceeds

Tk := ε
∑
j∈Si,k

Ai,j + α2−k/2. (2)

The definition of Tk is chosen such that Ei,k is unlikely to occur; the first term ensures this in the case that
|Si,k| is large, and the second term ensures this in the case that |Si,k| is small. As shown below in (4), each
of the two terms contributes O(α

√
β) to the overall discrepancy of row i.

The probability of Ei,k can be analyzed by a basic Hoeffding bound: if {Xi}i≤` are independent random

variables, each Xi ∈ [−1,+1], and X = X1 + · · ·+X`, then Pr [ |X| > a ] ≤ 2e−a
2/2`. Applying this bound

to the discrepancy of Si,k, we get that

Pr [ Ei,k ] ≤ 2 exp
(
− (Tk2k)2/2|Si,k|

)
< 2 exp

(
− ε2

2|Si,k|

(
2k
∑
j∈Si,k

Ai,j

)2

− 2ε

2|Si,k|
α2k/2

(
2k
∑
j∈Si,k

Ai,j

))

≤ 2 exp
(
− ε2

8
|Si,k| −

ε

2
α2k/2

)
=: pi,k, (3)

where the last inequality uses
∑
j∈Si,k

Ai,j ≥ 2−(k+1)|Si,k|.

2.1. Discrepancy assuming no events occur

Suppose that none of the events Ei,k happen. Then the total discrepancy of row i is at most∑
k≥b

Tk = ε
∑
k≥b

∑
j∈Si,k

Ai,j + α
∑
k≥b

2−k/2

≤ ε+ α
∑
k≥b

2−k/2 (since we assume
∑n
j=1Ai,j ≤ 1)

= ε+ α
2−b/2

1− 2−1/2

≤ ε+ 4α
√

2β (since 2−b ≤ 2−(lg(1/β)−1) = 2β)

≤ 16α
√
β. (4)

2.2. Avoiding the events

We will use the local lemma to show that, with positive probability, none of the events Ei,k occur. To
do so, we must show that these events have limited dependence. Consider Ei,k, which is the event that the
elements in row i of value roughly 2−k have large discrepancy. This event depends only on the random values
{ yj : j ∈ Si,k }. We will bound the total failure probability of the events that depend on those random
values.

The local lemma can be stated as follows [1, Theorem 5.1.1]:

Theorem 4. Let E1, . . . , En be events in a probability space. Let Γ(Ei) be a set of events (other than Ei
itself) chosen such that Ei is mutually independent of all events outside of Γ(Ei) ∪ {Ei}. Suppose one can
associate a value x(Ei) ∈ (0, 1) with each event Ei such that

Pr [ Ei ] ≤ x(Ei) ·
∏

F∈Γ(Ei)

(
1− x(F)

)
. (5)

Then, with positive probability, no event Ei occurs.
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The value that we assign to Ei,k is

x(Ei,k) := 2 exp
(
− ε2|Si,k|/16− εα2k/2/2

)
. (6)

This choice deserves some explanation. When applying the local lemma, it is common to use either its
“symmetric” form [1, Corollary 5.1.2], in which the x(·) values are all equal, or its “asymmetric” form [7,
pp. 221], in which x(Ei) is taken to be 2 Pr [ Ei ] and this quantity must be sufficiently small. Instead, we
define x(Ei,k) to be approximately the square root of pi,k, which denotes our upper bound on Pr [ Ei,k ] from
(3). This choice turns out to be appropriate because, even though there will be substantial dependence
amongst the events, the product

∏
F∈Γ(Ei,k)(1 − x(F)) in (5) that controls the amount of dependence can

also be bounded by roughly
√
pi,k, so (5) is satisfied. In contrast, the product is bounded by a constant in

both the “symmetric” and “asymmetric” forms of the local lemma.

Claim 5. x(Ei,k) < 1/2 for every i ∈ [m] and k ≥ b.

Proof. By (1) we have ε > 8
√
β, so

ε2k/2 ≥ ε
√

2b ≥ ε
√

2lg(1/β)−1 = ε
√

1/2β > 4.

It follows that x(Ei,k) ≤ 2 exp(−ε2k/2/2) < 2 exp(−
√

2) < 1/2.

Our next step is to characterize Γ(Ei,k), the events that are dependent on Ei,k. We let Cj,k be the
events corresponding to all entries of value roughly 2−k in the jth column.

Cj,k := { Ei,k : b− lgAi,jc = k } (for j ∈ [n], k ≥ b)

Next, Yj contains all events corresponding to all entries in the jth column. In other words, Yj is the set of
all events that depend on the random variable yj .

Yj :=
⋃
k≥b

Cj,k =
{
Ei,b− lgAi,jc : i ∈ [m]

}
(for j ∈ [n])

Finally, since Ei,k depends only on the random variables { yj : j ∈ Si,k }, the set Γ(Ei,k) consists of all events
that depend on any of those labels.

Γ(Ei,k) =
⋃

j∈Si,k

Yj .

Claim 6. For every event Ei,k, inequality (5) is satisfied.

Proof. The main goal of the proof is to give a good lower bound for
∏
F∈Γ(Ei,k)(1 − x(F)). Claim 5 shows

that x(F) ≤ 1/2, so∏
F∈Γ(Ei,k)

(1− x(F)) ≥
∏

F∈Γ(Ei,k)

exp(−2x(F)) = exp

(
− 2

∑
F∈Γ(Ei,k)

x(F)

)
. (7)

So it suffices to give a good upper bound for
∑
F∈Γ(Ei,k) x(F).

First we derive a technical inequality that is quite loose, but suffices for our proof.

ε · α2k/2/2 = 8α
√
β · α2k/2/2 (by (1))

= α2 · 2
√
β · 21+b/2+(k−b)/2

= lg(δ/β2) ·
(
2
√
β2b/2

)
· 21+(k−b)/2

>
(
b+ lg(δ/β)

)
· 21+(k−b)/2 (since lg(1/β) ≥ b and 2b/2 ≥

√
1/2β)

≥
(
b+ lg(δ/β)

)
+ 21+(k−b)/2 (since xy ≥ x+ y if x, y ≥ 2)

≥
(
b+ lg(δ/β)

)
+ (k − b) (since 21+i/2 ≥ i for all i ≥ 0)

= k + lg(δ/β) (8)
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Next, consider all the events that depend on yj . Then∑
F∈Yj

x(F) =
∑
k≥b

∑
F∈Cj,k

x(F)

≤
∑
k≥b

∑
F∈Cj,k

exp(−εα2k/2/2) (by (6))

≤
∑
k≥b

|Cj,k| · e−(k+lg(δ/β)) (by (8))

≤
∑
k≥b

∣∣∣ { i : Ai,j ∈ (2−k−1, 2−k]
} ∣∣∣ · 2−(k+lg(δ/β))

≤ (2δ) · (β/δ) = 2β,

since the jth column of A sums to at most δ. Therefore∑
F∈Γ(Ei,k)

x(F) =
∑
j∈Si,k

∑
F∈Yj

x(F) ≤ 2|Si,k|β.

Combining this with (7), we obtain the lower bound

x(Ei,k) ·
∏

F∈Γ(Ei,k)

(1− x(F)) ≥ x(Ei,k) · exp

(
− 2

∑
F∈Γ(Ei,k)

x(F)

)
≥ 2 exp

(
− ε2|Si,k|/16− εα2k/2/2

)
· exp

(
− 4|Si,k|β

)
= 2 exp

(
− |Si,k|(ε2/16 + 4β)− εα2k/2/2

)
≥ 2 exp

(
− |Si,k|ε2/8− εα2k/2/2

)
= pi,k ≥ Pr [ Ei,k ]

where the penultimate inequality holds because ε2/8 ≥ ε2/16 + 4β, which follows because ε ≥ 8
√
β (cf. (1)).

This proves (5).

The previous claim shows that the hypotheses of the local lemma are satisfied. So there exists a vector
y ∈ {−1,+1}n such that none of the events Ei,k hold. As in (4), this implies that every row has discrepancy
at most 16α

√
β. In other words, ‖Ay‖∞ ≤ 16α

√
β. This completes the proof of Theorem 3.

3. Conclusion

Many discrepancy theorems on hypergraphs have a more general statement about the discrepancy of
real-valued matrices [3, §4]. We have provided another occurrence of this phenomenon by proving Theorem 2,
which generalizes Theorem 1. Our result also yields a randomized algorithm with running time poly(m,n)
for finding the desired vector y by directly applying the Moser-Tardos algorithm [8]. Independently, Harris
and Srinivasan [5] have proven a more general result which also implies Theorem 2 and also provides an
efficient randomized algorithm. To prove their result they derive a generalized form of the local lemma that
can accommodate mild dependencies between events.

We are not aware of any result showing that either Theorem 1 or 2 is optimal. It seems conceivable
that the logarithmic factor could be improved.

Conjecture 7. Let V be an m×n real matrix with |Vi,j | ≤ 1,
∥∥vi∥∥

1
≤ R, and ‖vj‖1 ≤ ∆ for all i ∈ [m], j ∈

[n]. There exists y ∈ {−1,+1}n with ‖V y‖∞ ≤ O(
√
R log(2 + ∆/R)).
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In the special case that R = n and ∆ = m, this would recover the classic result of Spencer [9]. The
following conjecture also seems plausible. Let ‖·‖ denote the spectral norm on the set of Hermitian matrices,
i.e., the maximum absolute value of all eigenvalues, and let tr denote the trace functional.

Conjecture 8. Let A1, . . . , An be Hermitian, positive semi-definite matrices of size m × m satisfying∑n
i=1Ai � I, ‖Ai‖ ≤ β and trAi ≤ δ for all i. Assume β ≤ δ. Then there exists y ∈ {−1,+1}n

with ‖
∑n
i=1 yiAi‖ ≤ O(

√
δ log(2 + δ/β)).

The special case in which the matrices are diagonal would imply Theorem 3. In the special case that
the matrices have rank one we have δ = β, so this would imply the recent result of Marcus et al. [6].
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[4] Béla Bollobás, David Pritchard, Thomas Rothvoss, and Alex Scott. Cover-decomposition and polychromatic numbers.

SIAM Journal on Discrete Math, 27(1):240–256, 2013.
[5] David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial resampling. In Proceedings of the

54th Annual IEEE Symposium on Foundations of Computer Science, pages 469–478, 2013.
[6] Adam Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing Families II: Mixed Characteristic Polynomials and

The Kadison-Singer Problem, June 2013. http://arxiv.org/abs/1306.3969.
[7] Michael Molloy and Bruce Reed. Graph Coloring and the Probabilistic Method. Springer, 2002.
[8] Robin Moser and Gabor Tardos. A constructive proof of the general Lovász Local Lemma. Journal of the ACM, 57(2),

2010.
[9] Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289:679–706, 1985.

[10] Aravind Srinivasan. Improving the discrepancy bound for sparse matrices: better approximations for sparse lattice
approximation problems. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 692–
701, 1997.

6

http://arxiv.org/abs/1306.3969

	Introduction
	The Proof
	Discrepancy assuming no events occur
	Avoiding the events

	Conclusion

