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Abstract
Existing techniques for identifying working set sizes
based on miss ratio curves (MRCs) have large memory
overheads which make them impractical for storage work-
loads. We present a novel data structure, the counter
stack, which can produce approximate MRCs while us-
ing sublinear space. We show how counter stacks can
be checkpointed to produce workload representations that
are many orders of magnitude smaller than full traces, and
we describe techniques for estimating MRCs of arbitrary
workload combinations over arbitrary windows in time.
Finally, we show how online analysis using counter stacks
can provide valuable insight into live workloads.

1 Introduction
Caching is poorly understood. Despite being a pervasive
element of computer system design – one that spans pro-
cessor, storage system, operating system, and even appli-
cation architecture – the effective sizing of memory tiers
and the design of algorithms that place data within them
remains an art of characterizing and approximating com-
mon case behaviors.

The design of hierarchical memories is complicated by
two factors: First, the collection of live workload-specific
data that might be analyzed to make “application aware”
decisions is generally too expensive to be worthwhile.
Approaches that model workloads to make placement de-
cisions risk consuming the computational and memory re-
sources that they are trying to preserve. As a result, sys-
tems in many domains have tended to use simple, general
purpose algorithms such as LRU to manage cache place-
ment. Second, attempting to perform offline analysis of
access patterns suffers from the performance overheads
imposed in trace collection, and the practical challenges
of both privacy and sheer volume, in sharing and analyz-
ing access traces.

Today, these problems are especially pronounced in de-
signing enterprise storage systems. Flash memories are
now available in three considerably different form factors:
as SAS or SATA-attached solid state disks, as NVMe de-
vices connected over the PCIe bus, and finally as flash-

backed nonvolatile RAM, accessible over a DIMM inter-
face. These three connectivity models all use the same un-
derlying flash memory, but present performance and pric-
ing that are pairwise 1-2 orders of magnitude apart. Fur-
ther, in addition to solid-state memories, spinning disks
remain an economical option for the storage of cold data.

This paper describes an approach to modeling, analyz-
ing, and reasoning about memory access patterns that has
been motivated through our experience in designing a hi-
erarchical storage system [10] that combines these vary-
ing classes of storage media. The system is a scalable,
network-attached storage system that can benefit from
workload awareness in two ways: First, the system can
manage allocation of the memory hierarchy in response
to workload characteristics. Second, the capacity at each
level of the hierarchy can be independently expanded to
satisfy application demands, by adding additional hard-
ware. Both of these properties require a more precise
ability to understand and characterize individual storage
workloads, and in particular their working set sizes over
time.

Miss ratio curves (MRCs) are an effective tool for as-
sessing working set sizes, but the space and time required
to generate them make them impractical for large-scale
storage workloads. We present a new data structure, the
counter stack, which can generate approximate MRCs in
sublinear space, for the first time making this type of anal-
ysis feasible in the storage domain.

Counter stacks use probabilistic counters [18] to esti-
mate MRCs. The original approach to generating MRCs
is based on the observation that a block’s ‘stack distance’
(also known as its ‘reuse distance’) gives the capacity
needed to cache it, and this distance is exactly the number
of unique blocks accessed since the previous request for
the block. The key idea behind counter stacks is that prob-
abilistic counters can be used to efficiently estimate stack
distances, allowing us to compute approximate MRCs at
a fraction of the cost of traditional techniques.

Counter stacks are fast. Our Java implementation can
process a week-long trace of 13 enterprise servers in 17
minutes using just 80 MB of RAM; at a rate of 2.3 mil-
lion requests per second, the approach is practical for on-



line analysis in production systems. By comparison, a re-
cent C implementation of a tree-based optimization [27]
of Mattson’s original stack algorithm [23] takes roughly
an hour and 92 GB of RAM to process the same trace.

Our contributions in this paper are threefold. First,
we introduce a novel technique for estimating miss ratio
curves using counter stacks, and we evaluate the perfor-
mance and accuracy of this technique. Second, we show
how counter stacks can be periodically checkpointed and
streamed to disk to provide a highly compressed repre-
sentation of storage workloads. Counter stack streams
capture important details that are discarded by statisti-
cal aggregation while at the same time requiring orders
of magnitude less storage and processing overhead than
full request traces; a counter stack stream of the com-
pressed 2.9 GB trace mentioned above consumes just
11 MB. Third, we present techniques for working with
multiple independent counter stacks to estimate miss ra-
tio curves for new workload combinations. Our library
implements slice, shift, and join operations, enabling the
nearly-instantaneous computation of MRCs for arbitrary
workload combinations over arbitrary windows in time.
These capabilities extend the functionality of MRC anal-
ysis and provide valuable insight into live workloads, as
we demonstrate with a number of case studies.

2 Background
The many reporting facilities embedded in the modern
Linux storage stack [5, 7, 19, 25] are testament to the
importance of being able to accurately characterize live
workloads. Common characterizations typically fall into
one of two categories: coarse-grain aggregate statistics
and full request traces. While these representations have
their uses, they can be problematic for a number of rea-
sons: averages and histograms discard key temporal in-
formation; sampling is vulnerable to the often bursty and
irregular nature of storage workloads; and full traces im-
pose impractical storage and processing overheads. New
representations are needed which preserve the important
features of full traces while remaining manageable to col-
lect, store, and query.

Working set theory [12] provides a useful abstrac-
tion for describing workloads more concisely, particularly
with respect to how they will behave in hierarchical mem-
ory systems. In the original formulation, working sets
were defined as the set of all pages accessed by a pro-
cess over a given epoch. This was later refined by using
LRU modelling to derive an MRC for a given workload
and restricting the working set to only those pages that
exhibit strong locality. Characterizing workloads in terms
of the unique, ‘hot’ pages they access makes it easier to

understand their individual hardware requirements, and
has proven useful in CPU cache management for many
years [21, 28, 35]. These concepts hold for storage work-
loads as well, but their application in this domain is chal-
lenging for two reasons.

First, until now it has been prohibitively expensive to
calculate the working set of storage workloads due to their
large sizes. Mattson’s original stack algorithm [23] re-
quired O(NM) time and O(M) space for a trace of N
requests and M unique elements. An optimization using
a balanced tree to maintain stack distances [1] reduces the
time complexity to O(N logM), and recent approxima-
tion techniques [14, 38] reduce the time complexity even
further, but they still haveO(M) space overheads, making
them impractical for storage workloads that may contain
billions of unique blocks.

Second, the extended duration of storage workloads
leads to subtleties when reasoning about their work-
ing sets. CPU workloads are relatively short-lived, and
in many cases it is sufficient to consider their working
sets over small time intervals (e.g., a scheduling quan-
tum) [42]. Storage workloads, on the other hand, can span
weeks or months and can change dramatically over time.
MRCs at this scale can be tricky: if they include too little
history they may fail to capture important recurring pat-
terns, but if they include too much history they can signif-
icantly misrepresent recent behavior.

This phenomenon is further exacerbated by the fact that
storage workloads already sit behind a file system cache
and thus typically exhibit longer reuse distances than CPU
workloads [43]. Consequently, cache misses in storage
workloads may have a more pronounced effect on miss
ratios than CPU cache misses, because subsequent re-
accesses are likely to be absorbed by the file system cache
rather than contributing to hits at the storage layer.

One implication of this is that MRC analysis needs to
be performed over various time intervals to be effective
in the storage domain. A workload’s MRC over the past
hour may differ dramatically from its MRC over the past
day; both data points are useful, but neither provides a
complete picture on its own.

This leads naturally to the notion of a history of locality:
a workload representation which characterizes working
sets as they change over time. Ideally, this representation
contains enough information to produce MRCs over arbi-
trary ranges in time, in much the same way that full traces
support statistical aggregation over arbitrary intervals. A
naı̈ve implementation could produce this representation
by periodically instantiating new Mattson stacks at fixed
intervals of a trace, thereby modelling independent LRU
caches with various amounts of history, but such an ap-
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proach would be impractical for real-world workloads.
In the following section we describe a novel technique

for computing stack distances (and by extension, MRCs),
from an inefficient, idealized form of counter stacks. Sec-
tion 4 explains several optimizations which allow a prac-
tical counter stack implementation that requires sublinear
space, and Section 5 presents the additional operations
that counter stacks support, such as slicing and joining.

3 Counter Stacks
Counter stacks capture locality properties of a sequence of
accesses within an address space. In the context of a stor-
age system, accesses are typically read or write requests
to physical disks, logical volumes, or individual files. A
counter stack can process a sequence of requests as they
occur in a live storage system, or it can process, in a sin-
gle pass, a trace of a storage workload. The purpose of a
counter stack is to represent specific characteristics of the
stream of requests in a form that is efficient to compute
and store, and that preserves enough information to char-
acterize aspects of the workload, such as cache behaviour.

Rather than representing a trace as a sequence of re-
quests for specific addresses, counter stacks maintain a
list of counters, which are periodically instantiated while
processing the trace. Each counter records the number
of unique trace elements observed since the inception of
that counter; this captures the size of the working set over
the corresponding portion of the trace. Computing and
storing samples of working set size, rather than a com-
plete access trace, yields a very compact representation
of the trace that nevertheless reveals several useful prop-
erties, such as the number of unique blocks requested, or
the stack distances of all requests, or phase changes in
the working set. These properties enable computation of
MRCs over arbitrary portions of the trace. Furthermore,
this approach supports composition and extraction oper-
ations, such as joining together multiple traces or slicing
traces by time, while examining only the compact repre-
sentation, not the original traces.

3.1 Definition

A counter stack is an in-memory data structure that is up-
dated while processing a trace. At each time step, the
counter stack can report a list of values giving the num-
bers of distinct blocks that were requested between the
current time and all previous points in time. This data
structure evolves over time, and it is convenient to display
its history as a matrix, in which each column records the
values reported by the counter stack at some point in time.

Formally, given a trace sequence (e1 . . . eN ), where ei
is the ith trace element, consider an N × N matrix C
whose entry in the ith row and jth column is the number
of distinct elements in the set {ei . . . ej}. For example,
the trace (a, b, c, a) yields the following matrix.

( a, b, c, a, )
1 2 3 3

1 2 3
1 2

1

The jth column of this matrix gives the values reported
by the counter stack at time step j, i.e., the numbers of
distinct blocks that were requested between that time and
all previous times. The ith row of the matrix can be viewed
as the sequence of values produced by the counter that was
instantiated at time step i.

The in-memory counter stack only stores enough infor-
mation to produce, at any point in time, a single column of
the matrix. To compute our desired properties over arbi-
trary portions of the trace, we need to store the entire his-
tory of the data structure, i.e., the entire matrix. However,
the history does not need be stored in memory. Instead,
at each time step we write to disk the current column of
values reported by the counter stack. This can be viewed
as checkpointing, or incrementally updating, the on-disk
representation of the matrix. This on-disk representation
is called a counter stack stream; for conciseness we will
typically refer to it simply as a stream.

3.2 LRU Stack Distances
Stack distances and MRCs have numerous applications in
cache sizing [23], memory partitioning between processes
or VMs [20,34,35,42], garbage collection frequency [39],
program analysis [14,41], workload phase detection [31],
etc. A significant obstacle to the widespread use of MRCs
is the cost of computing them, particularly the high stor-
age cost [4, 27, 30, 33, 40] – all existing methods require
linear space. Counter stacks eliminate this obstacle by
providinge xtremely efficient MRC computation while us-
ing sublinear space.

In this subsection we explain how stack distances, and
hence MRCs, can be derived from counter stack streams.
Recall that the stack distance of a given request is the
number of distinct elements observed since the last refer-
ence to the requested element. Because a counter stack
stores information about distinct elements, determining
the stack distance is straightforward. At time step j one
must find the last position in the trace, i, of the requested
element, then examine entry Cij of the matrix to deter-
mine the number of distinct elements requested between
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times i and j. For example, let us consider the matrix
given in Section 3.1. To determine the stack distance
for the second reference to trace element a at position 4,
whose previous reference was at position 1, we look up
the value C1,4 and get a stack distance of 3.

This straightforward method ignores a subtlety: how
can one find the last position in the trace of the requested
element? It turns out that this information is implicitly
contained in the counter stack. To explain this, suppose
that the counter that was instantiated at time i does not
increase during the processing of element ej . Since this
counter reports the number of distinct elements that it has
seen, we can infer that this counter has already seen el-
ement ej . On the other hand, if the counter instantiated
at time i + 1 does increase while processing ej , then we
can infer that this counter has not yet seen element ej .
Combining those inferences, we can conclude that i is the
position of last reference.

These observations lead to a finite-differencing scheme
that can pinpoint the positions of last reference. At each
time step, we must determine how much each counter in-
creases during the processing of the current element of
the trace. This is called the intra-counter change, and it is
defined to be

∆xij = Ci,j − Ci,j−1

To pinpoint the position of last reference, we must find the
newest counter that does not increase. This can be done by
comparing the intra-counter change of adjacent counters.
This difference is called the inter-counter change, and it
is defined to be

∆yij =

{
∆xi+1,j −∆xi,j if i < j

0 if i = j

Let us illustrate these definitions with an example. Re-
stricting our focus to the first four elements of the example
trace from Section 3.1, the matrices ∆x and ∆y are

{ a, b, c, a }
1 1 1 0

1 1 1
1 1

1
∆x

{ a, b, c, a }
0 0 0 1

0 0 0
0 0

0
∆y

Every column of ∆y either contains only zeros, or con-
tains a single 1. The former case occurs when the element
requested in this column has never been requested before.
In the latter case, if the single 1 appears in row i, then the
last request for that element was at time i. For example,
because ∆y14 = 1, the last request for element a before
time 4 was at time 1.

Determining the stack distance is now simple, as be-
fore. While processing column j of the stream, we infer

that the last request for the element ej occurred at time i
by observing that ∆yij = 1. The stack distance for the
jth request is the number of distinct elements that were re-
quested between time i and time j, which is Cij . Recall
that the MRC at cache size x is the fraction of requests
with stack distance exceeding x. Therefore given all the
stack distances, we can easily compute the MRC.

4 Practical Counter Stacks
The idealized counter stack stream defined in Section 3
stores the entire matrix C, so it requires space that is
quadratic in the length of the trace. This is actually more
expensive than storing the original trace. In this section
we introduce several ideas that allow us to dramatically
reduce the space of counter stacks and streams.

Section 4.1 discusses the natural idea of decreasing the
time resolution, i.e., keeping only every dth row and col-
umn of the matrix C. Section 4.2 discusses the idea
of pruning: eventually a counter may have observed the
same set of elements as its adjacent counter, at which
point maintaining both of them becomes unnecessary. Fi-
nally, Section 4.3 introduces the crucial idea of using
probabilistic counters to efficiently and compactly esti-
mate the number of distinct elements seen in the trace.

4.1 Downsampling
The simplest way to improve the space used by counter
stacks and streams is to decrease the time resolution. This
idea is not novel, and similar techniques have been used
in previous work [16].

In our context, decreasing the time resolution amounts
to keeping only a small submatrix of C that provides
enough data, and of sufficient accuracy, to be useful for
applications. For example, one could start a new counter
only at every dth position in the trace; this amounts to
keeping only every dth row of the matrix C. Next, one
could update the counters only at every dth position in the
trace; this amounts to keeping only every dth column of
the matrix C. We call this process downsampling.

Adjacent entries in the original matrixC can differ only
by 1, so adjacent entries in the downsampled matrix can
differ only by d. Thus, any entry that is missing from
the downsampled matrix can be estimated using nearby
entries that are present, up to additive error d. For large-
scale workloads with billions of distinct elements, even
choosing a very large value of d has negligible impact on
the estimated stack distances and MRCs.

Our implementation uses a slightly more elaborate
form of downsampling because we wish to combine traces
that may have activity bursts in disjoint time intervals and
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avoid writing columns during idle periods. As well as
starting a new counter and updating the old counters after
every dth request, we also start a new counter and update
the old counters every s seconds with one exception: we
do not output a column if the previous s seconds contain
no activity. Our experiments reported in Section 7 pick
d = 106 and s ∈ {60, 3600}.

4.2 Pruning
Recall that every row of the matrix contains a sequence
of values reported by some counter. For any two adja-
cent counters, the older one (the upper row) will always
emit values larger than or equal to the younger one (the
lower row). Let us consider the difference of these coun-
ters. Initially, at the time the younger one is created, their
difference is simply the number of distinct elements seen
by the older counter so far. If any of these elements reap-
pears in the trace, the older counter will not increase (as
it has seen this element before), but the younger counter
will increase, so the difference of the counters shrinks.

If at some point the younger counter has seen every el-
ement seen by the older counter, then their difference be-
comes zero and will remain zero forever. In this case, the
younger counter provides no additional information, so it
can be deleted. An extension of this idea is that, when
the difference between the counters becomes sufficiently
small, the younger counter provides negligible additional
information. In this case, the younger counter can again
be deleted, and its value can be approximated by referring
to the older counter. We call this process pruning.

The simplest pruning strategy is to delete the younger
counter whenever its value differs from its older neighbor
by at most p. This strategy ensures that the number of ac-
tive counters at any point in time is at most M/p. (Recall
thatM is the number of distinct blocks in the entire trace.)
In our current implementation, in order to fix a set of pa-
rameters that work well across many workloads of vary-
ing sizes, we instead delete the younger counter when-
ever its value is at least (1 − δ) times the older counter’s
value. This ensures that the number of active counters is
at most O(log(M)/δ). Our experiments reported in Sec-
tion 7 pick δ ∈ {0.1, 0.02}.

4.3 Probabilistic Counters
Counter stack streams contain the number of distinct
blocks seen in the trace between any two points in time
(neglecting the effects of downsampling and pruning).
The on-disk stream only needs to store this matrix of
counts, as the examples in Section 3 suggested. The in-
memory counter stack has a more difficult job – it must

be able to update these counts while processing the trace,
so each counter must keep an internal representation of
the set of blocks it has seen.

The naı̈ve approach is for each counter to represent this
set explicitly, but this would require quadratic memory
usage (again, neglecting downsampling and pruning). A
slight improvement can be obtained through the use of
Bloom filters [6], but for an acceptable error tolerance,
the space would still be prohibitively large. Our approach
is to use a tool, called a probabilistic counter or cardinal-
ity estimator, that was developed over the past thirty years
in the streaming algorithms and database communities.

Probabilistic counters consume extremely little space
and have guaranteed accuracy. The most practical of these
is the HyperLogLog counter [18], which we use in our im-
plementation. Each count appearing in our on-disk stream
is not the true count of distinct blocks, but rather an esti-
mate produced by a HyperLogLog counter which is cor-
rect up to multiplicative factor 1+ε. The memory usage of
each HyperLogLog counter is roughly logarithmic in M ,
with more accurate counters requiring more space. More
concretely, our evaluation discussed in Section 7 uses as
little as 53 MB of memory to process traces containing
over a hundred million requests and distinct blocks.

4.4 LRU Stack Distances
The technique in Section 3.2 for computing stack dis-
tances and MRCs using idealized counter stacks can be
adapted to use practical counter stacks. The matrices
∆x and ∆y are defined as before, but are now based on
the downsampled, pruned matrix containing probabilistic
counts. Previously we asserted that every column of ∆y
is either all zeros or contains a single 1. This is no longer
true. The entry ∆yij now reports the number of requests
since the counters were last updated whose stack distance
was approximately Cij .

To approximate the stack distances of all requests, we
process all columns of the stream. As there may be many
non-zero entries in the jth column of ∆y, we record ∆yij
occurrences of stack distance Cij for every i. As before,
given all stack distances we can compute the MRC.

An online version of this approach which does not
emit streams can produce an MRC of guaranteed accu-
racy using provably sublinear memory. In a companion
paper [15] we prove the following theorem. The key point
is that the space depends polynomially on ` and ε, the pa-
rameters controlling the precision of the MRC, but only
logarithmically on N , the length of the trace.

Theorem 1. The online algorithm produces an es-
timated MRC that is correct to within additive er-
ror ε at cache sizes 1

`M, 2`M, 3`M, . . . ,M using only
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O(`2 log(M) log2(N)/ε2) bits of space, with high proba-
bility.

5 The Counter Stack API
The previous two sections have given an abstract view of
counter stacks. In this section we describe the system that
we have implemented based on those ideas. The system
is a flexible, memory-efficient library that can be used to
process traces, produce counter stack streams, and per-
form queries on those streams. The workflow of applica-
tions that use this library is illustrated in Figure 1.

5.1 On-disk Streams
The on-disk streams output by the library are produced by
periodically outputting a new column of the matrix. As
discussed in Section 4, a new column is produced if either
d requests have been observed in the trace or s seconds
have elapsed (in the trace’s time) since the last column
was produced, except for idle periods, which are elided.
Each column is written to disk in a sparse format to incor-
porate the fact that pruning may cause numerous entries
to be missing.

In addition, the on-disk matrix C includes an extra row,
called row R, which records the raw number of requests
observed in the stream. That is, CRj contains the total
number of requests processed at the time that the jth col-
umn is output. Finally, the on-disk stream also records the
trace’s time of the current request.

5.2 Compute Queries
The counter stack library supports three computational
queries on streams: Request Count, Unique Request
Count and MRC.

The first two query operations are straightforward but
useful, as we will show in Section 8.4. The Request Count
query simply asks for the total number of requests that
occur in the stream, which is CRj where j is the index
of the last column. The Unique Request Count query is
similar except that it asks for the total number of unique
requests, which is C1j .

The most complicated stream operation is the MRC
query, which asks for the miss ratio curve of the given
stream. This query is processed using the method de-
scribed in Section 4.4.

5.3 Time Slicing and Shifting
It is often useful to analyze only a subset of a given trace
within a specific time interval. We refer to this time-based
selection as slicing. It is similarly useful when joining

I/O Trace
(per-device, volume, or object)

CStack

Stream

Writer

CS1 Reader

Reader

Reader

Request Count

Miss Ratio Curve

Unique Request Count
CS2

CSm

slice

shift

...
join

specify compute

Counter Stack Creation 

Query Execution

CS1 CS2

CSmCS3

Figure 1: The counter stack library architecture.

traces to alter the time signature by a constant time inter-
val. We refer to this alteration as shifting.

The counter stack library supports slicing and shifting
as specification operations. Given a stream containing
a matrix C, the stream for the time slice between time
step i and j is the submatrix with corners at Cii and Cjj .
Likewise, to obtain the stream for the trace shifted for-
ward/backward s time units, we simply add/subtract s
to each of the time indices associated with the rows and
columns of the matrix.

5.4 Joining
Given two or more workloads, it is often useful to under-
stand the behavior that would result if they were combined
into a single workload. For example, if each workload is
an I/O trace of a different process, one may want to in-
vestigate the cache performance of those processes with a
shared LRU cache.

Counter stacks enable such analyses through the join
operation. Given two counter stack streams, the desired
output of the join operation is what one would obtain by
merging the original two traces according to the traces’
times, then producing a new counter stack stream from
that merged trace. Our library can produce this new
stream using only the two given streams, without exam-
ining the original traces. The only assumption we require
is that the two streams must access disjoint sets of blocks.

The join process would be simple if, for every i, the
time of the ith request were the same in both traces; in this
case, we could simply add the matrices stored in the two
streams. Unfortunately that assumption is implausible, so
more effort is required. The main ideas are to:

• Expand the two matrices so that each has a row and
column for every time that appears in either trace.
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time 1:00 1:02 1:05 1:14 1:17
A a b b
CA 1 1 2 2 2

0 1 1 1
1 1 1

0 1
1

B d d
CB 0 1 1 1 1

1 1 1 1
0 1 1

1 1
0

merge a d b d b
CA + CB 1 2 3 3 3

1 2 2 2
1 2 2

1 2
1

Figure 2: An example illustrating the join operation.

• Interpolate to fill in the new matrix entries.
• Add the resulting matrices together.
Let us illustrate this process with an example. Consider

a trace A that requests blocks (a, b, b) at times 1:00, 1:05,
1:17, and a trace B requests blocks (d, d) at times 1:02
and 1:14. The merge of the two traces is as follows:

time 1:00 1:02 1:05 1:14 1:17
A a b b
B d d

merge a d b d b

To join these streams, we must expand the matrices in
the two streams so that each has five rows and columns,
corresponding to the five times that appear in the traces.
After this expansion, each matrix is missing entries corre-
sponding to times that were missing in its trace. We fill in
those missing entries by an interpolation process: a miss-
ing row is filled by copying the nearest row beneath it, and
a missing column is filled by copying the nearest column
to the left of it. Figure 2 shows the resulting matrices;
interpolated values are shown in bold blue.

Pruned counters can sometimes create negative values
in ∆x. For example, after pruning a counter in row j
at time t, the interpolated value of the pruned counter at
t + 1 is set to the nearest row beneath it, representing a
younger counter. Often, this lower counter has a smaller
value than the pruned counter. The interpolated value at
t+ 1 will then be less than its previous value at t, produc-
ing a negative intra-counter change. We can avoid intro-
ducing negative values in ∆x by replacing any negative

values in ∆x by the nearest nonnegative value beneath
it. This replacement has the same effect of changing the
value of the pruned counter to the lower counter in col-
umn t prior to calculating the intra-counter change for the
column representing t+ 1.

6 Error and Uncertainty
While each of the optimizations described in Section 4
dramatically reduce the storage requirements of counter
stacks, they may also introduce uncertainty and error into
the final calculations. In this section, we discuss potential
sources of error, as well as how to modify the different
operations described in Section 3 to compute lower and
upper bounds on the stack distances.

6.1 Counter Error

HyperLogLog counters introduce error in two ways:
count estimation and simultaneous register updates. Hy-
perLogLog counters report a count of distinct elements
that is only correct up to multiplicative factor ε, which
is determined by a precision parameter. This uncertainty
produces deviation from the true MRC and can be con-
trolled by increasing the precision of the HyperLogLog
counters, at the cost of a greater memory requirement.

Simultaneous register updates introduce a subtler form
of error. A HyperLogLog counter estimates unique counts
by taking the harmonic mean of a set of internal vari-
ables called registers. Due to the design of HLLs, some-
times a register update might cause the older counter to
increase in value more than the younger counter. This
phonemoneon leads to negative updates in ∆y, because
older counters are expected to change more slowly than
younger counters. Theorem 1 implies that the negative
entries in the ∆y matrix introduced by simultaneous reg-
ister updates are offset by corresponding over-estimates
when register modifications between counters are not si-
multaneous.

In some cases, the histogram of stack distances may ac-
cumulate enough negative entries that there are bins with
negative counts. The cumulative sum of such a histogram
will result in a non-monotonic MRC. We can enforce a
monotonic MRC by accumulating any negative histogram
bins in a separate counter, carrying the difference forward
in the cumulative sum and discounting positive bins by
the negative count. In practice, negative histogram entries
make up less then one percent of the reported stack dis-
tances, with little to no visible effect on the accumulated
MRC.
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6.2 Downsampling Uncertainty
Whereas the scheme of Section 3.2 computes stack dis-
tances exactly, the modified scheme of Section 4.4 only
computes approximations. This uncertainty in the stack
distances is caused by downsampling, pruning and use of
probabilistic counters. To illustrate this, consider the ex-
ample shown in Figure 3, and for simplicity let us ignore
pruning and any probabilistic error.

At every time step j, the finite differencing scheme uses
the matrix ∆y to help estimate the stack distances for all
requests that occurred since time step j − 1. More con-
cretely, if such a request increases the (i+1)th counter but
does not increase the ith counter, then we know that the
most recent occurrence of the requested block lies some-
where between time step i and time step i+1. Since there
may have been many requests between time i and time
i + 1, we do not have enough information to determine
the stack distance exactly, but we estimate it up to addi-
tive error d (the downsampling factor). A careful analysis
can show that the request must have stack distance at least
Ci+1,j−1 + 1 and at most Cij .

7 Evaluation
In this section we empirically validate two claims: (1) the
time and space requirements of counter stack processing
are sufficiently low that it can be used for online analysis
of real storage workloads, and (2) the technique produces
accurate, meaningful results.

We use a well-studied collection of storage traces re-
leased by Microsoft Research in Cambridge (MSR) [26]
for much of our evaluation. The MSR traces record the
disk activity (captured beneath the file system cache) of
13 servers with a combined total of 36 volumes. No-
table workloads include a web proxy (prxy), a filer serv-
ing project directories (proj), a pair of source control
servers (src1 and src2), and a web server (web). The
raw traces comprise 417 million records and consume just
over 5 GB in compressed CSV format.

We compare our technique to the ‘ground truth’ ob-
tained from full trace analysis (using trace trees, the
tree-based optimization of Mattson’s algorithm [23, 27]),
and, where applicable, to a recent approximation tech-
nique [37] which derives estimated MRCs from average
footprints (see Section 9 for more details). For fairness,
we modify the original implementation [13] by using a
sparse dictionary to reduce memory overhead.

7.1 Performance
The following experiments were conducted on a Dell
PowerEdge R720 with two six-core Intel Xeon proces-

Fidelity Time Memory Throughput Storage

low 17.10 m 78.5 MB 2.31M reqs/sec 747 KB

high 17.24 m 80.6 MB 2.29M reqs/sec 11 MB

Table 1: The resources required to create low and high fidelity
counter stacks for the combined MSR workload (64 MB heap).

sors and 96 GB of RAM. Traces were read from high-
performance flash to eliminate disk IO bottlenecks.

Throughout this section we present figures for both
‘low’ and ‘high’ fidelity streams. We control the fidelity
by adjusting the number of counters maintained in each
stream; the parameters used in these experiments repre-
sent just two points of a wide spectrum, and were chosen
in part to illustrate how accuracy can be traded for perfor-
mance to meet individual needs.

We first report the resources required to convert a raw
storage trace to a counter stack stream. The memory foot-
print for the conversion process is quite modest: convert-
ing the entire set of MSR traces to high-fidelity counter
stacks can be done with about 80 MB of RAM 1. The pro-
cessing time is low as well: our Java implementation can
convert a trace to a high-fidelity stream at a rate of 2.3
million requests per second with a 64 MB heap and 2.7
million requests per second with a 256 MB heap.

The size of counter stack streams can also be con-
trolled by adjusting fidelity. Ignoring write requests,
the full MSR workload consumes 2.9 GB in a com-
pressed, binary format. We can reduce this to 854 MB
by discarding latency values and capping timestamp res-
olutions at one second, and we can shave off another
50 MB through domain-specific compaction techniques
like delta-encoding time and offset values. But as Ta-
ble 1 shows, this is more than 70 times larger than a high-
fidelity counter stack representation.

The compression achieved by counter stack streams is
workload-dependent. High-fidelity streams of the MSR
workloads are anywhere from 12 (hm) to 1,024 (prxy)
times smaller than their compressed binary counterparts,
with larger traces tending to compress better. A stream of
the combined traces consumes just over 1.5 MB per day,
meaning that weeks or even months of workload history
can be retained at very reasonable storage costs.

Once a trace has been converted to a counter stack
stream, performing queries is very quick. For example,
an MRC for the entire week-long MSR trace can be com-

1This is not a lower bound. Additional reductions can be achieved
at the expense of increased garbage collection activity in the JVM; for
example, enforcing a heap limit of 32 MB increases processing time
for the high-fidelity counter stack by about 30% and results in a peak
resident set size of 53 MB.
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C 10 20 50
15 50

40
R 100 200 300

→

∆x 10 10 30
15 35

40
∆R 100 100 100

→

∆y 90 (1, 10) 5 (1, 20) 5 (16, 50)
85 (1, 15) 5 (1, 50)

60 (1, 40)

Figure 3: An example of computing stack distances using a downsampled matrix. The entries of ∆y show the number of requests
and the parenthesized values show the bounds on the stack distances that we can infer for those requests.

puted from the counter stack stream in just seconds, with
negligible memory overheads. By comparison, comput-
ing the same MRC using a trace tree takes about an hour
and reaches a peak memory consumption of 92 GB, while
the average footprint technique requires 8 and a half min-
utes and 23 GB of RAM.

7.2 Accuracy
Figure 4 shows miss ratio curves for each of the individ-
ual workloads contained in the MSR traces as well as the
combined master trace; superimposed on the baseline
curves (showing the exact MRCs) are the curves com-
puted using footprint averages and counter stacks. Some
of the workloads feature MRCs that are notably different
from the convex functions assumed in the past [35]. The
web workload is the most obvious example of this, and it
is also the workload which causes the most trouble for the
average footprint technique.

Figure 5 shows three examples of MRCs produced by
joining individual counter stacks. The choice of work-
loads is somewhat arbitrary; we elected to join work-
loads of commensurate size so that each would contribute
equally to the resulting merged MRC. As described in
Section 5.4, the join operation can introduce additional
uncertainty due to the need to infer the values of missing
counters, but the effects are not prominent with the high-
fidelity counter stacks used in these examples.

We performed an analysis of curve errors at different fi-
delities, with verylow (δ = 0.46, d = 19M , s = 32K)
at one extreme and high (δ = 0.01, d = 1M , s = 60) at
the other. To measure curve error, we use the Mean Abso-
lute Error (MAE) between a given curve and its ground-
truth counterpart. The MAE is defined as the average ab-
solute difference between two series mrc and mrc′, or
1
N

∑
|mrc(x)−mrc′(x)|. Because MRCs range between

0 and 1, the MAEs are also confined to the same range,
where a value of 0 implies perfectly corresponding curves.
At the other extreme, it is difficult to know what consti-
tutes a “bad” MAE because it is unlikely to be close to 1
except in singular cases. For example, the MAE between
the hm and the ts Mattson curves is only 0.15. For the
high fidelity counter stacks, we observe MAEs between
0.002 and 0.02, and for the average footprint algorithm,

we observe MAEs between 0.001 and 0.04.
We find that curve error under compression is highly

workload-dependent. We observed the largest errors on
“jagged” workloads with sharp discontinuities, such as
src1 and web, while workloads with “flatter” MRCs
such as stg and usr are almost invariant to compression.
Figure 6 summarizes our findings on two such workloads.
On the left, we illustrate the difference in the change in er-
ror as fidelity decreases for a jagged workload, src1, and
a flat workload, usr. On the right, we show the smooth-
ing effect of decreasing the counter stack fidelity by com-
paring the verylow and high fidelity curves against
Mattson on src1.

8 Workload Analysis
We have shown that counter stacks can be used to produce
accurate MRC estimations in a fraction of the time and
space used by existing techniques. We now demonstrate
some of the capabilities of the counter stack query inter-
face through a series of case studies of the MSR traces.

8.1 Combined Workloads
Hit rates are often used to gauge the health of a storage
system: high hit rates are considered a sign that a system
is functioning properly, while poor hit rates suggest that
tuning or configuration changes may be required. One
problem with this simplistic view is that the combined hit
rates of multiple independent workloads can be dominated
by a single workload, thereby hiding potential problems.

We find this is indeed the case for the MSR traces. The
prxy workload features a small working set and a high
activity rate – it accesses only 2 GB of unique data over
the entire week but issues 15% of all read requests in the
combined trace. Table 2 puts this in perspective: the com-
bined workload achieves a hit rate of 50% with a 550 GB
cache; more than 250 GB of additional cache capacity
would be required to achieve this same hit rate without
the prxy workload. This illustrates why combined hit
rate is not an adequate metric of system behavior. Diag-
nostic tools which present hit rates as an indicator of stor-
age well-being should be careful to consider workloads
independently as well as in combination.
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Figure 4: MSR miss ratio curves.
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Figure 5: MRCs for various combinations of MSR workloads (produced by the join operation).
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Figure 6: The qualitative effect of counter stack fidelity is workload-dependent. On the left, we show the curve error and file
sizes of different fidelities. The usr workload is robust to compression to very low fidelity, while the src1 workload degrades
progressively. On the right, we show the visual outcome of compression to both high and verylow fidelity on src1.

Desired Hit Rate Required Cache Size

With prxy Without prxy

30% 2.5 GB 21.6 GB

40% 19.2 GB 525.5 GB

50% 566.6 GB 816.0 GB

Table 2: Cache sizes required to obtain desired hit rates for
combined MSR workloads with and without prxy.

8.2 Erratic Workloads

MRCs can be very sensitive to anomalous events. A one-
off bulk read in the middle of an otherwise cache-friendly
workload can produce an MRC with high miss rates, ar-
guably mischaracterizing the workload. We wrote a sim-
ple script that identifies erratic workloads by searching
for hour-long slices with unusually high miss ratios. The
script found several workloads, including mds, stg, ts,
and prn, whose week-long MRCs are dominated by just
a few hours of intense activity.

Figure 7 shows the effect these bursts can have on
workload performance. The full-week MRC for prn
(Figure 4) shows a maximum achievable hit rate of 60%
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Figure 7: Time-sliced prn workload.

at a cache size of 83 GB. The workload features a two-
hour read burst starting 102 hours into the trace which ac-
counts for 29% of the total requests and 69% of the unique
blocks. Time-sliced MRCs before and after this burst fea-
ture hit rates of 60% at cache sizes of 10 GB and 12 GB,
respectively. This is a clear example of how anomalous
events can significantly distort MRCs, and it shows why
it is important to consider MRCs over various intervals in
time, especially for long-lived workloads.

8.3 Conflicting Workloads

Many real-world workloads exhibit pronounced diurnal
patterns: interactive workloads typically reflect natu-
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Figure 8: Best and worst time-shifted MRCs for MSR work-
loads (excluding prxy). We omit cache sizes greater than 1.5
TB to preserve details in the plot.

ral trends in business hours, while automatic workloads
are often scheduled at regular intervals throughout the
day [17, 22, 29]. When such workloads are served by the
same shared storage, it makes sense to try to limit the de-
gree to which they interfere with one another.

The time-shifting functionality of counter stacks pro-
vides a powerful tool for exploring coarse-grain schedul-
ing of workloads. To demonstrate this, we wrote a script
which computes the MRCs of the combined MSR trace
(excluding prxy) in which the start times of a few of the
larger workloads (proj, src1, and usr) are shifted by
up to six hours. Figure 8 plots the best and worst MRCs
computed by this script. As is evident, workload schedul-
ing can significantly affect hit rates. In this case, shift-
ing workloads by just a few hours changes the capacity
needed for a 50% hit rate by almost 50%.

8.4 Periodic Workloads
MRCs are good at characterizing the raw capacity needed
to accommodate a given working set, but they provide
very little information about how that capacity is used
over time. In environments where many workloads share
a common cache, this lack of temporal information can be
problematic. For example, as Figure 4 shows, the entire
working set of web is less than 80 GB, and it exhibits a hit
rate of 75% with a dedicated cache at this size. However,
as shown in Figure 9, the workload is highly periodic and
is idle for all but a few hours every day.

This behavior is characteristic of automated tasks like
nightly backups and indexing jobs, and it can be problem-
atic because periodic workloads with long reuse distances
tend to perform poorly in shared caches. The cost of this
is twofold: first, the periodic workloads exhibit low hit
rates because their long reuse distances give them low pri-
ority in LRU caches; and second, they can penalize other
workloads by repeatedly displacing ‘hotter’ data. This is
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Figure 9: web total and unique requests per hour.

exactly what happens to web in a cache shared with the
rest of the MSR workloads: despite its modest working set
size and high locality, it achieves a hit rate of just 7.5% in
a 250 GB cache and 20% in a 500 GB cache.

Scan-resistant replacement policies like ARC [24] and
CAR [3] offer one defense against this poor behavior by
limiting the cache churn induced by periodic workloads.
But a better approach might be to the exploit the highly
regular nature of such workloads – assuming they can
be identified – through intelligent prefetching. Counter
stacks are well-suited for this task because they make it
easy to detect periodic accesses to non-unique data. While
this alone would not be sufficient to implement intelligent
prefetching (because the counters do not indicate which
blocks should be prefetched), it could be used to alert the
system of the recurring pattern and initiate the capture of
a more detailed trace for subsequent analysis.

8.5 Zipfian Workloads

We end with a brief discussion of synthetic workload gen-
erators like FIO [2] and IOMeter [32]. These tools are
commonly used to test and validate storage systems. They
are capable of generating IO workloads based on parame-
ters describing, among other things, read/write mix, queue
depth, request size, and sequentiality. The simpler among
them support various combinations of random and se-
quential patterns; FIO recently added support for pareto
and zipfian distributions, with the goal of better approxi-
mating real-world workloads.

Moving from uniform to zipfian distributions is a step
in the right direction. Indeed, many of the MSR work-
loads, including hm, mds, and prn, exhibit roughly zip-
fian distributions. However, as is evident in Figure 4, the
MRCs of these workloads vary dramatically. Figure 10
plots the MRC of a perfectly zipfian workload produced
by FIO alongside two permutations of the same workload;
as expected, request ordering has a significant impact on
locality and cache behavior. These figures show that syn-
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Figure 10: MRCs for three permutations of a single zipfian dis-
tribution: random, series (a concatenation of sorted series of
unique requests), and sorted (truncated to preserve detail).

thetic zipfian workloads do not necessarily produce ‘re-
alistic’ MRCs, emphasizing the importance of using real-
world workloads when evaluating storage performance.

9 Related Work
Mattson et al. [23] defined stack distances and presented a
simple O(NM) time, O(M) space algorithm to calculate
them. Bennett and Kruskal [4] used a tree-based imple-
mentation to bring the runtime to O(N log(N)). Almási
et al. improved this to O(N log(M)), and Niu et al. [27]
introduced a parallel algorithm.

A different line of work explores techniques to effi-
ciently approximate stack distances. Eklov and Hager-
sten [16] proposed a method to estimate stack distances
based on sampling. Ding and Zhong [14] use an approx-
imation technique inspired by the tree-based algorithms.
Xiang et al. [37] define the footprint of a given trace win-
dow to be the number of distinct blocks occurring in the
window. Using reuse distances, they estimate the average
footprint across a logarithmic scale of window lengths.
Xiang et al. [38] then develop a theory connecting the av-
erage footprint and the miss ratio, contingent on a regu-
larity condition they call the reuse-window hypothesis. In
comparison, counter stacks use dramatically less memory
while producing MRCs with comparable accuracy.

A large body of work from the storage community
explores methods for representing workloads concisely.
Chen et al. [9] use machine learning techniques to extract
workload features, Tarasov et al. [36] describe workloads
with feature matrices, and Delimitrou et al. [11] model
workloads with Markov Chains. These representations
are largely incomparable to counter stacks – they cap-
ture many details that are not preserved in counter stack
streams, but they discard much of the temporal informa-
tion required to compute accurate MRCs.

Many domain-specific compression techniques have

been proposed to reduce the cost of storing and process-
ing workload traces. These date back to Smith’s stack
deletion [33] and include Burtscher’s VPC compression
algorithms [8]. They generally preserve more information
than counter stacks but achieve lower compression ratios.
They do not offer new techniques for MRC computation.

10 Conclusion
Sizing the tiers of a hierarchical memory system and man-
aging data placment across them is a difficult, workload
dependent problem. Techniques such as miss ratio curve
estimation have existed for decades as a method of mod-
eling workload behaviors offline, but their computational
and memory overheads have prevented their incorporation
as a means to make live decisions in real systems. Even
as an offline tool, practical issues such as the overheads
associated with trace collection and storage often prevent
the sharing and analysis of memory access traces.

Counter stacks provide a powerful software tool to ad-
dress these issues. They are a compact form of local-
ity characterization that allow workloads to be studied
in new interactive ways, for instance by searching for
anomalies or shifting workloads to identify pathological
load possibilities. They can also be incorporated directly
into system design as a means of making more informed
and workload-specific decisions about resource allocation
across multiple tenants.

While the design and implementation of counter stacks
described in this paper have been motivated through the
design of an enterprise storage system, the techniques
are relevant in other domains, such as processor architec-
ture, where the analysis of working set size over time and
across workloads is critical to the design of efficient, high-
performance systems.
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