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Abstract
Prediction with experts’ advice is one of the most fundamental problems in online learning and
captures many of its technical challenges. A recent line of work has looked at online learning
through the lens of differential equations and continuous-time analysis. This viewpoint has yielded
optimal results for several problems in online learning.

In this paper, we employ continuous-time stochastic calculus in order to study the discrete-time
experts’ problem. We use these tools to design a continuous-time, parameter-free algorithm with
improved guarantees for the quantile regret. We then develop an analogous discrete-time algorithm
with a very similar analysis and identical quantile regret bounds. Finally, we design an anytime
continuous-time algorithm with regret matching the optimal fixed-time rate when the gains are
independent Brownian Motions; in many settings, this is the most difficult case. This gives some
evidence that, even with adversarial gains, the optimal anytime and fixed-time regrets may coincide.
Keywords: experts, online learning, stochastic calculus, anytime, quantile regret

1. Introduction

One of the cornerstone online learning (OL) tasks is prediction with experts’ advice or experts’
problem. In this problem, at each round t = 1, 2, ... a player picks a probability distribution pt over
n experts. Next, an adversary picks gains1 gt ∈ [−1, 1]n for each of the experts. At the end of round
t the player receives the expected gains pTt gt of the experts according to pt. The performance of
the player is given by the regret: the difference between the best expert’s gains in hindsight and the
players’ gains. Albeit classical, the experts’ problem already captures many of the key theoretical
challenges in OL. Determining the minimax optimal regret has been a foundational research vein in
OL. We focus on the analysis of optimal rates in two settings: anytime regret and quantile regret.

An intriguing question is to determine the optimal regret achievable by an anytime algorithm,
that is, an algorithm that does not have access to the total number T of rounds. When the algorithm
knows T beforehand, which we refer to as the fixed-time setting, the classical Multiplicative Weights
Update (MWU) method (Vovk, 1990; Littlestone and Warmuth, 1994) suffers no more than

√
2T lnn

regret, which is optimal in the worst-case (Cesa-Bianchi et al., 1997). For the time being, the best
anytime regret guarantee known is 2

√
T lnn using MWU with a time-varying step-size (Bubeck,

2011, Theorem 2.4). It is unknown, if for general n, there is an algorithm that guarantees regret
smaller than 2

√
T lnn or whether one can prove a lower bound strictly better than

√
2T lnn.

The classical notion of regret may not always be ideal. For example, one might not mind if the
player performs badly when compared to the single best expert if it performs well when compared
to some ε-quantile of the top experts, denoted by ε-quantile regret. The first algorithms aimed
provably good quantile regret were proposed by Chaudhuri et al. (2009). Currently, the best-known

1. In this paper we use gains in [−1, 1] instead of costs in [0, 1] due to parallels to random walks and Brownian motion.
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ε-quantile regret guarantees are2 2
√

3T ln(1/ε) in the fixed-time setting (Orabona and Pal, 2016)
and 4

√
t ln(1/ε) in the anytime setting (Chernov and Vovk, 2010). Recently, Negrea et al. (2021)

showed a lower-bound of
√

2T ln(1/ε) on the ε-regret. Thus, the gap between the upper and lower
bounds is

√
6 in the fixed-time setting and 2

√
2 in the anytime setting.

Our contributions. We present a continuous-time variant of the experts problem and use it to study
minimax optimal (quantile) regret rates. Our setting is a simpler variant of the framework proposed
by Freund (2009), but we use it as a guide in algorithm design. Namely, working in continuous
time allows us to utilize powerful analytical tools from stochastic calculus, which often allow for
simpler analyses. In this paper, we use continuous-time techniques to obtain improved bounds on the
minimax optimal ε-quantile regret and obtain intriguing results for the anytime continuous regret.
Furthermore, we hope this to be a showcase of the potential of the impact of this continuous-time
framework in research on the experts’ problem. Our specific results are as follows.

• Continuous MWU. To demonstrate the parallels between the discrete and continuous time
problems, we describe a continuous-time version of MWU. In Theorem 3.3, we show that we
can easily obtain bounds on the continuous regret that match the best-known regret bounds for
MWU:

√
2T lnn in the fixed time setting and 2

√
T lnn in the anytime setting.

• Continuous quantile regret. Taking inspiration from Itô’s formula from stochastic calculus,
we propose a new algorithm for quantile regret in continuous time. This algorithm has anytime
continuous quantile regret bounds whose leading constants are better than any known results for
the discrete-case (Theorem 4.5). The bounds hold for all ε ∈ (0, 1) and T > 0 simultaneously.
The algorithm can be interpreted as “parameter-free”, since it does not involve a learning rate.

• Discretized quantile regret bound. Next, we discretize the algorithm from the previous
section while preserving the anytime quantile regret guarantees (Theorem 4.6). This algorithm
is also parameter-free, and improves upon the best-known3 quantile regret bounds in the
literature. Furthermore, our analysis closely matches the continuous-time analysis.

• Improved anytime continuous regret with independent experts. We design an anytime
continuous-time algorithm with

√
2T lnn regret (a.s. for all T ), asymptotically in n, when the

gains are independent Brownian Motion (Theorem 5.2). A simple argument shows that this
is optimal (Proposition 5.3): for any algorithm and fixed time T > 0, the expected regret at
time T exceeds

√
2T lnn(1− o(1)). Thus, against independent experts, the anytime setting is

no harder than the fixed-time setting. This gives some evidence that
√

2T lnn anytime regret
against all adversaries might be possible, matching the optimal fixed-time regret.

1.1 Related Work

Optimal regret in fixed and anytime settings. The most well-known algorithm for the experts
setting is the multiplicative weights update (MWU) algorithm (Littlestone and Warmuth, 1994;
Vovk, 1990). In the fixed-time setting (with gains in [−1, 1]), MWU achieves a regret bound of√

2t lnn and this bound is tight (Cesa-Bianchi et al., 1997, Corollary 3.2.2). In the anytime setting,

2. Ignoring low order terms relative to
√
T ln(1/ε) and multiplying by 2 due to gains being in [−1, 1] instead of [0, 1].

3. In independent work, Zhang et al. (2022) developed an algorithm using coin-betting and a similar potential function to
the one we use and which yields a similar quantile regret bound. We further discuss how to obtain the bound from their
results in Section 4.1. In contrast, our analysis is quite self-contained, and avoids using the coin-betting framework.
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MWU with a dynamic step size is known to achieve a regret bound of 2
√
t lnn for all times t ≥ 0

(e.g. Cesa-Bianchi and Lugosi, 2006, §14, Nesterov, 2009, Theorem 4, and Bubeck, 2011, §2.5). It
is not known whether the constant 2 is tight; the best known lower bound for the anytime setting is
the
√

2t lnn which is inherited from the fixed-time setting.

In the fixed-time setting, the minimax regret is known for n = 2, 3, 4 experts (Cover, 1967;
Abbasi-Yadkori et al., 2017; Bayraktar et al., 2020a). In the anytime setting, we know an optimal
algorithm only for n = 2 experts, where Harvey et al. (2020b) showed that the optimal regret is γ

√
t

where γ ≈ 1.3069.

Another model for regret introduced by Gravin et al. (2016) is the geometric stopping time model
in which the number of rounds is a geometric random variable. There is a growing body of work in
exploring connections between PDEs and the expert problems in the pursuit of optimal algorithms
(Andoni and Panigrahy, 2013; Bayraktar et al., 2020a,b; Drenska, 2017; Drenska and Kohn, 2020;
Kobzar et al., 2020). Recently, Zhang et al. (2022) also used PDE techniques to obtain an optimal
algorithm for unconstrained online linear optimization.

Quantile regret. Chaudhuri et al. (2009) introduced the notion of ε-regret where instead of
comparing with the best expert, one compares with the dεne-th best expert (amongst n total ex-
perts). They devised the NormalHedge algorithm which they prove has an ε-quantile regret of
O(
√
T ln(1/ε) + ln2 n). Moreover, the bound holds for all ε, T simultaneously. A somewhat

different bound of O(
√
T (ln lnT + ln 1/ε)) was proved by Luo and Schapire (2015) and Koolen

and van Erven (2015). All of these works make use of a potential function to control the regret. Our
work also makes use of a potential function which may be somewhat reminiscent of the potentials
used by Chaudhuri et al. (2009) and Luo and Schapire (2015).

It is possible to improve upon the above bounds. Indeed, (Chernov and Vovk, 2010, Theorem 3),
(Foster et al., 2015, Example 5.1), (Orabona and Pal, 2016, Corollary 6), and (Negrea et al., 2021,
Corollary 2) show that it is possible to obtain an ε-quantile regret of O(

√
T ln(1/ε)). This turns out

to be tight up to constant factors (Negrea et al., 2021, Theorem 1). We note that Foster et al. (2015),
Orabona and Pal (2016), and Negrea et al. (2021) derive regret bounds which depend on the KL
divergence between a known prior and the player’s probability distribution at a specific point of time;
ε-quantile regret bounds can be recovered as a special case of such bounds. In this paper, we also
recover the O(

√
T ln(1/ε)) bound on the ε-quantile regret although, as we shall see, we obtain an

improved constant in front of the
√
T ln(1/ε).

1.2 Basic Notation

We use [n] to denote the set {1, ..., n}. For a predicate P , we write [P ] to be 1 if P is true and
0 otherwise. Moreover, if [P ] is multiplying an invalid expression (such as one with a division
by 0) and P is false, we consider the whole expression to be 0. Set [α]+ := max{α, 0} for all
α ∈ R. We use 1 ∈ Rn to denote the all-ones vector and ei ∈ Rn for i ∈ [n] the indicator vector
given by ei(j) := [i = j] for all j ∈ [n]. We denote the (n − 1)-dimensional probability simplex
by ∆n :=

{
p ∈ [0, 1]n : 1Tp = 1

}
. For partial derivatives, we write ∂i := ∂xi and ∂ij := ∂xi,xj .

Lastly, for x ∈ Rn and ε ∈ (0, 1), we write

quantile(ε, x) = xπ(dεne) where π : [n]→ [n] is any permutation with xπ(1) ≥ ... ≥ xπ(n). (1)

3
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2. The Continuous Prediction Problem

As in the discrete experts’ problem, we have a number n ∈ N of experts to choose from. In the
continuous time setting, we model the cumulative gain of each expert as a mixture of n independent
Brownian motions, as done by Freund (2009).

More formally, let B1, . . . , Bn be n independent standard Brownian motion processes (or,
equivalently, let B be a n-dimensional standard Brownian motion). The cumulative gain process
Gi(t) of expert i ∈ [n] is given by the following stochastic differential equation (SDE)

dGi(t) :=
n∑
j=1

w
(i)
j (t) dBj(t) =: 〈w(i)(t),dB(t)〉, ∀t ≥ 0,∀i ∈ [n],

where (w(i)(t))t≥0 is any continuous stochastic process4 in Rn, not necessarily non-negative, such
that

∥∥w(i)(t)
∥∥

2
= 1 at all times t ≥ 0. For example, if w(i)(t) = ei for all i ∈ [n] and t ≥ 0, then

G(i)(t) is an independent Brownian motion for each i ∈ [n]. An analogous situation in discrete time
would be each expert receiving {±1} gain uniformly at random at each step, so each cumulative
gain would be a standard random walk.5 In our analysis the “instantaneous covariance matrix” Σ(t)
between the gain processes will be prominent. Formally, we define Σ(t) ∈ Rn×n by

Σij(t) := 〈w(i)(t), w(j)(t)〉, ∀t ≥ 0,∀i, j ∈ [n].

From its definition, we have that Σ(t) is a positive semi-definite matrix with ones along its diagonal.
Next, we define what a player strategy is in continuous-time and its corresponding regret. A

player (strategy) is a left-continuous6 process (p(t))t≥0 on Rn such that p(t) ∈ ∆n for all t ≥ 0,
where ∆n is the (n− 1)-dimensional simplex. The player gain process (A(t))t≥0 is given by

dA(t) :=

n∑
i=1

pi(t) dGi(t) = 〈p(t),dG(t)〉.

Moreover, the (continuous) regret vector process is given by

Ri(t) := Gi(t)−A(t), ∀i ∈ [n],∀t ≥ 0.

That is, Ri(t) is the regret—in the online learning sense—of the player with respect to expert i.
Finally, the continuous regret (of the player strategy (p(t))t≥0) is

ContRegret(t) := max
i∈[n]

Ri(t) = max
i∈[n]

Gi(t)−A(t)

Also, define the continuous ε-quantile regret to be QuantRegret(ε, t) := quantile(ε,R(t)).

3. A Continuous Multiplicative Weights Update Method

In this section, we describe a continuous-time version of the classical Multiplicative Weights Update
(MWU) method. This serves as a way to introduce some of our technical tools while avoiding the

4. Any stochastic process we mention in this paper is adapted to the filtration generated by (B(t))t≥0

5. Intuitively, that is one of the reasons results in this setting mirrors the discrete-time case with costs in [−1, 1].
6. One might loosen this to only assuming (p(t))t≥0 is predictable. For a discussion, see Appendix E.
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complexities we later introduce in the choice of potential function. Furthermore, we show bounds
on its continuous regret that exactly match the bounds that the discrete algorithm enjoys, giving
evidence of the parallels between the discrete and continuous time settings.

Analogous to the discrete version of MWU, we want the probability mass of an expert i at time t
to be proportional to exp(ηtGi(t)), where ηt is some positive learning rate that is non-increasing in t.
A familiar approach (see, e.g., Cesa-Bianchi and Lugosi, 2006, page 14 and Bubeck, 2011, §2.5) is
to use the LogSumExp function given by

Φ(t, x) :=
[ηt > 0]

ηt
log
( n∑
i=1

eηtxi
)

with ηt ≥ 0, ∀t ≥ 0,∀x ∈ Rn. (2)

In our case, the main property that we shall use from Φ is that∇xΦ(t, ·) is the softmax function. That
is, ∇xΦ(t, x) ∈ ∆n and (∇xΦ(t, x))i ∝ exp(ηtxi), which is exactly the probability mass MWU
places on expert i with cumulative gain xi. Thus, we define the player strategy (p(t))t≥0 by

p(t) := ∇xΦ(t, G(t)), ∀t ≥ 0. (3)

To analyze the regret of p, we need a way to handle A(t) =
∫ t

0 〈p(s),dG(s)〉. This is a stochastic
integral, so we may use Itô’s formula (Theorem C.1), which one can think of as the analogue of the
fundamental theorem of calculus for stochastic integrals. Itô’s formula coupled with the fact that
Φ(t, G(t)) ≥ maxi∈[n]Gi(t) gives us the following lemma (whose proof we defer to Appendix D).

Lemma 3.1 Let Φ be defined as in (2) and p be as in (3). Then, almost surely,

ContRegret(T ) ≤ Φ(0, 0) +

∫ T

0

(
∂tΦ(t, G(t)) +

1

2

∑
i,j∈[n]

∂ijΦ(t, G(t))Σij(t)
)

dt.

At this point, to bound the continuous regret of (p(t))t≥0 it suffices to bound the partial derivatives
of Φ. Lemma 3.2 bounds these partial derivatives in terms of a tunable learning rate ηt; minimizing the
regret bound boils down to optimizing ηt. We defer the proof of the following lemma to Appendix D
since it boils down to simple properties of Φ.

Lemma 3.2 Let Φ be as in (2). Let ηt be either constant in t or of the form c√
t
, with c > 0. Then,

1

2

∑
i,j∈[n]

∂ijΦ(t, x)Σij ≤
ηt
2

and ∂tΦ(t, x) ≤ log n

2tηt
, ∀t ≥ 0,∀x ∈ Rn.

Theorem 3.3 summarizes the continuous regret bounds for MWU with properly chosen learning
rates, both for the fixed-time and anytime settings. Crucially, these regret bounds match the best
known regret bounds for the discrete-time MWU method (see Bubeck, 2011, Theorems 2.1 and 2.4).

Theorem 3.3 Let Φ be as in (2), and T be a positive number. If ηt :=
√

lnn/2T for all t ≥ 0,
then ContRegret(T ) ≤

√
2T lnn almost surely. If ηt := [t > 0]

√
lnn/t for all t ≥ 0, then, almost

surely, ContRegret(t) ≤ 2
√
t lnn for all t ≥ 0.

5
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Proof Let us first consider the fixed-time case, that is, ηt :=
√

2 lnn/T . In this case we have
∂tΦ(t, x) = 0 since Φ(·, x) is constant for any x ∈ Rn. Moreover, note that Φ(0, 0) = lnn/η0 =
lnn/ηT . Combining this with Lemmas 3.1 and 3.2, we have

ContRegret(T ) = Φ(0, 0) +

∫ T

0

1

2

∑
i,j∈[n]

∂ijΦ(t, G(t))Σij dt ≤ lnn

ηT
+
ηTT

2
=
√

2T lnn.

Let us now consider the anytime case, that is, when ηt := [t > 0]
√

lnn/t for all t ≥ 0. In this
case we have Φ(0, 0) = 0, but ∂tΦ(t, x) is not necessarily 0 anymore. By Lemma 3.2, we have

∂tΦ(t, G(t)) +
1

2

∑
i,j∈[n]

∂ijΦ(t, G(t))Σij ≤
log n

2tηt
+
ηt
2

=

√
log n

t
, ∀t ≥ 0.

Thus, for all t ≥ 0, we have ContRegret(t) ≤
∫ t

0

√
logn
s ds ≤ 2

√
t log n.

It is intriguing that these bounds on the continuous regret differ by a factor of
√

2, exactly as in
the discrete experts’ problem. A natural question is whether there is an anytime algorithm that enjoys
continuous regret bound smaller than 2

√
t log n. That is discussed in Section 5.

4. Quantile Regret Bounds with the Confluent Hypergeometric Potential

In this section, we design a different algorithm for the continuous prediction problem. We choose a
potential function inspired by Itô’s formula and obtain quantile regret bounds that are better than
the ones known with a relatively simple proof. Furthermore, we show that this strategy has a simple
discretization and obtain an algorithm with the same bounds for the discrete experts’ problem. In
Section 5 we shall see how a similar algorithm suggests an intriguing result for the anytime setting.

First of all, this time around we analyse a player strategy parameterized by a function of R(t)
instead of G(t). That is, let Φ: R× Rn → R be a continuously differentiable function, which we
refer to as a potential function. We consider the player strategy (p(t))t≥0 given by7

p(t) :=
1

1T∇xΦ(t, R(t))
∇xΦ(t, R(t)), ∀t ≥ 0, (4)

setting p(t) := 1
n1 when 1T∇xΦ(t, R(t)) = 0. This class of player strategies mimics the potential-

based strategies from the discrete experts’ problems (Cesa-Bianchi and Lugosi, 2006, Chapter 2). As
in the discrete case, if Φ is the LogSumExp potential from (2), we obtain the same player strategy of
the last section. In the next lemma we use Itô’s formula to get a useful expression for Φ(T,R(T ))
that, in turn, will guide us in the choice of Φ.

Lemma 4.1 Let Φ: R≥0 × Rn → R be one time continuously differentiable on its first argument
and two-times continuously differentiable on its second argument. Let the player strategy (p(t))t≥0

7. Throughout this paper all entries of ∇xΦ(t, R(t)) have the same sign, implying that p(t) ∈ ∆n. This p(t) can be
discontinuous when∇xΦ(t, R(t)) = 0, so we need to ensure it is predictable. This issue is discussed in Appendix E.

6
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be as in (4). Then, almost surely for all T ≥ 0 we have

Φ(T,R(T ))−Φ(0, 0) =

∫ T

0

(
∂tΦ(t, R(t))+

1

2

∑
i,j∈[n]

∂ijΦ(t, R(t))(ei−p(t))TΣ(t)(ej−p(t))
)

dt.

(5)
In particular, if for all t ≥ 0 and x ∈ Rn we have ∂ijΦ(t, x) = 0 for all distinct i, j ∈ [n] and
∂iiΦ(t, x) ≤ 0 for each i ∈ [m], then almost surely for all T ≥ 0 we have

Φ(T,R(T ))− Φ(0, 0) ≥
∫ T

0

(
∂tΦ(t, R(t)) + 2

n∑
i=1

∂iiΦ(t, R(t))
)

dt. (6)

Proof Itô’s formula gives us a useful formula to compute the evolution of the potential:

Φ(T,R(T ))− Φ(0, 0) =

∫ T

0
〈∇xΦ(t, Rt),dR(t)〉+

∫ T

0
∂tΦ(t, R(t)) dt

+
1

2

∑
i,j∈[n]

∫ T

0
∂ijΦ(t, R(t)) d[Ri, Rj ]t.

For the first term above, note that 〈∇xΦ(t, R(t)),dR(t)〉 = 1
T∇xΦ(t, R(y)) · 〈p(t), dR(t)〉 by the

definition of p(t) in (4). Furthermore, this is zero since

〈p(t),dR(t)〉 = 〈p(t),dG(t)〉 − 〈p(t),1〉dA(t) = dA(t)− dA(t) = 0.

Finally, by Lemma F.1 we have d[Ri, Rj ]t = (ei − p(t))TΣ(t)(ej − p(t)) dt for all i, j ∈ [n]. This
concludes the proof of (5).

Suppose that for all t ≥ 0 and x ∈ Rn we have ∂ijΦ(t, x) = 0 for all distinct i, j ∈ [n]. Then,

Φ(T,RT )− Φ(0, 0) =

∫ T

0

(
∂tΦ(t, R(t)) +

1

2

n∑
i=1

(ei − p(t))TΣ(t)(ei − p(t))∂iiΦ(t, R(t))

)
dt.

Since Σ(t) is a positive definite matrix with ones in its diagonal entries, we have |Σi,j | ≤ |Σii| = 1.
Therefore, for any v ∈ Rn, we have vTΣ(t)v ≤ ‖v‖21. Thus, if ∂iiΦ(t, x) ≤ 0 for all i ∈ [n], then
the second inequality stated in the lemma follows since ‖ei − p(t)‖1 ≤ 2 for all i ∈ [n].

Figure 1: Plot of φ(1, x) in red and of
the bound from Lemma A.3 in blue.

The second expression in Lemma 4.1 (Eq. (6)) hints
at properties of potential functions Φ that may be
particularly useful. More precisely, separable func-
tions Φ that satisfy a diffusion constraint of the form
(∂t + 2

∑n
i=1 ∂ii) Φ(t, α) ≥ 0 would guarantee that

Φ(t, R(t)) is non-decreasing in t, which in turn may
allow us to bound the continuous regret.

The player strategies in the rest of this paper involve
the function M0 defined as

M0(α) := eα −
√
πα erfi(

√
α), ∀α ∈ R.

7
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This is an example of a confluent hypergeometric function (of the first kind). We use M0 in the form

φ(t, α) :=
√
tM0

( [α]2+
2t

)
, ∀α ∈ R,∀t > 0. (7)

Similar functions have been used in the stochastic process literature (Breiman, 1967), (Davis, 1976),
(Perkins, 1983), and in the online learning literature (Harvey et al., 2020b, eq. (2.6)) (Zhang et al.,
2022, eq. (11)). Two particularly useful properties of φ are:

• (∂t + 1
2∂xx)φ(t, α) is zero8 for all t > 0 and α ≥ 0, and non-negative for all α < 0. This is a

PDE known as the backwards heat equation (BHE). Diffusion terms like these appear in Itô’s
formula, so functions satisfying the BHE are well-behaved under stochastic integration.

• φ(t, α) ≈ − 1
α2 e

α2/2 (see Lemma A.3 and Figure 1), and so the potential resembles the
normal distribution. Potentials of this form have been useful in the literature such as Nor-
malHedge (Chaudhuri et al., 2009), AdaNormalHedge (Luo and Schapire, 2015). Moreover,
Freund (2009) has used these normal-like potentials in continuous time.

The algorithm in this section uses the separable potential function Φ given by9

Φ(t, x) :=

n∑
i=1

φ
(
t,
xi
2

)
∀t > 0,∀x ∈ Rn. (8)

Lemma 4.2 Let Φ and (p(t))t≥0 be as in (8) and (4), respectively. Then Φ(T,R(T )) ≥ 0.

Note that if Φ(0, 0) = 0 then Lemma 4.2 would immediately follow from Lemma 4.1 (in particular,
Eq. (6)) and our choice of Φ since Φ is concave and (∂t + 2

∑n
i=1 ∂ii) Φ(t, x) ≥ 0. The only minor

snag is that Φ(0, 0) is not well-defined since Eq. (7) would involve a division by zero. Nonetheless,
it is possible to resolve this issue; the details are relegated to Appendix F.1.

It remains to translate bounds on the value of the potential Φ(t, R(t)) to bounds on the continuous
regret. The following function is used in the regret bounds throughout the remainder of the paper.

Definition 4.3 For α ∈ R≥0, let λ(α) > 0 be the unique positive solution to the equation

α = −M0(λ(α)2/2) ≡ −φ(1, λ(α)). (9)

We note that the function M0(x2/2) is strictly decreasing on R≥0 and the image of M0 on R≥0

is (−∞, 1] (see Appendix A). In particular, a solution to Eq. (9) exists and is unique so λ(α) is
well-defined for all α ≥ 0. We also note that λ(α) is strictly increasing in α.

The next lemma show us how bounds in the value of Φ(t, x) can be translated into bounds on the
quantiles of x, which were defined in (1).

8. Actually, φ is not doubly differentiable in its second argument because of the truncation in the definition of φ. Although
this might seem like a problem to apply Itô’s formula, we luckily have a single point of non-differentiability at each
time t ≥ 0, and the truncation only makes (∂t + 1

2
∂xx)φ(t, x) no smaller everywhere else. Thus, standard smooth-

truncation arguments can be made to apply Itô’s formula. For an example, see Harvey et al. (2020a, Section 5.2.2).
For the sake of simplicity, we set ∂xxφ(t, 0) := limε→0 ∂xxφ(t, ε)

9. Ideally we would like to modify the potential by eliminating the denominator of 2. If this could be analyzed, it would
yield an optimal quantile regret bound. At present, we have been unable to accomplish this.
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CONTINUOUS PREDICTION WITH EXPERTS’ ADVICE

Lemma 4.4 Let T > 0 and x ∈ Rn. Suppose that Φ(T, x) ≥ 0. Then, for any ε ∈ (0, 1],

quantile(ε, x) ≤ 2λ
(1− ε

ε

)√
T ≤ 2

(
3 +

√
2 ln(1/ε)

)√
T .

Proof For simplicity, suppose x1 ≥ x2 ≥ . . . ≥ xn. Since φ(T, ·) is decreasing, we have
φ(t, xεn/2) ≥ φ(t, xi/2) for every i ≤ εn. Summing this inequality for i ∈ {1, · · ·, εn}, using the
assumption

∑n
i=1 φ(t, xi/2) = Φ(T, x) ≥ 0 and since −φ(T, α) ≥ −

√
T for any α ∈ R, we have

εnφ(T, xεn/2) ≥
εn∑
i=1

φ(t, xi/2) ≥ −
n∑

i=εn+1

φ(t, xi/2) ≥ −(1− ε)n
√
T . (10)

By the definition of φ, the above series of inequalities implies

εn
√
TM0

(([xεn]+/2)2

2T

)
≥ −

(
(1− ε)n

)√
T =⇒ M0

(([xεn]+/2)2

2T

)
≥ −1− ε

ε
=: −γ.

Using the definition of λ and the fact that M0 is a decreasing function, we have

M0

(([xεn]+/2)2

2T

)
≥M0

(λ(γ)2

2

)
=⇒ xεn ≤ 2λ(γ)

√
T .

The second inequality in (10) follows from Lemma A.4.

Finally, we can combine Lemma 4.2 and Lemma 4.4 to prove a bound on the quantile regret in
continuous-time. These quantile regret bounds improve upon the best known in the discrete case.
In Section 4.1 we discretize this algorithm while preserving the same quantile regret bound.

Theorem 4.5 Let Φ and (p(t))t≥0 be as in (8) and (4), respectively. Then

QuantRegret(ε, T ) ≤ 2λ((1− ε)/ε)
√
T ≤ 2

(
3 +

√
2 ln(1/ε)

)√
T almost surely ∀T ≥ 0.

4.1 Discretization

In this section, we propose an algorithm for the original experts’ problem based on the continuous-
time solution of the previous section. As in the continuous setting, we have n ∈ N experts.
At each round t, the player picks a probability vector pt ∈ ∆n and the adversary picks a gain
vector gt ∈ [−1, 1]n. The instantaneous regret vector at round t ≥ 1 is given by rt := gt−1 ·pTt gt.
Moreover, define the regret vector at round t by Rt :=

∑t
s=1 rs.

To discretize the algorithm from the previous section, we shall make use of discrete derivatives
in a way similar to Harvey et al. (2020a). For a bivariate function f , define its discrete derivatives as

ft(t, x) = f(t, x)− f(t− 1, x),

fx(t, x) =
f(t, x+ 1)− f(t, x− 1)

2
,

fxx(t, x) = (f(t, x+ 1) + f(t, x− 1))− 2f(t, x).

(11)

Let Φ be defined as in Eq. (8). For i ∈ [n], we define the discrete derivative of Φ as

Φt(t, x) =

n∑
i=1

φt

(
t,
xi
2

)
; Φi(t, x) =

1

2
φx

(
t,
xi
2

)
; Φii(t, x) =

1

4
φxx

(
t,
xi
2

)
.

For notation convenience, we also define the discrete gradient ∇̃Φ(t, x) = (Φ1(t, x), ...,Φn(t, x)).

9
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Algorithm. The algorithm we use for the discrete setting is the natural analogue of the algorithm
for the continuous setting as defined in Eq. (4). Specifically, for t ∈ N≥1, we set

pt :=

{
1
n1 if ∇̃Φ(t, Rt−1) = 0

1

1T∇̃Φ(t,Rt−1)
∇̃Φ(t, Rt−1) otherwise.

(12)

Note that φ(t, x) is non-increasing in x so ∇̃Φ(t, x) ≤ 0 (component-wise), so pt ∈ ∆n. Let us now
analyze the performance of this algorithm. We summarize our results in the next theorem.

Theorem 4.6 We have quantile(ε,Rt) ≤ 2λ((1− ε)/ε)
√
t ≤ 2

√
t+

√
8 ln(1/ε) + 20 ·

√
t.

Let c be the optimal constant multiplying
√
t ln(1/ε) in the minimax optimal ε-quantile regret for

anytime algorithms. Theorem 4.6 shows c ≤ 2
√

2. Previously, Chernov and Vovk (2010, Theorem
3) and Negrea et al. (2021, Example 3) both proved10 c ≤ 4. On the lower bound side, Negrea et al.
(2021, Theorem 1) proved that c ≥

√
2. So there remains a gap of 2 for the constant c. Finally, we

note that if T is known beforehand (the fixed-time setting), Orabona and Pal (2016, Corollary 6)
showed c ≤ 2

√
3. Theorem 4.6 improves this to c ≤ 2

√
2.

Interestingly, Zhang et al. (2022) proposed independently of us an algorithm using coin-betting
with a potential similar to (8) also inspired by the work of Harvey et al. (2020b). Although their work
is mostly on unconstrained online learning, one can obtain an algorithm for the experts’ problem
from their coin-betting algorithm whose ε-quantile regret is similar to our bound from Theorem 4.6,
that is, roughly no more than 2

√
2t ln(1/ε). More precisely, Orabona and Pal (2016, Theorem 4)

show how to obtain an algorithm for the experts’ problem with costs in [0, 1] from a coin-betting
algorithm together with regret guarantees against any comparison point u ∈ ∆n. We may obtain
bounds on the ε-quantile regret by noting that it is the same as the regret against all points u ∈ ∆n

with dεne non-zero equal entries. Combining this with Theorem 1 and Lemma B.2 of Zhang et al.
(2022) yields the desired bound. In contrast, our analysis in this section is tailored specifically for the
experts problem, and does not make use of the coin-betting framework.

To prove Theorem 4.6, we make use of the following lemma which is essentially a corollary of
Harvey et al. (2020a, Lemma 3.13). It is similar to the discrete Itô’s formula (Harvey et al., 2020a,
Lemma 3.7) except that the equality is now an inequality. A proof can be found in Appendix G.1.

Lemma 4.7 Let x1, x2, · · · be a sequence of real numbers such that |xt − xt−1| ≤ 1. Then for any
function f that is concave in its second argument and any integer T ≥ 2, we have

f(T, xT )− f(1, x1) ≥
T∑
t=2

fx(t, xt−1) · (xt − xt−1) +

T∑
t=2

(
1

2
fxx(t, xt−1) + ft(t, xt−1)

)
.

We now prove a discrete analogue of the second assertion of Lemma 4.1. Note that for technical
reasons we start at t = 1 instead of t = 0. One can directly deal with the case t = 0 by customizing
Eq. (7). However, this cumbersome approach does not yield improved bounds.

10. Note that these papers consider costs in [0, 1] so their results must be multiplied by 2 to coincide with our setting.
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CONTINUOUS PREDICTION WITH EXPERTS’ ADVICE

Lemma 4.8 Fix any T ≥ 2. Then

Φ(T,RT )− Φ(1, R1) ≥
T∑
t=2

(
Φt(t, Rt−1) + 2

n∑
i=1

Φii(t, Rt−1)

)

=
T∑
t=2

n∑
i=1

(
φt(t, Rt−1,i/2) +

1

2
φxx(t, Rt−1,i/2)

)
.

Proof Note that the equality follows from the definition of Φii and Φt. Here, we prove that the term
on the left is an upper bound on the final term on the right.

Recall that Φ(t, Rt) =
∑n

i=1 φ(t, Rt,i/2). Since the gains are in [−1, 1], it follows that |(Rt,i −
Rt−1,i)/2| ≤ 1. From Lemma 4.7, since φ is concave in its second argument, we have

n∑
i=1

(
φ(T,Rt,i/2)− φ(1, R1,i/2)

)
≥

T∑
t=2

n∑
i=1

φx(t, Rt−1,i/2) · (Rt,i −Rt−1,i)

+
T∑
t=2

n∑
i=1

(
1

2
φxx(t, Rt−1,i/2) + φt(t, Rt−1,i/2)

)
.

(13)

To prove the lemma, it suffices to show that the first sum on the RHS of Eq. (13) is exactly 0. To that
end, fix t ∈ [T ] such that t 6= 1. We have Rt,i −Rt−1,i = gt,i − pTt gt. Hence,

n∑
i=1

φx(t, Rt−1,i/2) · (Rt,i −Rt−1,i) =

n∑
i=1

φx(t, Rt,i/2) · (gt,i − pT
t gt). (14)

If φx(t, Rt−1,i/2) = 0 ∀i ∈ [n] then the RHS of (14) is 0. Otherwise, with the pt as defined in (12),

pT
t gt =

∑n
i=1 φx(t, Rt−1,i/2) · gt,i∑n
i=1 φx(t, Rt−1,i/2)

. (15)

Plugging (15) into (14) gives
∑n

i=1 φx(t, Rt−1,i/2) · (Rt,i −Rt−1,i) = 0, as required.

In the continuous setting, we used the key fact that for any t ∈ R≥0 and x ∈ R, we have(
∂t + 1

2∂xx
)
φ(t, x) ≥ 0. Luckily, the same fact holds in the discrete setting.

Lemma 4.9 For any t > 1 and x ∈ R, we have φt(t, x) + 1
2φxx(t, x) ≥ 0.

The proof of Lemma 4.9 appears in Appendix G.2. We are now ready to prove Theorem 4.6.
Proof of Theorem 4.6 Lemma 4.8 and Lemma 4.9 imply that Φ(T,RT ) ≥ Φ(1, R1) for all T ≥ 1.
Note that Φ(1, R1) =

∑n
i=1 φ(1, R1,i/2) ≥ n ·M0(1/2) > n ·M0(γ2/2) = 0. The bound on the

quantile regret now follows from Lemma 4.4.

5. Minimax Optimal Continuous Regret with Independent Experts

We have showed that an algorithm based on the hypergeometric potential (8) suffers no more than
2
√

2t lnn at any round t (Theorem 4.5). Similarly, we saw that the anytime continuous MWU suffers
at most 2

√
t lnn regret at any round t (Theorem 3.3). A natural question is whether there are anytime

algorithms in the continuous setting that enjoy regret better than 2
√
t lnn.

11
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In the discrete version of the problem, we know that no algorithm can guarantee regret smaller
than
√

2t lnn. This lower-bound comes from the fact that the expected regret against an adversary
that assigns ±1 gains uniformly at random—or uniformly random adversary, for short—on the
experts gets arbitrarily close to

√
2t lnn as n grows, regardless of the player’s strategy. However,

no tighter lower-bounds are known for anytime algorithms, that is, algorithms that do not know the
length of the game. Furthermore, for two experts (n = 2) we know that there is a separation between
the minimax optimal regret in the fixed-time and anytime settings, and both lower bounds arise from
the expected regret against the uniformly random adversary! Namely, for fixed-time algorithms the

best possible regret is
√

2T
π (Cover, 1967) while for anytime algorithms the best possible regret

is λ(0)
√
T (where λ(0) ≈ 1.3069 >

√
2/π ≈ 0.798), both being the expected regret against the

uniformly random adversary (the latter with a suitably chosen stopping-time).
Intriguingly, we show that in continuous time with independent experts—that is, when each

(Gi(t))t≥0 is an independent Brownian motion—there is an anytime algorithm whose regret is at
most λ(3n)

√
t ≈
√

2t lnn for all t ≥ 0. Furthermore, in Proposition 5.3 we show a matching
lower-bound, just as in the discrete-time case. We conjecture that this algorithm can be discretized,
and
√

2t lnn anytime regret against independent experts is possible in discrete time.

Algorithm. The player strategy we use in this section is similar from the one of the last section,
with a crucial difference on Φ: we do not divide the second argument by 2. Namely,

Φ(t, x) :=

n∑
i=1

φ(t, xi) ∀t ≥ 0,∀x ∈ Rn, (16)

and we set (p(t))t≥0 as in (4) but using the above potential. We can still use Lemma 4.1 to get a
formula for Φ(t, R(t)). However, the lower-bound given in (6) is not of much use anymore since we
do not have (∂t + 2

∑n
i=1 ∂ii)Φ(t, x) ≥ 0 anymore. Thus, we need to directly analyze the formula

in (5). It turns out that when the instantaneous correlation matrix Σ(t) is the identity matrix for all
t ≥ 0, we can show that this term does not become too negative. This term will be denoted

sBHT(t) := ∂tΦ(t, R(t)) +
1

2

n∑
i=1

∂iiΦ(t, R(t))(ei − p(t))T(ei − p(t))

That is, the sBHT is the integrand the appears in Lemma 4.1. Intuitively, since Φ satisfies the
backwards-heat inequality, we should expect sBHT(t) to not be too negative. That is exactly what
we show in the next lemma. A complete proof is in Appendix H, but we give a sketch here.

Lemma 5.1 Let Φ be as in (16). Then sBHT(t) ≥ (2− n)/
√
t for all t > 0.

Proof sketch For simplicity, fix t > 0 and assume R1(t) ≥ R2(t) ≥ · · · ≥ Rn(t). Moreover,
explicitly write the dependency of the sBHT on the regret vector by writing sBHT(t, R(t)). The
first step is to show that forcefully setting Rn(t) to zero, denote such a vector vector by R̃(t),
can only decrease the sBHT. That is, sBHT(t, R(t)) ≥ sBHT(t, R̃(t)). Then, we show that
sBHT(t, R̃(t)) + 1/

√
t is equal to the sBHT restricted to the experts 1, . . . , n − 1. Then, by

induction we get that sBHT(t, R(t)) + (n − 1)/
√
t is greater than the sBHT for a single expert,

which one can verify that is at least 1/
√
t, concluding the proof.

Finally, the above lemma together with the expression for Φ(t, R(t)) given by (5) yields the
desired regret bound when the instantaneous covariance matrix Σ(t) is always the identity matrix.

12



CONTINUOUS PREDICTION WITH EXPERTS’ ADVICE

Theorem 5.2 Let Φ be defined as in (16) and let (p(t))t≥0 be as in (4). Suppose Σ(t) = I ∀t ≥ 0.
Then, almost surely for all t ≥ 0 we have ContRegret(t) ≤ λ(3n− 1)

√
t ≤
√

2t lnn+ 6
√
t.

Proof Let T ∈ N. By Lemma 4.1 we have11

Φ(T,R(T )) =

∫ T

0

(
∂tΦ(t, R(t)) +

1

2

∑
i,j∈[n]

∂ijΦ(t, R(t))(ei − p(t))TΣ(t)(ej − p(t))
)

dt. (17)

Since Σ(t) = I for all t ≥ 0, the above integrand is exactly sBHT(t). Therefore, by Lemma 5.1,

(17) =

∫ T

0
sBHT(t) dt ≥

∫ T

0

2− n√
t

dt = 2(2− n)
√
T ≥ −2n

√
T .

Finally, we translate this lower bound Φ(T,R(T )) to an upper bound on ContRegret(T ). Using
Lemma 4.4, we have ContRegret(T ) ≤ λ(3n− 1)

√
t ≤

√
2t ln(3n) + 4

√
t ≤
√

2t lnn+ 6
√
t.

A matching lower-bound. The next proposition shows that, against independent experts, the
expected regret is always roughly

√
2t lnn. This matches the discrete-time lower bound and shows

that Theorem 5.2 is tight. The proof, given in Appendix H.1, is a straightforward modification of the
analogous discrete-time result (Cesa-Bianchi and Lugosi, 2006, Theorem 3.7). It is important to note
that Theorem 5.2 is considerably stronger than Proposition 5.3: the latter bounds the expectation
separately for each t, whereas the former gives a bound that holds almost surely for all t.

Proposition 5.3 Assume w(i) = ei for each i ∈ [n]. Then, for any player strategy,
√

2t lnn(1− o(1)) ≤ E [ ContRegret(t) ] ≤
√

2t lnn ∀t > 0.
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A. Properties of the Confluent Hypergeometric Function

In this section we outline some of the main properties of the confluent hypergeometric function M0

that we use throughout the paper. Many of the properties we use in this section come from Harvey
et al. (2020a, Section 2.6).

Fact A.1 (Harvey et al., 2020a, Facts 2.4, 2.5, and 2.6) For any x ∈ R we have

(i) M ′0(x) = − π
2
√
x

erfi(
√
x)

(ii) M0(x) is strictly decreasing and concave on [0,∞)

From the above facts together withM0(0) = 1 shows us thatM0 is strictly decreasing on [0,+∞)
and its image over this domain is (−∞, 1] (since its derivative is negative and strictly decreasing).
Furthermore, the above properties of M0 allow us to derive many properties about the function
φ(t, x) =

√
t ·M0([x]2+/2t), as we show in the next lemma.

Lemma A.2 Let t ∈ R≥0 and x ∈ R. Then

(i) φ(t, x) is concave and non-increasing in x;

(ii) ∂xφ(t, x) = −
√

π
2 erfi(x/

√
2t) for x > 0;

(iii) ∂xxφ(t, x) = − 1√
t

exp(x2/2t) for x > 0;

(iv) ∂tφ(t, x) = 1
2
√
t

exp([x]2+/2t);

Proof Properties (i) and (ii) follow directly from Fact A.1 and the chain rule. Property (iii)
follows from the fundamental theorem of calculus together with the chain rule since

√
π
2 erfi(x) =√

2
∫ x

0 e
z2 dz. For (iv), assume for notational simplicity only that x > 0. Then,

∂t

(√
tM0

(
x2

2t

))
=

1

2
√
t
M0

(
x2

2t

)
− x2

2t3/2
M ′0

(
x2

2t

)
=

1

2
√
t

(
exp

(
x2

2t

)
−
√
π
x√
2t

erfi

(
x√
2t

)
− x2

t

√
π2t

2x
erfi

(
x√
2t

))

=
1

2
√
t

exp

(
x2

2t

)
.

The next lemma gives an upper-bound to M0(x2/2) for x ≥ 0. Beyond other uses, this will be
useful to upper-bound the regret bounds we derive with better-known functions.
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CONTINUOUS PREDICTION WITH EXPERTS’ ADVICE

Lemma A.3 For every x ≥ 0,

1−M0(x2/2) ≥ exp(x2/2)

x2 + 1 + 2/x2
∀x ≥ 0.

Proof Define f(x) = 1−M0(x2/2) and g(x) = exp(x2/2)/(x2 + 1 + 2/x2). The derivatives are

f ′(x) =
√
π/2 erfi(x/

√
2) and g′(x) = exp(x2/2) · x

7 − x5 + 2x3 + 4x

(x4 + x2 + 2)2
.

The second derivatives are

f ′′(x) = exp(x2/2) and g′′(x) = exp(x2/2) · x
12 − x10 + 9x8 + 7x6 − 32x4 + 8x2 + 8

(x4 + x2 + 2)3
.

We will show that f ′′(x) ≥ g′′(x). By rearranging, this amounts to showing that

x12 − x10 + 9x8 + 7x6 − 32x4 + 8x2 + 8 ≤ (x4 + x2 + 2)3.

Expanding the right-hand side, we get

= x12 + 3x10 + 9x8 + 13x6 + 18x4 + 12x2 + 8.

The right-hand side coefficients are no smaller, which shows that f ′′(x) ≥ g′′(x) for x ≥ 0.
By integrating and using that f ′(0) = g′(0) = 0, we obtain that f ′(x) ≥ g′(x) for all x ≥ 0.

Finally, by integrating and using that f(0) = g(0) = 0, we obtain f(x) ≥ g(x) for all x ≥ 0.

Recall from Definition 4.3 that λ is the non-negative inverse of x 7→ −M0(x2/2). The bound on
M0 from Lemma A.3 allows us to upper-bound λ as follows.

Lemma A.4 Let n ∈ R be positive. Then,

λ(n) ≤ 3 +
√

2 ln(n+ 1).

Consequently,

lim
n→∞

λ(n)√
2 ln(n)

≤ 1.

Proof Define ` = 3 +
√

2 ln(n+ 1). Note that `2 = 2 ln(n+ 1) + 6`− 9. So, by Lemma A.3,

1−M0(`2/2) ≥ exp(`2/2)

`2 + 1 + 2/`2
=

exp(ln(n+ 1) + 3`− 9/2)

`2 + 1 + 2/`2
. (18)

Since ` ≥ 3 we have 3`− 9/2 ≥ `, and also

e` ≥ `2 + 1 + 2/`. (19)

(This may be seen by a direct calculation for ` = 3, then observing that the second derivative of the
left-hand side exceeds the second derivative of the right-hand side for ` ≥ 3.) Combining (18) and
(19) we obtain

1−M0(`2/2) ≥ exp(ln(n+ 1)) = n+ 1.

Since −M0 is monotonically increasing, it follows that λ(n) ≤ `.

17



SANCHES PORTELLA, LIAW, HARVEY

B. Additional Properties of the Continuous Expert’s problem

From the definitions of Section 2, we can already obtain some useful properties. For example, for
any t ≥ 0 we have

〈p(t),dR(t)〉 = 〈p(t),dG(t)〉 − 〈p(t),1〉dA(t) = dA(t)− dA(t) = 0. (20)

At some points in ours proofs, it will be useful to write the weights of the different Brownian
motions on the experts’ gain processes in matrix form. Namely, define the continuous matrix-valued
process (W (t))t≥0 by

W (t) · ei := w(i)(t), ∀i ∈ [n], ∀t ≥ 0.

That is, the i-th colum of W (t) is w(i)(t). In particular, since Σi,j(t) = 〈w(i)(t), w(j)(t)〉, we have

Σ(t) = W (t)TW (t), ∀t ≥ 0. (21)

We use this definition in the following lemma, in which we directly write the regret process as
stochastic integral with respect to the n-dimensional Brownian (B(t))t≥0.

Lemma B.1 For each i ∈ [n] and all t ≥ 0, we have dRi(t) = 〈W (t)(ei − p(t)), dB(t)〉.

Proof Note that

dA(t) = 〈p(t),dG(t)〉 =

n∑
i=1

pi(t) dGi(t) =

n∑
i=1

pi(t)〈w(i),dB(t)〉 = 〈W (t)p(t),dB(t)〉.

Thus,

dRi(t) = dGi(t)− dA(t) = 〈w(i)(t),dB(t)〉 − 〈W (t)p(t), dG(t)〉
= 〈W (t)ei,dB(t)〉 − 〈p(t),W (t) dB(t)〉 = 〈W (t)(ei − p(t)), dB(t)〉.

C. Itô’s Formula

In the following theorem we state Itô’s formula as given by Revuz and Yor (1999). After the theorem
statement we discuss some of the notation and applications the Itô’s formula.

Theorem C.1 (Itô’s Formula, Revuz and Yor, 1999, Theorem IV.3.3) Let F : R × Rn → R be
continuously differentiable on its first argument and twice continuously differentiable on its second
argument and let (Xt)t≥0 be a continuous semimartingale in Rn. Then, for any T ≥ 0

F (T,X(T ))− F (0, X(0)) =

∫ T

0
〈∇xF (t,X(t)), dX(t)〉+

∫ T

0
∂tF (t,X(t)) dt

+
1

2

∫ T

0

∑
i,j∈[n]

∂xi,xjF (t,X(t)) d[Xi, Xj ]t

18
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In the third derivative above we use the bracket notation: for two continuous (local) martingales
M andN , the process [M,N ], denoted as the bracket ofM andN , is the unique adapted continuous
process such that MN − [M,N ] is a local martingale (Revuz and Yor, 1999, Theorem IV.1.9).
Although precise, this definition is not of much use for us since it does not gives us a way to compute
this process.

Luckily, all the the process we deal with are defined as stochastic integrals with respect to
other continuous martingales. For example, A(t) is defined as (a sum of) stochastic integrals of
a left-continuous and bounded function p(t) with respect to the process G(t). The latter is also a
continuous martingale since it is a stochastic integral of a continuous and bounded function w(i)(t)
with respect to the Brownian motion B(t), which is also a martingale. This is specially useful to
compute the bracket of two of these process. More specifically, using that

[Bi, Bj ]t =

{
0 if i 6= j,

t if i = j,
(22)

we can compute the bracket of martingales by use of “box calculus” (Cohen and Elliott, 2015,
Remark 14.2.7). Thus, for two continuous martingales M and N , we have

d[M,N ]t = dM(t) · dN(t),

and for the right-hand side above we usually can expand according to our definitions. In our case,
we can always expand these expressions until they are written only in terms of the differentials of
Brownian motions, and such expressions can be simplified using (22).

D. Missing Proofs of Section 3

Proof of Lemma 3.1 let T > 0. First of all, based on the remarks in Section C we have, for all
t ≥ 0,

d[Gi, Gj ]t = dGi(t) dGj(t) = 〈wi(t),dB(t)〉 · 〈wj(t), dB(t)〉

=

n∑
k=1

w
(i)
k (t) · w(j)

k (t) dt = Σij(t) dt,

where in the last equation we used that Σij = 〈wi(t), w(j)(t)〉.
Let T > 0. Itô’s formula (Theorem C.1) allows us to express A(T ) as

A(T ) =

∫ T

0
〈∇xΦ(t, G(t)), dG(t)〉

= Φ(T,G(T ))− Φ(0, 0) +

∫ T

0

(
∂tΦ(t, G(t)) +

1

2

∑
i,j∈[n]

∂ijΦ(t, G(t))Σij(t)
)

dt,

Thus,

ContRegret(T ) = max
i∈[n]

Gi(T )− Φ(T,G(T )) + Φ(0, 0)

+

∫ T

0

(
∂tΦ(t, G(t)) +

1

2

∑
i,j∈[n]

∂ijΦ(t, G(t))Σij(t)
)

dt.
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Finally, recall that the LogSumExp function smoothly approximates the maximum function, that is,

max
i∈[n]

xi ≤ Φ(T, x) ≤ max
i∈[n]

xi +
log n

ηT
, ∀x ∈ Rn.

This implies that maxi∈[n]Gi(T )− Φ(T,G(T )) ≤ 0.

Lemma D.1 Let Φ be as in (2) and ηt ≥ 0 for all t ≥ 0. Then,

1

2

∑
i,j∈[n]

∂ijΦ(t, x)Σij ≤
ηt
2
, ∀t ≥ 0, x ∈ Rn.

Proof Define Θ := (
∑n

i=1 exp(ηtxi))
2. First of all, one may verify that

∂iiΦ(t, x) =
1

Θ
ηte

ηtxi
∑
j 6=i

eηtxj =
1

Θ
ηt

( n∑
j=1

eηt(xi+xj) − e2ηtxi
)

and that, for i 6= j,

∂ijΦ(t, x) = − 1

Θ
ηte

ηt(xi+xj).

Therefore, using that Σii = 1 for any i ∈ [n] and defining vi := eηtxi for each i ∈ [n]∑
i,j∈[n]

∂ijΦ(t, x)Σij =
ηt
Θ

∑
i,j∈[n]

eηt(xi+xj)

︸ ︷︷ ︸
=Θ

−ηt
Θ

∑
i,j

eηt(xi+xj)Σij︸ ︷︷ ︸
=vT Σv≥0

≤ ηt.

Lemma D.2 Let Φ be as in (2) and ηt be either constant in t or of the form [t > 0]c/
√
t for some

c > 0. Then,

∂tΦ(t, x) ≤ log n

2tηt
, ∀t ≥ 0, x ∈ Rn.

Proof If ηt is constant as a function of t, then ∂tΦ(t, x) = 0. Otherwise, one may verify that (using
the fact ηt = cst./

√
t )

∂tΦ(t, x) =
1

2tηt
log
( n∑
i=1

eηtxi
)
− 1

2ηt

n∑
i=1

ηt
t
xi

eηtxi∑n
j=1 e

ηtxj

=
1

2t

(
1

ηt
log
( n∑
i=1

eηtxi
)

︸ ︷︷ ︸
=Φ(t,x)

−
n∑
i=1

xi
eηtxi∑n
j=1 e

ηtCj︸ ︷︷ ︸
=〈C,p〉

)
.

Let us now show that
1

ηt
log
( n∑
i=1

eηtxi
)
≤ log n

ηt
+ 〈x, p〉, (23)
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CONTINUOUS PREDICTION WITH EXPERTS’ ADVICE

which completes the proof of the lemma. We have

1

ηt
log
( n∑
i=1

eηtxi
)

=
log n

ηt
+

1

ηt
log
( n∑
i=1

1

n
eηtxi

)
.

Define zi := ηtxi for every i ∈ [n]. Then,

1

ηt
log
( n∑
i=1

1

n
ezi
)
≤ 1

ηt

n∑
i=1

ezi∑n
j=1 e

zj
zi

⇐⇒
( n∑
j=1

ezj
)

log
( n∑
i=1

1

n
ezi
)
≤

n∑
i=1

ezizi

⇐⇒
( n∑
j=1

1

n
ezj
)

log
( n∑
i=1

1

n
ezi
)
≤

n∑
i=1

1

n
ezi log(ezi),

and this last inequality is true by the convexity of α ∈ R≥0 7→ α logα. This concludes the proof
of (23) and, thus, of the lemma.

E. Ensuring Predictability of the Player Strategy

In Section 2, we required player strategies to be left-continuous in time. In fact, one could possibly
loosen this assumption to only require (p(t))t≥0 to be predictable (with respect to the filtration
generated by (B(t))t≥0) as defined in Revuz and Yor (1999, Definition IV.5.2). Yet, adapted left-
continuous process are predictable (Mörters and Peres, 2010, Lemma 7.2) and are easier to reason
about directly.

One should note, however, that the player strategies defined in (4) may not be left-continuous.
This happens due to the discontinuity when the gradient entries sum to 0. For simplicity, we will
discuss here how to modify player strategies generated by the potentials in (8) and (16) to ensure
left-continuity, but similar techniques should for players generated by other potentials. In particular,
the discontinuity problems may happen only when the gradient is 0. Finally, we note that the exact
same predictability issue arises in the continuous NormalHedge algorithm due to Freund (2009).

Let us look at an example to see when p can be discontinuous and that it is not clear how to
avoid the discontinuity in out case. Suppose R(s) < 0 for s ∈ (t − ε, t] for some t, ε > 0, and
that R1(s) > 0 while Ri(s) ≤ 0 for s ∈ (t, t + ε). Then we for all s ∈ (t − ε, t + ε) we have
p(s) = (1/n)1 if s ≤ t and p(s) = e1 for s > t. Ideally, we would like a smooth transition between
the uniform distribution and the point mass in the first expert, but there is no clear way to enforce that.
In the case of the LogSumExp potential from Section 3, the gradient always lives in the (relative)
interior of the simplex, so we never place 0 probability on any of the experts.

To ensure left-continuity of the player strategy, we can simply define it to be left-continuous. In
our case, this will only modify the player strategy at the points of discontinuity we shall not affect
our calculations. More precisely, let (p̂(t))t≥0 be the player strategy as described in (4) and define
(p(t))t≥0 by

p(t) := lim
s ↑ t

p̂(s),

21



SANCHES PORTELLA, LIAW, HARVEY

where (R(t))t≥0 is still defined in terms of (p(t))t≥0. One might worry that this definition becomes
circular, but note that to define p(t) we only need the values of R(s) for s < t, and for t = 0 we
have R(t) = 0. This ensures that p(t) and R(t) are well defined. Furthermore, since (G(t))t≥0 is
continuous, we also have that (A(t))t≥0, and thus (R(t))t≥0, are continuous, even though (p(t))t≥0

may not be continuous (Cohen and Elliott, 2015, Remark 12.1.12).
Now by definition we have that p is left-continuous. Moreover, the points t of discontinuity for

p are the points such that R(t) enters or leaves the non-positive orthant S := { x ∈ Rn : x ≤ 0 }.
Thus, we need only to ensure that any claims that explicitly use the form of p given by (4) also hold
in the discontinuity points. In such points it is clear we have∫ t

0
〈∇Φ(s,R(s)), dR(s)〉 = 0,

as required by Lemma 4.1. This also should not affect the calculations in the proof of Lemma 5.1
since we can avoid the points of non-discontinuity my small perturbations without changing the
value of the sBHT by much.

F. Missing Proofs for Section 4

Lemma F.1 Let i, j ∈ [n]. We have d[Ri, Rj ]t = (ei − p(t))TΣ(t)(ej − p(t)) dt.

Proof Using Lemma B.1 and the remarks in Section C we have

d[Ri, Rj ]t = dRi(t) · dRj(t) = 〈W (t)(ei − p(t)), dB(t)〉〈W (t)(ei − p(t)),dB(t)〉
= (ei − pt)TWTW (ei − pt) (Since dBi(t) dBj(t) = [i = j] dt)

= (ei − pt)TΣ(ei − pt) dt. (By (21))

F.1 Proof of Lemma 4.2

Proof of Lemma 4.2 Let T ≥ 0. Intuitively, we want to show that Φ(T,R(T )) ≥ 0 by using
Lemma 4.1. However, it is not clear what should be the value of Φ(0, 0). To handle this issue, let
δ > 0 and define Φδ(t, x) := Φ(t + δ, x) for all t ≥ 0 and x ∈ Rn, let p(δ) be define as in (4) but
replacing Φ by Φδ, and let Rδ be the continuous regret vector of pδ. Our goal now is to show that

Φδ(T,R
δ(T )) ≥ Φδ(0, 0) =

√
δ almost surely. (24)

Then, by taking the limit with δ tending to 0 we have Φ(T,R(T )) ≥ 0 almost surely. Furthermore, by
a union bound we have Φ(t, R(t)) ≥ 0 for all rational t ≥ 0, and since both Φ and R are continuous
in t, this implies that Φ(t, R(t)) ≥ 0 for all t ≥ 0 almost surely. Note, however, that there is a
subtlety in the step in which we take the limit with δ → 0, since we are implicitly assuming that

lim
δ→0

Rδ(T ) = R(T ) almost surely. (25)

Let us prove that (25) indeed holds. Since Rδi (T ) = Gi(T ) −
∫ T

0 〈p
(δ)(t),dG(t)〉 and Gi(T ) is

independent of δ for each i ∈ [n], we only need to show that

lim
δ→0

∫ T

0
〈p(δ)(t),dG(t)〉 =

∫ T

0
〈p(t), dG(t)〉 almost surely.
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Since p(δ)(t) is bounded and predictable (since it is left-continuous, see Appendix E) and Gi is a
continuous martingale (since it is given by a stochastic integral of continuous functions with respect
to a Brownian motion) for each i ∈ [n], the above holds by the Dominated Convergence Theorem
for stochastic integrals (Revuz and Yor, 1999, Theorem IV.2.12). It is also worth mentioning that
we indeed have limδ↓0 p

δ = p point-wise since taking δ to 0 would not make x2/2(t+ δ) cross the
negative orthant where the points of discontinuity of p may be. This completes the proof of (25). We
now proceed with the proof of (24).

Since Φδ is separable and φ(t+ δ, ·) is concave for any t ≥ 0, by Lemma 4.1 we have

Φδ(T,R
δ(T ))− Φδ(0, 0) ≥

∫ T

0

(
∂tΦδ(t, R

δ(t)) + 2

n∑
i=1

∂iiΦδ(t, R
δ(t))

)
dt.

Note that, for any x ∈ Rn, we have ∂tΦδ(t, x) =
∑n

i=1 ∂tφ(t+ δ, x/2) and for all i ∈ [n] we have
∂iiΦ(t, x) = (1/4)∂xxφ(t+ δ, xi). Therefore,

∂tΦδ(t, R
δ(t)) + 2

n∑
i=1

∂iiΦδ(t, R
δ(t)) =

n∑
i=1

(
∂tφ(t+ δ,Rδi (t)) +

1

2
∂xxφ(t+ δ,Rδi (t))

)
≥ 0,

where the last equation holds since ∂tφ(t, α) + (1/2)∂xxφ(t, α) ≥ 0 for any t > 0 and α ∈ R. This
implies that Φδ(T,R

δ(T )) ≥ Φδ(0, 0) =
√
δ and Φ(T,R(T )) ≥ 0 by taking the limit δ → 0.

G. Missing Proofs for Section 4.1

G.1 Proof of Lemma 4.7

First, we require the following lemma. See, e.g., Klenke (2008, Example 10.9), Harvey et al. (2020a,
Lemma 3.13).

Lemma G.1 (Discrete Itô’s Formula) Let x1, · · · be a sequence of real numbers. Then for any
function f and any fixed time T ≥ 2, we have

f(T, xT )− f(1, x1) =

T∑
t=2

f(t, xt)−
f(t, xt−1 + 1) + f(t, xt−1 − 1)

2

+

T∑
t=2

(
1

2
fxx(t, xt−1) + ft(t, xt−1)

)
.

(26)

Proof of Lemma 4.7 We prove the following statement. Let f be a bivariate function that is concave
in its second argument. Then for all t, x ∈ R and y ∈ [−1, 1] we have

f(t, x+ y)− f(t, x+ 1)− f(t, x− 1)

2
≥ fx(t, x) · y.

Equality holds for y ∈ {−1, 1}. Since the LHS is concave in y and the RHS is linear in y, the
inequality holds for all y ∈ [−1, 1]. The lemma now follows by combining with Lemma G.1 with
x = xt−1 and y = xt − xt−1.
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G.2 Proof of Lemma 4.9

We require the following lemma from Harvey et al. (2020a).

Lemma G.2 (Harvey et al., 2020a, Lemma 3.10) For all z ∈ [0, 1) and x ∈ R, we have

M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
≥ 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Proof of Lemma 4.9 Recalling the definition of the discrete derivatives (see Eq. (11)), we have that

φt(t, x) +
1

2
φxx(t, x) =

φ(t, x+ 1) + φ(t, x− 1)

2
− φ(t− 1, x).

Hence, it suffices to prove that

φ(t, x+ 1) + φ(t, x− 1) ≥ 2φ(t− 1, x). (27)

We consider several cases depending on the value of x.

Case 1: x ≥ 1. In this case, Eq. (27) is equivalent to

√
t ·M0

(
(x+ 1)2

2t

)
+
√
t ·M0

(
(x− 1)2

2t

)
≥ 2
√
t− 1 ·M0

(
x2

2(t− 1)

)
. (28)

Note that t > 1 so all terms are well-defined. Rearranging, this is equivalent to

M0

(
(x+ 1)2

2t

)
+ M0

(
(x− 1)2

2t

)
≥ 2

√
1− 1/t ·M0

(
x2

2t

)

which follows from Lemma G.2 by setting x and z in Lemma G.2 with x/
√
t and 1/

√
t, respectively.

Case 2: x ∈ [0, 1]. Note that Eq. (28) holds for all x ∈ R (because Lemma G.2 holds for all x ∈ R).
Next, observe that φ(t, x) ≥M0(x2/2t) with equality whenever x ≥ 0 (this is because M0(x2/2t)
is increasing on the interval (−∞, 0] while φ(t, x) = φ(t, 0) due to the truncation defined in Eq. (7)).
So the LHS of Eq. (28) is upper bounded by the LHS of Eq. (27) and the RHS of Eq. (28) is equal to
the RHS of Eq. (27). So Eq. (28) holds in this case as well.

Case 3: x ∈ [−1, 0]. Note that φ(t, x+ 1) is the only term in Eq. (27) that is not constant on the
interval [−1, 0]. Further, note that Eq. (27) holds for x = 0 by the previous case and it holds for
x = −1 because the LHS is 2

√
t and the RHS is 2

√
t− 1. So the inequality holds since φ is concave

in its second argument (Lemma A.2).

Case 4: x ≤ −1. Due to the truncation in Eq. (7), Eq. (27) becomes 2
√
t ≥ 2

√
t− 1.
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H. Proof of Lemma 5.1

For our lower-bound, we do not need the sBHT to be evaluated at R(t) to hold. Thus, we shall define
some notation to analyse the sBHT evaluated at arbitrary points. Namely, let x ∈ Rn and t > 0.
Define

p(t, x) :=
1

1T∇xΦ(t, x)
∇xΦ(t, x), ∀t ≥ 0,

setting p(t, x) = (1/n)1 if 1T∇xΦ(t, x) = 0. Moreover, define

sBHT(t, x) := ∂tΦ(t, x) +
1

2

n∑
i=1

∂iiΦ(t, x)(ei − p(t, x))T(ei − p(t, x))

setting p(t, x) := 1
n1 when 1

T∇xΦ(t, x) = 0. Note now that we may assume x ≥ 0. Indeed,
assume xi < 0 for some xi. Then, due to the truncation in the definition of φ, we have ∂iiΦ(t, x) =

∂xxφ(t, xi) = 0. Since ∂tφ(t, xi) = 1√
2t

exp(
x2i
2t ) ≥ 0, we conclude that sBHT(t, x) ≥ sBHT(t, x−

eixi), that is, setting the i-th entry of x to zero can only decrease the value of the sBHT.
Furthermore, for the sake of simplicity assume x1 ≥ x2 ≥ · · · ≥ xn and set p := p(t, x). For

each i ∈ [n] define

qi := ex
2
i /2t, Qi := erfi

(
xi√
2t

)
,

Θ :=
n∑
j=1

Qj , pi :=
Qj
Θ
.

Then, evaluating the derivatives according to Lemma A.2 and using that pi ∝ ∂xφ(t, xi) ∝ Qi we
have

sBHT(T, x) =
1

2
√
T

n∑
i=1

ex
2
i /2t

(
1− (ei − p)T (ei − p)

)
=

1

2
√
T

n∑
i=1

ex
2
i /2t

(
2pi − pT p

)
=

1

2Θ2
√
T

n∑
i=1

qi
(
2ΘQi −QTQ

)
.

Now, it suffices to show that

∂xn(2Θ2
√
T sBHT(T, x)) = 2

√
T∂xn(Θ2 sBHT(T, x)) ≥ 0. (29)

to prove the desired claim by induction. Indeed, note that if ∂xn(Θ2 sBHT(T, x)) ≥ 0, then
decreasing xn all the way to zero only decreases the value of Θ2 sBHT(T, x). More specifically, let
x′ := x − xnen and define Θ′, Q′, and q′ accordingly (that is, substituting x by x′ in the original
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definition of these terms). In this case, we have Q′n = 0 and q′n = 1, yielding

Θ2 sBHT(T, x) ≥ (Θ′)2 sBHT(T, x′) =
n∑
i=1

q′i(2ΘQ′i − 〈Q′, Q′〉)

=
∑
i<n

q′i(2ΘQ′i − 〈Q′, Q′〉)− 〈Q′, Q′〉

≥
∑
i<n

q′i(2ΘQ′i − 〈Q′, Q′〉)− 〈Q′, Q′〉.

Dividing everything by (Θ′)2, we get

(
Θ

Θ′

)2

sBHT(T, x) ≥ 1

(Θ′)2

∑
i<n

q′i(2ΘQ′i − 〈Q′, Q′〉)− 〈p′, p′〉

≥ 1

(Θ′)2

∑
i<n

q′i(2ΘQ′i − 〈Q′, Q′〉)− 1.

If sBHT(T, x) ≥ 0, then the lower-bound we are trying to prove in the statement of Lemma 5.1
holds trivially. Otherwise, we have sBHT(T, x) ≥

(
Θ
Θ′

)2
sBHT(T, x) since Θ ≥ Θ′. Finally, the

last summation in the above calculation is exactly the sBHT with n− 1 experts, and one can easily
check that the sBHT for 1 expert is always at least 1. So by induction we have the claim of the
theorem. Thus, let us finally proceed with the proof of (29).

First, let us summarize the properties on the partial derivatives:

∂xnQn =

√
2

π
qn, ∂xnqn = xnqn,

∂xnΘ = ∂xnQn =

√
2

π
qn, ∂xn(QTQ) = 2

√
2

π
Qnqn.

Then,

∂xn(Θ2 sBHT(T, x))

=
n∑
i=1

∂xn(qi(2QiΘ−QTQ))

=
∑
i<n

qi(2Qi∂xnΘ− ∂xn(QTQ)) + (∂xnqn)(qn(2QnΘ−QTQ)) + qn∂xn(2QnΘ−QTQ)

=
∑
i<n

2

√
2

π
qiqn(Qi −Qn) + xnqn(2QnΘ−QTQ) + qn(2Θ∂xn(Qn) + 2Qn∂xn(Θ)− ∂xn(QTQ))

=
∑
i<n

2

√
2

π
qiqn(Qi −Qn) + xnqn(2QnΘ−QTQ) + 2

√
2

π
q2
nΘ︸ ︷︷ ︸

≥0

. (30)
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For the second term, since Qi ≥ Qn for any i ∈ [n] we have

xnqn(2QnΘ−QTQ) = xnqn

n∑
i=1

(2QnQi −Q2
i )

= xnqn

n∑
i=1

Qi(2Qn −Qi)

≥ xnqn
∑
i<n

Qi(2Qn −Qi).

Thus,

(30) ≥
∑
i<n

(
2

√
2

π
qiqn(Qi −Qn) + xnqnQi(2Qn −Qi)

)
.

Since Qi−Qn ≥ 0, if 2Qn−Qi ≥ 0 we are done. Assume otherwise. The next lemma, which relies
in a classical bound on erfi (Olver et al., 2010, Section 7.8), will be crucial for the rest of the proof.

Lemma H.1 For any z > 0, we have
√
π

2
erfi(z) =

∫ z

0
et

2
dt <

ez
2 − 1

x
. (31)

In particular,

Qi < 2

√
2

π
· qi − 1

xi
, ∀i ∈ [n].

Proof The inequality from (31) can be found in Olver et al. (2010, Section 7.8). For the second
inequality, note that

Qi = erfi
( xi√

2

) (31)
<

2√
π
· e

x2i /2 − 1

xi/
√

2
= 2

√
2

π
· qi − 1

xi
.

The above lemma together with 2Qn −Qi ≤ 0 implies, for each i ∈ [n],

xnqnQi(2Qn −Qi) ≥
xn
xi︸︷︷︸
≤1

qn2

√
2

π
(qi − 1)︸ ︷︷ ︸
≤qi

(2Qn −Qi)

≥ qn2

√
2

π
qi(2Qn −Qi).

Thus, ∑
i<n

(
2

√
2

π
qiqn(Qi −Qn) + xnqnQi(2Qn −Qi)

)

≥

(
2

√
2

π
qiqn(Qi −Qn) + qn2

√
2

π
qi(2Qn −Qi)

)

=2

√
2

π
qnqiQn ≥ 0.

This completes the proof of (29) and, thus, of the lemma.
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H.1 Proof of Proposition 5.3

Proof of Proposition 5.3 Since the functions in the stochastic differential equations in Section 2
are at least left-continuous and bounded, the stochastic integrals are well defined, vanish at time 0,
and are martingales (Revuz and Yor, 1999, Def. IV.2.1 and IV.2.3). In particular, E [A(t) ] = 0 for
all t ≥ 0. For each i ∈ [n] we have Gi(t) = Bi(t) since w(i)(t) = ei. Thus each gain process is an
independent Brownian motion. Thus,

E [ ContRegret(t) ] = E

[
max
i∈[n]

Bi(t)

]
=
√

2T lnn(1− o(1)),

where in the last equation we used the well-known asymptotics for the maximum of n Gaussian
random variables (e.g. Wainwright, 2019, Exercise 2.11 or Orabona and Pál, 2015, Theorem 3) and
the fact that Bi(t) follow a Gaussian distribution with mean zero and variance t.
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