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Abstract. We prove two results on packing common bases of two matroids. First, we show
that the computational problem of common base packing reduces to the special case where one of
the matroids is a direct sum of uniform matroids. Second, we give a counterexample to a conjecture
of Chow, which proposed a sufficient condition for the existence of a common base packing. Chow’s
conjecture is a generalization of Rota’s basis conjecture.
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1. Introduction. The problem of packing bases in a single matroid was consid-
ered in classical work of Edmonds [6] [7, Application 2]. He characterized when such
a packing is possible and gave efficient algorithms to find such a packing. We consider
the following generalization.

Problem 1.1. Let M1 = (S, I1) and M2 = (S, I2) be matroids on the ground
set S, where I1 and I2 are the respective families of independent sets. A set B ⊆ S
that is both a base of M1 and of M2 is called a common base. The problem is to
decide if S can be partitioned into common bases.

The computational complexity of Problem 1 is open. In particular, the answers
to the following questions are unknown.

• If each matroid is given by an oracle that tests independence in the matroid,
is there an algorithm that solves the problem using a number of queries that
is polynomial in |S|?

• If each matroid is linear and given by an explicit matrix representing the
matroid, is there an algorithm that solves the problem using a number of
steps that is polynomial in the size of this matrix?

Two well-studied special cases of this problem include edge-coloring bipartite
graphs and packing arborescences in digraphs. For these two special cases, both of
these questions have a positive answer; this follows from results of Kőnig [14], Tarjan
[19] and Lovász [15]. The latter two results give an efficient, constructive proof of a
min-max relation originally proved by Edmonds [9].

Another problem related to packing common bases is Rota’s basis conjecture.

Conjecture 1.2 (Rota, 1989). Let M = (T, I) be a matroid of rank n. Let
A1, . . . , An be a partition of T into bases of M. Then there are disjoint bases B1, . . . , Bn

such that |Ai ∩Bj | = 1 for every i = 1, . . . , n and j = 1, . . . , n.

Rota’s conjecture is stated in the work of Huang and Rota [13, Conjecture 4] and
remains open. It can be restated in a way that emphasizes its connection to Problem
1. Let M1 be a matroid of rank n and let A1, . . . , An be disjoint bases that partition
the ground set of M1. Let M2 be the direct sum of uniform rank-1 matroids whose
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blocks are the sets A1, . . . , An. The conjecture asserts that the solution to Problem 1
for M1 and M2 is “yes”.

Recently, Chow [1] proposed the following generalization of Rota’s conjecture.
Conjecture 1.3. Let M = (T, I) be a matroid of rank n with the property that

T can be partitioned into b bases, where 3 ≤ b ≤ n. Let I1, . . . , In ∈ I be disjoint
independent sets, each of size at most b. Then there exists a partition of T into
sets A1, . . . , An such that Ii ⊆ Ai and |Ai| = b for every i = 1, . . . , n, and there
exist disjoint bases B1, . . . , Bb such that |Ai ∩ Bj | = 1 for every i = 1, . . . , n and
j = 1, . . . , b.

For the remainder of this paper, we will only consider the special case of Chow’s
conjecture in which |Ii| = b and hence Ai = Ii for every i = 1, . . . , n.

Obviously Chow’s conjecture implies Rota’s conjecture, by setting b = n. A
stronger statement is also true: Chow [1] proved that, for every value of b, his con-
jecture implies Rota’s conjecture. In particular, this suggests an approach to proving
Rota’s conjecture, which is to prove Chow’s conjecture for the special case b = 3.
Note that Conjecture 1.3 is not true if b = 2, as is shown by a well-known instance
based on the graphic matroid of the complete graph K4. See, e.g., [5], [16, Exercise
12.3.11(ii)] or [18, Section 42.6c].

This paper contains two related results. First, we give a reduction from Problem
1 for arbitrary M1 and M2 to the same problem for new matroids M′

1 and M′
2 where

M′
2 is a direct sum of uniform matroids. As will be clear later, it is not possible

to apply the reduction twice so that both matroids become direct sums of uniform
matroids. Our reduction is efficiently computable, implying the following statement.

Theorem 1.4. Problem 1 can be solved in polynomial time if and only if this
is true under the additional assumption that one of the matroids is a direct sum of
uniform matroids.

This shows that the computational difficulty of Problem 1 does not stem from the
interaction of two potentially complicated matroids — the problem is equally difficult
when one of the matroids is very simple.

Our second result disproves Chow’s conjecture.
Theorem 1.5. Conjecture 1.3 is false for every b such that 2 ≤ b ≤ n/3.
In fact, we give two proofs of Theorem 1.5. Chow [1] mentioned that a variant of

Conjecture 1.3, when I1, I2, . . . , In are not required to be independent in the matroid,
is not true. Our first proof, given in Section 4, shows that Conjecture 1.3 can be
reduced to this variant, and thus any counterexample to the variant (such as the
one in Appendix A) can be transformed to a counterexample of Conjecture 1.3. The
second proof, given in Section 5, uses a connection between packing common bases
and packing dijoins. We note that Chow’s conjecture remains open when b > n/3; in
particular, Rota’s conjecture remains open.

By combining our two results, we obtain the following refinement.
Corollary 1.6. Problem 1 can be solved in polynomial time if and only if this

is true under the additional assumption that M2 is a direct sum of uniform matroids
whose blocks are each independent in M1.

2. Preliminaries. We begin with some terminology which will be useful through-
out this paper. Let M = (T, I) be a direct sum of uniform rank-1 matroids. In the
field of combinatorial optimization, such a matroid is commonly called a partition
matroid [18, pp. 659]. Let A = {A1, . . . , An} be the partition of T induced by this
direct sum; these sets Ai are called the blocks of M. The independent sets of M are

I = { I : |I ∩Ai| ≤ 1 ∀i = 1, . . . , n } .
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It is convenient to denote this matroid U1(A).
A matroid is called a generalized partition matroid if it is the direct sum of

uniform matroids of arbitrary rank. Again assuming that A = {A1, . . . , An} is a par-
tition of T , we let Uk(A) denote the generalized partition matroid whose independent
sets are

{ I : |I ∩Ai| ≤ k ∀i = 1, . . . , n } .

The set of integers {1, . . . , k} is denoted [k]. For a finite set S, we will use its
Cartesian product with [k], namely

S × [k] = { (s, i) : s ∈ S, i ∈ [k] } .

For brevity, we also write this as S[k]. Any subset A ⊆ S is extended to a subset
A[k] ⊆ S[k] by taking A[k] = A × [k]. Similarly, for any s ∈ S, let s[k] = {s} × [k].
Conversely, the projection onto S of any subset B ⊆ S[k] is

π(B) = { s ∈ S : ∃x ∈ [k] s.t. (s, x) ∈ B } .

For any matroid M = (S, I), we define M[k] to be the matroid on the ground set
S[k] whose independent sets are{

I ⊆ S[k] : π(I) ∈ I, |I ∩ s[k]| ≤ 1 ∀s ∈ S
}
.

In other words, every element of S has been replaced by k parallel elements. Note
that the rank of M[k] is the same as the rank of M.

The direct sum of two matroids M1 and M2 on disjoint ground sets is denoted
M1 ⊕M2. The dual of a matroid M is denoted M∗. For simplicity we write M∗[k]

to denote (M∗)[k].

3. Packing common bases and partition matroids. In this section we prove
Theorem 1.4. Suppose we are given two matroids M1 and M2 on a ground set S. We
will show how to construct two new matroids, one of which is a partition matroid, such
thatM1 andM2 can be partitioned into common bases if and only if the new matroids
can be partitioned into common bases. The essence of our proof is to generalize an
observation of Edmonds [8, claims 104–106]. He constructs two new matroids, one of
which is a partition matroid, such that a common base of M1 and M2 exists if and
only if a common base of the new matroids exists.

We may assume that M1 and M2 contain no loops, that their rank is the same
number r, that they have at least one common base, and that |S| is a multiple of r,
say |S| = (k+ 1) · r. These assumptions can easily be tested in polynomial time, and
if they do not hold then the solution to Problem 1 is “no”.

The two new matroids are defined on the ground set S∪S[k]. Let Ŝ = { ŝ : s ∈ S }
be the partition of S ∪ S[k] where ŝ = {s} ∪ s[k] for each s ∈ S. To visualize this, one
can view the elements of S ∪S[k] as being written in an |S| × (k+1) array, where the
elements in S are written in the first column and the elements of ŝ are written in a
row for every s ∈ S. The new matroids are

M = M1 ⊕M
∗[k]
2 and U1(Ŝ).

One may easily verify that both of these matroids have rank |S|.
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Claim 3.1. The common bases of M and U1(Ŝ) are precisely the subsets B ⊆
S ∪ S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S and B ∩ S is a common base of M1 and M2. (3.1)

Proof. Recall that r is the rank of both M1 and M2. Let B1, B2 and B∗
2 respec-

tively denote the base families of M1, M2 and M∗
2.

Clearly the bases of U1(Ŝ) are the subsets B ⊆ S ∪ S[k] for which |B ∩ ŝ| = 1 for
every s ∈ S. Of these subsets, the bases of M are exactly those for which B ∩S ∈ B1

and π(B ∩ S[k]) ∈ B∗
2 . Note that π(B ∩ S[k]) = S \B. Since S \B ∈ B∗

2 is equivalent
to B ∩ S ∈ B2, this establishes the claim.

Corollary 3.2. If B1, . . . , Bk+1 is a partition of S ∪ S[k] into common bases
of M and U1(Ŝ), then B1∩S, . . . , Bk+1∩S is a partition of S into common bases of
M1 and M2.

Claim 3.3. Given a partition B1, . . . , Bk+1 of S into common bases of M1 and
M2, we can construct a partition B′

1, . . . , B
′
k+1 of S ∪ S[k] into common bases of M

and U1(Ŝ).
Proof. The idea is simple: we extend each Bj into a common base of M and

U1(Ŝ) by picking one element from s[k] for each s ∈ S \ Bj . Visualizing the new
ground set as an array, the process is: for each row containing no element of Bj , we
pick an arbitrary element in that row, excluding the first element, since it lies in S.

More formally, we will partition S[k] into C1, . . . , Ck+1 such that the following
properties are satisfied.

π(Cj) = S \Bj and |Cj ∩ s[k]| =

{
0 (if s ∈ Bj)

1 (otherwise)
.

Then we will set B′
j = Bj ∪ Cj . The resulting sets B′

j will satisfy (3.1), so by

Claim 3.1 they are common bases of M and U1(Ŝ). The construction of the sets Cj is
by a simple greedy approach that proceeds by sequentially constructing C1, then C2,
etc. To construct Cj , for each element s ∈ S \Bj we add to Cj an arbitrary element
in s[k] \

∪
ℓ<j Cℓ. Such an element exists because the sets Bj are a partition of S, so

for every s ∈ S, we have |{ j : s ̸∈ Bj }| = k = |s[k]|.
Corollary 3.2 and Claim 3.3 together imply Theorem 1.4.

4. A counterexample to Chow’s Conjecture. In [1], Chow stated that the
following variant of Conjecture 1.3 is not true.

Conjecture 4.1. Let M = (S, I) be a matroid of rank m with the property that
S can be partitioned into b bases, where 3 ≤ b ≤ m. Let A1, . . . , Am be disjoint sets,
each of size b. Then there are disjoint bases B1, . . . , Bb such that |Ai ∩ Bj | = 1 for
every i = 1, . . . ,m and j = 1, . . . , b.

Using a reduction similar to that used to prove Theorem 1.4, we show that any
counterexample to Conjecture 4.1 yields a counterexample to Conjecture 1.3. Since
counterexamples to Conjecture 4.1 are known, this yields counterexamples to Con-
jecture 1.3 via our reduction. The precise statement that we prove is the following
theorem.

Theorem 4.2. Let M1 = (S, I1) be a matroid with rank m, no loops and |S| =
(k + 1) ·m. Let A = {A1, . . . , Am} be a partition of S where each |Ai| = k + 1. With
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a slight abuse of notation, define

A[k] =
{
A

[k]
1 , . . . , A[k]

m

}
and M = M1 ⊕Uk(A[k]).

As above, let Ŝ = { ŝ : s ∈ S } be the partition of S ∪ S[k] where ŝ = {s} ∪ s[k] for
each s ∈ S. Then the following statements hold.

M1 and U1(A) have k + 1 disjoint common bases if and only if M and U1(Ŝ) do,
(4.1a)

every set in Ŝ is independent in M, and (4.1b)

if M1 has k + 1 disjoint bases then M has k + 1 disjoint bases. (4.1c)

Proof. Statement (4.1b) is straightforward, so we begin by proving (4.1c). Since
M is a direct sum, it suffices to show that S can be partitioned into k + 1 bases of
M1 and that S[k] can be partitioned into k+1 bases of Uk(A[k]). The first condition
holds by assumption. The second condition also follows easily: since |Ai| = k + 1 for

every i, there exists a partition of S into bases B1, . . . , Bk+1 of U1(A). Let Cj = B
[k]
j

(j = 1, . . . , k+ 1). The sets Cj form a partition of S[k], and |Cj ∩A
[k]
i | = k for each i

and each j, implying that each Cj is a base of Uk(A[k]).
To prove (4.1a) we require the following claim, which is similar to Claim 3.1.
Claim 4.3. The common bases of M and U1(Ŝ) are precisely the subsets B ⊆

S ∪ S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S and B ∩ S is a common base of M1 and U1(A).

Proof. The common bases of M and U1(Ŝ) are the subsets B ⊆ S∪S[k] satisfying

|B ∩ ŝ| = 1 ∀s ∈ S (4.2a)

B ∩ S is a base of M1 (4.2b)

|B ∩A
[k]
i | = k ∀i. (4.2c)

The main point is that, under the assumption that (4.2a) holds, (4.2c) is equivalent
to

|B ∩Ai| = 1 ∀i.

This last condition is equivalent to B ∩ S being a base of U1(A).
Now we prove (4.1a). If B1, . . . , Bk+1 are disjoint common bases of M and U1(Ŝ)

then, by Claim 4.3, B1∩S, . . . , Bk+1∩S are disjoint common bases of M1 and U1(A).
Conversely, suppose that B1, . . . , Bk+1 are disjoint common bases of M1 and U1(A).
We can obtain k + 1 disjoint common bases of M and U1(Ŝ) in a manner similar
to Claim 3.3. We will greedily construct a partition of S[k] into C1, . . . , Ck+1 such

that |Cj ∩A
[k]
i | = k for each i and each j, implying that each Cj is a base of Uk(A).

To construct Cj , for each element s ∈ S \ Bj we add to Cj an arbitrary element in
s[k] \

∪
ℓ<j Cℓ. Such an element exists because the sets Bj are a partition of S, so for

every s ∈ S, we have |{ j : s ̸∈ Bj }| = k = |s[k]|. The construction guarantees that

Bj ∪ Cj is a common base of M and U1(Ŝ) for each j.
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Proof (of Theorem 1.5). Suppose that we have a counterexample to Conjec-
ture 4.1 consisting of a matroid M1 together with the sets A1, . . . , Am, each of which
has |Ai| = b. Let A = {A1, . . . , Am}. Then each of M1 and U1(A) can be partitioned
into b bases, but they cannot be partitioned into b common bases.

Let k = b−1. Construct the matroids M and U1(Ŝ) as in Theorem 4.2. Then M
has rank |S| and it can be partitioned into b bases, by (4.1c). Furthermore U1(Ŝ) is a
partition matroid whose blocks are each independent in M, by (4.1b). Since M1 and
U1(A) do not have k + 1 disjoint bases, neither do M and U1(Ŝ), by (4.1a). Thus
M and U1(Ŝ) give a counterexample to Conjecture 1.3.

McDiarmid showed a counterexample (briefly described in Appendix A) to Con-
jecture 4.1 for any b ≥ 2 with m = 3 and |S| = 3b. Thus our construction shows that
Conjecture 1.3 is false for any b ≥ 2 and n = 3b. By Chow’s theorem [1], this implies
that Conjecture 1.3 is false whenever 2 ≤ b ≤ n/3.

Theorem 1.4 describes a polynomial-time reduction from an arbitrary instance
of Problem 1 to an instance in which one of the matroids is a partition matroid.
Theorem 4.2 describes a polynomial-time reduction from an instance of Problem 1
in which one of the matroids is a partition matroid to another instance in which one
of the matroids is a partition matroid whose blocks are independent in the other
matroid. Composing these two reductions proves Corollary 1.6.

5. Chow’s Conjecture and Dijoins. In this section we give an alternative
proof of Theorem 1.5. The proof is based on a connection between dijoins and com-
mon matroid bases, due to Frank and Tardos [11], and Schrijver’s counterexample on
packing dijoins [17].

Let D = (V,A) be a directed graph. For any set U ⊆ V , we let δin(U) be the set of
arcs entering U and let δout(U) be the set of arcs leaving U . Define din(U) = |δin(U)|
and dout(U) = |δout(U)|. For any arc set F we also define dinF (U) = |δin(U) ∩ F |
and doutF (U) = |δout(U) ∩ F |. For any vertex v ∈ V , we use the shorthand dinF (v) for
dinF ({v}).

An arc set C ⊆ A is called a directed cut if there exists ∅ ̸= U ( V such that
C = δin(U) and dout(U) = 0. A k-dijoin is an arc set F ⊆ A that contains at least
k arcs from each directed cut of D. A 1-dijoin is called simply a dijoin. Schrijver’s
counterexample showed the existence of a digraph and a 2-dijoin that cannot be
partitioned into two disjoint dijoins. By adding three arcs x′, y′, z′ to Schrijver’s
example, we can obtain a 3-dijoin that cannot be decomposed into three dijoins. The
resulting example is shown in Figure 5.1 and is denoted D = (V,A). Let F be the set
of bold arcs in this example. One may verify that F is a 3-dijoin.

Claim 5.1. The arc set F cannot be decomposed into three dijoins.
Proof. Let D be the family of all arc sets equivalent to {x′, y′, z′} under the

relations x ≡ x′, y ≡ y′ and z ≡ z′. Note that all arc sets in D are dijoins.
Any decomposition of F into three dijoins cannot contain a dijoin in D since

the remainder is Schrijver’s counterexample, which cannot be decomposed into two
dijoins. Any dijoin not in D must contain at least four arcs because of the nodes
of in-degree and out-degree zero represented in Figure 5.2(a). Any dijoin of exactly
four arcs must contain two nonparallel arcs from {x, x′, y, y′, z, z′}, as is clear from
Figure 5.2(a). Since F has twelve elements, each of the three disjoint dijoins must have
exactly four arcs and each must contain two nonparallel arcs from {x, x′, y, y′, z, z′}.
But Figure 5.2(b) shows that such an arc set cannot be a dijoin: there is a set of
out-degree zero in D that it does not enter.

We define an arc set F ′ (which is not a subset of A) by taking F and adding two
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reversed arcs for each arc of F . For a ∈ F , these reversed arcs will be denoted by
a−1
1 and a−1

2 . We obtain another counterexample for Chow’s conjecture by defining
a matroid with ground set F ′. First define

X :=
{
X : ∅ ̸= X ( V and doutA (X) = 0

}
and define iF (X) to be the number of arcs of F with both endpoints in X. The
matroid M is defined by its bases: a set B ⊆ F ′ is a base if and only if |B| = |F | and∑

v∈X

dinB(v) ≥ iF (X) + 1 ∀X ∈ X . (5.1)

It was shown by Frank and Tardos [11] [18, Section 55.5] that this construction gives
a matroid.

Claim 5.2. The ground set F ′ of the matroid M can be partitioned into three
bases.

Proof. First we claim that the base polyhedron of M is

Q :=

{
x : x(F ′) = |F |,

∑
v∈X

x(δin(v)) ≥ iF (X) + 1 ∀X ∈ X , 0 ≤ xa ≤ 1 ∀a ∈ F ′

}
.

To see this, first note that, since the directed cuts form a crossing family, their com-
plements also form a crossing family C. We can define a crossing submodular function
f : C → R such that (5.1) is equivalent to |B ∩ Z| ≤ f(Z) for all Z ∈ C. Now by
following another argument in Schrijver [18] proving that M is a matroid (see Theo-
rem 49.7, Equation (49.11) and Equation (44.43)) it follows that Q is indeed the base
polyhedron of M.

Since F ⊂ F ′ and F is a 3-dijoin, we have∑
v∈X

dinF ′(v) = iF ′(X) + dinF ′(X) ≥ iF ′(X) + 3 ∀X ∈ X .

Since iF ′(X) = 3iF (X) for every X ⊆ V , we have∑
v∈X

dinF ′(v)

3
≥ iF (X) + 1 ∀X ∈ X .

Let x be the characteristic vector of F ′, divided by 3. Then we have shown that
x ∈ Q. Since matroid base polyhedra have the integer decomposition property [18,
Corollary 42.1e], this implies that F ′ can be partitioned into three bases.

Let us define the sets Ia = {a, a−1
1 , a−1

2 } (a ∈ F ). These triplets are independent
sets. To see this, note that F is a base; moreover, it satisfies inequality (5.1) with
iF (X) + 3 instead of iF (X) + 1. Thus, for arbitrary distinct arcs a, b, c ∈ F , the set
(F \ {a, b, c}) ∪ Ia is a base.

Conjecture 1.3 would imply that F ′ can be decomposed into three bases B1, B2, B3

such that |Bj ∩ Ia| = 1 for any j ∈ {1, 2, 3} and a ∈ F . Suppose that this is possible;
then iBj (X) = iF (X) for every X ⊆ V , so

∑
v∈X dinBj

(v) ≥ iF (X) + 1 implies that

dinBj
(X) ≥ 1 for every ∅ ̸= X ( V with doutA (X) = 0.

In other words, Bj has at least one arc in every directed cut of D. However, the only
arcs that are in directed cuts of D are the arcs of F . Thus the conjecture would imply
that F can be decomposed into three dijoins, but by Claim 5.1 this is impossible.
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x
x'

y

y'

z
z'

Fig. 5.1. Schrijver’s example, augmented with additional arcs x′, y′ and z′. The bold arcs form
a 3-dijoin which cannot be decomposed into three dijoins.

This proves Theorem 1.5 for the case b = 3. By adding additional arcs parallel to
x′, y′, z′ one can extend this argument to obtain a counterexample to Conjecture 1.3
for all 3 ≤ b ≤ n/3− 1. This proves Theorem 1.5, with slightly weaker parameters.

Concluding Remarks. Several basic questions on disjoint common bases of two
matroids remain open. One question is to determine the computational complexity
of Problem 1. As we have shown, it suffices to consider the case when one of the
matroids is a partition matroid. Even when the other matroid is a graphic matroid,
the computational complexity is still unknown. Another question is to find a sufficient
condition that guarantees the existence of k disjoint common bases. Geelen and
Webb [12] showed that there are

√
n disjoint common bases under the setting in

Rota’s conjecture.
Finding further counterexamples to Chow’s conjecture may lead to an improve-

ment of the parameters in Theorem 1.5, and perhaps a better understanding of Rota’s
conjecture. One framework that seems quite relevant for such questions is the topic
of clutters [2, 3]. A clutter C is a pair (V (C), E(C)), where V (C) is a finite set and
E(C) = {E1, E2, . . .} is an antichain in the lattice of subsets of V (C), i.e., a family
of distinct subsets of V (C) such that Ei ⊆ Ej implies i = j. The elements of V (C)
are called vertices and the elements of E(C) are called edges. A transversal of C
is a subset of V (C) that intersects all edges in E(C). Let τ(C) denote the minimum
cardinality of any transversal. We say that the clutter C packs if there exist τ(C)
pairwise disjoint edges.

As in Conjectures 1.2 and 1.3, let M = (T, I) be a matroid of rank n with the
property that T can be partitioned into b bases, where 3 ≤ b ≤ n. Let A1, . . . , An ∈ I
be disjoint independent sets, each of size b. Consider the clutter C with V (C) = T
and

E(C) = { B : B ∈ I and |Ai ∩B| = 1 ∀i ∈ [n] } . (5.2)

Note that every B ∈ E(C) is a base of M.
Conjectures 1.2 and 1.3 are equivalent to the statement that the clutter C packs,

since we show in Appendix B that τ(C) = b. Therefore any counterexample to these
conjectures necessarily involves a clutter that does not pack. Characterizing clut-
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(a)

(b)

Fig. 5.2. (a) Nodes of out-degree 0 (black) and in-degree 0 (gray) in the digraph (V, F ). (b)
The solid arcs do not form a dijoin because of the set of out-degree 0, indicated by the oval.

ters that do not pack seems difficult, although there has been significant work on
identifying the minimal such clutters [4].

The counterexample to Conjecture 1.3 given in Section 4 is based on a well-known
clutter1 Q6 that does not pack, and which underlies the K4 counterexample described
in Appendix A. The counterexample to Conjecture 1.3 given in Section 5 is based on
another famous such clutter, known as Q6 ⊗ {1, 3, 5}. This clutter was developed by
Schrijver [17] to disprove a conjecture of Edmonds and Giles [10] on packing dijoins.

An important class of clutters is the the class of ideal clutters [2]. One can
show that the clutter C defined in (5.2) is not necessarily ideal: there is a laminar
matroid on nine elements such that C2

3 is a minor of C. On the other hand, our two
counterexamples are based on Q6 and Q6 ⊗ {1, 3, 5}, which are both ideal. Is there a

1The clutter commonly called Q6 is unrelated to the matroid commonly called Q6.
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counterexample based on a non-ideal, non-packing clutter?

Acknowledgements. We thank an anonymous referee and Timothy Chow for
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REFERENCES

[1] T. Y. Chow. Reduction of Rota’s basis conjecture to a problem on three bases. SIAM J.
Discrete Math., 23(1):369–371, 2009.
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Appendix A. The K4 counterexample.

Consider K4, the complete graph on four vertices. As shown in Figure A.1(a), we
write its edges as S = {a0, a1, b0, b1, c0, c1}, where a0∩a1 = ∅, b0∩ b1 = ∅, c0∩ c1 = ∅,
and {a1, b1, c1} forms a spanning star. Let M1 = (S, I1) be the graphic matroid of
K4. Let M2 be the partition matroid

U1({{a0, a1} , {b0, b1} , {c0, c1}}).
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b0

a0
c0

(b)

Fig. A.1. (a) The graph K4 with our chosen edge labeling. (b) The graph G2 is obtained by
letting a2, b2 and c2 be parallel copies of a1, b1 and c1, respectively.

It is well-known [5] that both M1 and M2 have two disjoint bases, but they do not
have two disjoint common bases. The common bases of M1 and M2 are precisely the
spanning stars in K4.

McDiarmid [1] showed how to extend this example to obtain, for any k ≥ 1, two
matroids M1 = (S, I1) and M2 = (S, I2) such that

• S can be partitioned into k + 1 bases of M1,
• S can be partitioned into k + 1 bases of M2, and
• S cannot be partitioned into k + 1 common bases of M1 and M2.

We now describe this extension. The example is based on the graph Gk, which is
constructed from K4 by adding new edges:

• a2, . . . , ak parallel to a1,
• b2, . . . , bk parallel to b1, and
• c2, . . . , ck parallel to c1.

The graph G2 is shown in Figure A.1(b). Define

Ea = {a1, . . . , ak} Eb = {b1, . . . , bk} Ec = {c1, . . . , ck}
Fa = {a0, . . . , ak} Fb = {b0, . . . , bk} Fc = {c0, . . . , ck} .

Let M1 be the graphic matroid of Gk. Let M2 = U1(Fa, Fb, Fc). It is easy to see
that the edges can be partitioned into k + 1 bases of M1, or into k + 1 bases of M2.

Claim A.1. The edges cannot be partitioned into k+1 common bases of M1 and
M2.

Proof. As remarked above, the common bases of M1 and M2 are precisely the
spanning stars in Gk. We consider two cases.
Case 1: k ≥ 3. Since there are only three edges not in Ea ∪ Eb ∪ Ec, at least one of
the k + 1 common bases is contained in Ea ∪ Eb ∪ Ec. Removing this common base,
the resulting graph is Gk−1. By induction, this instance cannot be partitioned into k
common bases.
Case 2: k = 2. Note that there is no spanning star using exactly two edges from
Ea ∪ Eb ∪ Ec. So two of the common bases use three of those edges, and the other
common base uses none. But the complement of Ea ∪Eb ∪Ec is not a spanning star.

The matroids M1 and M2 give a counterexample to Conjecture 4.1 for m = 3 and
arbitrary b ≥ 2: take k = b− 1, and define the sets A1, A2, A3 to be the blocks of the
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matroidM2. However, this does not directly yield a counterexample to Conjecture 1.3
for b ≥ 3 since the sets A1, A2, A3 are not independent in M1.

Appendix B. Minimum Transversals and Rota’s Conjecture.
In this appendix, we determine the minimum cardinality of any transversal for

the clutter defined in (5.2).
Claim B.1. τ(C) = b.
Proof. Obviously τ(C) ≤ b as any set Ai is a transversal. So suppose there exists

a transversal D ⊆ T such that |D| < b. Let A = {A1, . . . , An}. We wish to show
that there is an edge that does not intersect D, which is equivalent to showing that
M \D and U1(A) \D have a common base. Let rM and rU1(A) respectively be the
rank function of M and U1(A). By the matroid intersection theorem [18, Theorem
41.1] [16, Theorem 12.3.15], it suffices to show that

rM(A) + rU1(A)(T \ (D ∪A)) ≥ n ∀A ⊆ T \D. (B.1)

By Edmonds’ matroid base covering theorem [18, Corollary 42.1c] [16, Theorem
12.3.12], for any set A we have rM(A) ≥ ⌈|A|/b⌉ and rU1(A)(A) ≥ ⌈|A|/b⌉. Thus

rM(A) + rU1(A)(T \ (D ∪A)) ≥
⌈
|A|
b

⌉
+

⌈
|T \ (D ∪A)|

b

⌉
=

⌈
|A|
b

⌉
+

⌈
|T \A|

b

⌉
− ϵ

≥ n− ϵ,

where ϵ ∈ {0, 1}, since |D| < b.
If the last inequality is strict, then (B.1) must be satisfied. If last inequality

holds with equality then |A|/b and |T \ A|/b are both integers, which implies that
⌈|T \ (D ∪A)|/b⌉ = |T \A|/b, since |D| < b. Thus ϵ = 0 and so (B.1) is satisfied.


