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Abstract— An outer bound on the rate region of noise-free
information networks is given. This outer bound combines prop-
erties of entropy with a strong information inequality derived
from the structure of the network. This blend of information
theoretic and graph theoretic arguments generates many inter-
esting results. For example, the capacity of directed cycles is
characterized. Also, a gap between the sparsity of an undirected
graph and its capacity is shown. Extending this result, it is shown
that multicommodity flow solutions achieve the capacity in an
infinite class of undirected graphs, thereby making progress on
a conjecture of Li and Li. This result is in sharp contrast to
the situation with directed graphs, where a family of graphs are
presented in which the gap between the capacity and the rate
achievable using multicommodity flows is linear in the size of the
graph.

Index Terms— Capacity, Infomational Dominance, k-pairs
Communication Problems, Multicommodity Flow, Multiple Uni-
cast Sessions, Network Coding, Sparsity

I. INTRODUCTION

WE study the capacity of information networks, focusing
on techniques for proving outer bounds. Understanding

the capacity of information networks is a long-standing open
problem [1]. In this paper, we consider only networks that are
noise-free, interference-free, and where any two-way channels
have simple linear capacity regions. To completely charac-
terize the capacity of such networks, one would desire com-
putable outer bounds on capacity and algorithms for finding
solutions that achieve those bounds. Recently the term network
coding has been used to describe algorithms for communica-
tion problems in information networks. Proving outer bounds
on the capacity of a network is an important ingredient in its
complete characterization. From an algorithmic perspective,
outer bounds are useful for proving performance guarantees:
one can prove that a solution is nearly optimal by comparing
it to a outer bound.

Two different fields have sought to understand the capacity
of a network: combinatorial optimization and information
theory. In combinatorial optimization, the capacity of a net-
work is typically determined by analyzing packing problems
(e.g., flows) that are constrained by the graph structure. This
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theory grew out of a need to understand shipment of cargo in
transportation networks [2] and does not capture the subtleties
of information transmission. On the other hand, information
theory provides a deep understanding of complex communi-
cation problems over structurally simple channels but does
not yet fully extend to arbitrary graph structures. Combining
ideas from both of these theories allows us to make progress
on understanding the capacity of information networks.

Our work is motivated by the following questions, all of
which have been considered in prior work, e.g., [1], [3]–[12].
Further discussion of this prior work is given in Section I-B.
• What structural properties of a graph (e.g., cuts) can be

used to prove outer bounds on the feasible rate region?
Are these bounds tight?

• Can we obtain improved bounds by combining these
ideas with information theoretic techniques?

• Do the answers to the foregoing questions differ for
directed graphs and undirected graphs?

• When do information networks behave like transportation
networks, from the perspective of achievable rates?

Our investigation of these questions leads to several inter-
esting results, which we summarize in the next section.

A. Our Results

We first give a brief summary of our contributions and
elaborate on them below. Our key contributions are:
• a new computable outer bound on the rate region for

network coding problems on all graphs, including cyclic
and undirected graphs.

• a proof of a gap between sparsity and achievable rate in
undirected graphs.1

• the concept of informational dominance, which allows us
to derive strong information theoretic inequalities from
the structure of the graph.

• a proof that the network coding rate equals the multicom-
modity flow rate for any directed cycle.

• an example showing a tight gap between the network
coding rate and multicommodity flow rate in directed
acyclic graphs.

Some of these statements concern the k-pairs communi-
cation problem, in which the network must support k point-
to-point connections. The k-pairs communication problem is
closely related to the classical multicommodity flow problem.
A motivation for our work is understanding the differences

1The sparsity is the minimum, over all cuts, of the capacity of the edges
in the cut divided by the demand of all commodities that must cross the cut;
for more formal definitions, see Section III. To the best of our knowledge,
no such gap between sparsity and achievable rate was previously known. The
same gap was proven independently and concurrently by Jain et al. [13] and
Kramer and Savari [14].
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and similarities between the k-pairs communication problem,
the corresponding multicommodity flow problem and their
respective combinatorial characterizations. Thus many of our
results are described in terms of the k-pairs communication
problem, but later generalized to arbitrary communication
problems in Section XI.

We lay the groundwork for the paper in Section II with
formal definitions for network coding in directed acyclic
graphs (DAGs). We then consider two cut conditions both of
which are upper bounds on the maximum multicommodity
flow rate. The first condition, sparsity, is not an upper bound
on the network coding rate; this follows from an example
of Ahslwede et al. [8]. We illustrate an extreme form of
this phenomenon in Section III: a gap between the maximum
network coding rate and the maximum multicommodity flow
rate that is tight in terms of the number of vertices, edges, and
commodities in the problem instance.

The shortcomings of sparsity motivate our second cut con-
dition, defined in Section IV, which we call meagerness. We
prove that meagerness is an upper bound on the network cod-
ing rate but give an example where this bound is not tight. This
proof illustrates an important synergy between combinatorics
and information theory: by combining bounds based on the
graph structure with information theoretic inequalities (e.g.,
submodularity of entropy) one can obtain bounds that are
tighter than those proven using cuts alone. This same principle
has been employed in previous and concurrent work, e.g., [3],
[7], [13], [14].

In Section V, we generalize the idea of obtaining informa-
tion theoretic bounds based on the graph structure. We seek to
understand precisely when the information in one part of the
graph necessarily determines the information in another part of
the graph. More formally, we say edge set A informationally
dominates edge set B if the information transmitted on edges
in A determines the information transmitted on edges in
B. The relation is required to hold for all network coding
solutions, regardless of the rate of the solution. (In defining the
informational dominance relation we implicitly assume that
sources are uncorrelated, or more generally that every k-tuple
of messages has a positive probability of being transmitted
by the k sources.) If this relation holds then the capacity
of the edges in A is an upper bound on the entropy of the
information transmitted on edges in A ∪ B. For this reason,
informational dominance plays a key role in our investigation
of network capacity. We also present a complete combinatorial
characterization of the informational dominance relation. This
yields a polynomial time algorithm for the following problem:
Given an instance of the network coding problem on a graph
G and an edge set A, find all edges informationally dominated
by A.

We then define network coding in graphs with cycles and
in particular undirected graphs. In discussing the capacity
of cyclic networks, Song et al. state that “existing tools are
not powerful enough, and we need to develop new tools for
this class of problems” [3]. One difficulty is in ensuring that
network codes in such graphs have an operational meaning,
because naı̈ve definitions of network coding in graphs with
cycles can lead to cyclic dependencies among the coding

functions, resulting in codes whose interpretation is either
ambiguous or self-contradictory. Our approach is to define an
infinite directed acyclic graph G∗ that represents the flow of
information in G over time; essentially the same transforma-
tion was used by other authors, e.g. [8], [15], [16]. Although
G∗ resolves the operational issues, one would prefer to reason
about rate bounds in G itself. We achieve this by extending the
information dominance characterization from G∗ to G. This
allows us to state an outer bound for general graphs based on
the structure of G itself, without reference to the infinite graph
G∗.

We employ these techniques to establish two bounds. First,
we show that the network coding rate equals the multicom-
modity flow rate for all k-pairs communication problems on
directed cycles. This question was previously investigated by
Kramer and Savari [7]. Second, we consider the conjecture of
Li and Li [17] which states that the network coding rate equals
the multicommodity flow rate for all k-pairs communication
problems on undirected networks. In undirected graphs, the
sparsity is an upper bound on both the maximum multicom-
modity flow rate and the maximum network coding rate. The
interesting cases of the conjecture arise when there is a gap
between the sparsity and the maximum multicommodity flow
rate. We consider one such example, the Okamura-Seymour
graph. We prove that the network coding rate equals the
maximum multicommodity flow rate in this example. To our
knowledge, this is the first demonstration of a provable gap
between the sparsity bound and the network coding rate in
undirected networks.2 Our proof extends to show that the
network coding rate equals the maximum concurrent flow rate
in an infinite family of instances generalizing the Okamura-
Seymour graph; this family includes infinitely many instances
in which the sparsity bound is not tight.

B. Related Work

Previous work in the network coding literature has investi-
gated how the capacity of an information network can increase
when coding operations on the information are permitted.
The seminal work of Ahlswede et al. [8] gives a simple
example, shown in Figure 1(a), where the use of coding can
increase the capacity. Much of the subsequent work focused
primarily on multicast problems, which are problems with a
single information source and multiple sinks. For multicast
problems, it has been shown that coding can increase capacity
by a polylogarithmic factor [9], [18] in directed graphs and a
constant factor in undirected graphs [9], [10].

Recently, much attention has been given to the k-pairs
communication problem [4], [5], [7], [10], [13], [14], [17],
which is also known as a problem of “multiple unicast
sessions”. A key goal of this previous work is to understand

2This claim relates our bound to prior work. Upper bound techniques similar
to ours have been proposed concurrently in [13] and [14]. In Section V-B and
Section VII, we formally compare our techniques to the bound of [13]. A
complete draft of [14] was not available to the authors at the time that this
paper was submitted, and therefore it was not known whether informational
dominance is at least as strong as their bound. A rigorous comparison with
the bound of [14] is left to future work. For the benefit of the reader, we
include references to both [13] and [14] in the subsequent text to indicate
results that have been concurrently and independently derived elsewhere.
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the network coding rate for k-pairs communication problems
and to compare this rate to the corresponding multicommodity
flow rate. An example due to Li and Li [4] and Harvey et al. [5]
shows that coding can increase the capacity by an unbounded
factor in directed graphs, as the size of the graph tends to
infinity. This paper improves on the prior work by giving the
strongest known increase in capacity with coding for directed
graphs. Also, we give a new upper bound for the network
coding rate in undirected graphs; to the best of our knowledge,
this is the strongest known such bound.2

A general outer bound on the capacity of information
networks (including those with noise and interference) can be
found in standard textbooks [1, Section 14.10]. This bound was
used by Borade [6] to give a tight outer bound on the capacity
of multicast networks. Extending this result to networks with
multiple commodities, Borade obtains a bound on the capacity
of directed information networks which is essentially the
sparsity bound. Kramer and Savari [7] give an general outer
bound on the capacity of (directed or undirected) information
networks called the bidirected cut-set bound. This work shows
how bounds based on cuts can be applied to information
networks, even when undirected channels have complex rate
regions. Kramer and Savari demonstrate how to apply their
bound to various examples, including a directed 3-cycle.
Their analysis demonstrates the effectiveness of combining
combinatorial and information-theoretic techniques.

Previous work on DAGs has considered relations similar
to informational dominance. Song et al. [3] define a linear
program containing the constraint that every edge must be a
function of the edges inbound to its tail vertex. Jain et al. [13]
independently and concurrently derived related inequalities
known as the “input-output inequality” and “crypto inequal-
ity”. These conditions are all restricted forms of informational
dominance in that their transitive closure does not necessarily
determine all informational dominance relations. The notion
of informational dominance is closely related to conditional
independence of random variables in a functional dependence
graph. Kramer [11], [12] has explored this direction in depth,
and showed that a condition from Bayesian networks called d-
separation is sufficient to establish certain informational domi-
nance relationships. Techniques from all of the aforementioned
prior work2 can be used to prove sufficient conditions for in-
formational dominance. Our work is the first to give necessary
and sufficient conditions for informational dominance. It is not
known whether our necessary and sufficient conditions, when
combined with Shannon’s basic inequalities for entropy, lead
to strictly tighter bounds than those obtainable using other
existing sufficient conditions for informational dominance,
e.g., [11]–[13]. It should be stressed that our bounds apply
only to noise-free networks, whereas some of the other existing
approaches such as [11], [12] may be applied to networks with
noisy channels as well.

Jain et al. [13] and Kramer and Savari [14] also examined
the capacity of the Okamura-Seymour example and proved that
the network coding rate equals the multicommodity flow rate.
Jain et al. extend their bound to an infinite class of bipartite
networks, as do we.

The outer bound on the capacity of DAGs that we describe

in Section IV-C defines a rate region which is contained in
the rate region Rout defined by the outer bound of Song et
al. [3]. Previous work, e.g. [7], [11], [12], has derived inner
and outer bounds for undirected and cyclic networks. We also
obtain an outer bound for such networks, through the use of
informational dominance.

II. DEFINITIONS FOR DAGS

In this section we define a model for network coding in
directed acyclic graphs. There are two parts to our model.
First, we define the type of communication problem that we
consider. Then we define the concept of a network coding
solution. We conclude the section by relating our definitions to
the information theoretic formulation which is more prevalent
in the literature.

Our definition of a network coding instance involves graphs
which may be countably infinite. Allowing infinite graphs
facilitates the definition of undirected instances in Section VI.
However, the word “path” should be interpreted throughout
this paper as meaning “finite-length path”, and the word
“reachable’ should be interpreted as meaning “reachable by
a finite-length path”.

Definition 1 (Instance of the Network Coding Problem):
An instance of the network coding problem is specified by
the following:
• A directed acyclic graph G = (V, E), which may be

countably infinite.
• A nonnegative real capacity c(e) for each edge e.
• A finite set I that indexes the “commodities”. By con-

vention, k = |I|.
• For each commodity i ∈ I, a source node σ(i) ∈ V and

a set of sinks T(i) ⊆ V .
• For each commodity i ∈ I, a positive real number di

which is the demanded communication rate.
This definition, along with all results in this paper, can be

generalized to allow for commodities with multiple source
nodes, each transmitting an identical message; the details
are relatively straightforward and hence omitted. We describe
the remaining definitions and results in terms of the k-pairs
communication problem, where each commodity only has
a single sink node, i.e., T(i) = {τ(i)}. Without loss of
generality, one may assume that each source σ(i) has a single
out-edge S(i) = (σ(i), s(i)) and no in-edges, and that each
sink τ(i) has a single in-edge T (i) = (t(i), τ(i)) and no out-
edges. This convenient transformation is used throughout the
paper since it allows one to reason about both sources and
communication links by considering only sets of edges. We
refer to S(i) as the source edge and T (i) as the sink edge for
commodity i. These edges will be assumed to have infinite
capacity. Let S be the set of all source edges and T be the
set of all sink edges.

We define a network coding solution for the k-pairs commu-
nication problem. A natural extension of this definition applies
to the general network coding problem.

Definition 2 (Network Coding Solution): Given a network
coding instance with an underlying acyclic graph G, a net-
work coding solution specifies for each edge e an alphabet
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Σ(e) and a function fe :
∏

i∈I Σ(S(i)) → Σ(e) such that
three conditions are satisfied. Let M = (M1,M2, . . . ,Mk)
be the k-tuple of symbols transmitted on source edges
(S(1), S(2), . . . , S(k)).
• If e ∈ E is not a source-edge, then the function fe :∏

i Σ(S(i)) → Σ(e) is computable from the functions on
edges in In(e), which we define to be the set of incoming
edges of the tail of e.

• For every sink edge T (i) ∈ T , fT (i)(M) = Mi.
• All but finitely many of the alphabets Σ(e) are singleton

sets.
We refer to Mi as the message for commodity i. For a

specified network coding solution and an arbitrary set A =
{ ea : a ∈ A } of edges, it is convenient to introduce the
following notation: first Σ(A) =

∏
e∈A Σ(e), second fA :

Σ(S) → Σ(A) is the function where for every k-tuple of
source messages M ,

fA(M) = { fea
(M) : a ∈ A } ,

and third In(A) = ∪e∈AIn(e).
Although an instance of the network coding problem spec-

ifies a capacity for each edge we do not restrict the size of
the alphabet used in a solution. However, when the alphabets
are finite, we define the rate of a network coding solution in
terms of the capacities of the edges.

Definition 3 (Rate): The rate of a network coding solution
is the maximum value of r such that there exists a constant b
with logb |Σ(e)| ≤ c(e) for each e ∈ E, and logb |Σ(S(i))| ≥
rdi for each commodity i. For a given network coding prob-
lem, the network coding rate is defined to be the supremum
of the rates of all network coding solutions.

Our definition of rate is a single real number that scales
the amount of information sent by each source by the same
factor. More generally, we could define for each commodity
i a rate ri and consider the region of feasible rate vectors.
The use of a single scalar rate simplifies our notation and
effectively poses no restriction since the source rates can
be scaled individually using the vector of demands. Scalar
definitions of rate are commonly used in the multicommodity
flow literature. The quantity mini ri is called the concurrent
flow rate and the quantity

∑
i ri is called the total flow rate.

Thus our definition of network coding rate is comparable
to the concurrent multicommodity flow rate. We discuss the
extension of our results to multidimensional rate regions in
Section XI.

We conclude by briefly relating our definitions to the
information theoretic formulation of network coding which is
more prevalent in the prior literature. While our formulation is
combinatorial in nature and defines notions such as “capacity”
and “rate” without explicitly assuming a probability distribu-
tion on the messages transmitted, it is possible to relate our
definitions to information theory by assigning a probability
distribution on the messages transmitted in the network, and
examining the entropy of different random variables under this
distribution. Such entropy-based arguments will be vital in the
second half of this paper.

Suppose for each source edge S(i) we choose a message
Mi independently and uniformly at random from Σ(S(i)).

If we let M be the random variable (M1, . . . , Mk), then
we can define for each edge e the random variable Ye =
fe(M). The Shannon entropy of Ye is denoted H(Ye). For
convenience, we define the following notational shorthands.
For a given network code and a given set A of edges, we let
YA = (Ye1 , Ye2 , . . . , Yea) where {e1, e2, . . . , ea} is the subset
of A consisting of edges which have non-singleton alphabets.
Additionally, let H(A) denote H(YA).

The definition of a network coding solution can be given
in information theoretic terms. For example, the requirement
that fT (i)(M) = Mi is essentially equivalent to the conditions
H(S(i)) = H(T (i)) and H(YT (i)|YS(i)) = 0. Similarly, the
condition that the function fe be computable from information
on in-edges to e can be expressed as H(Ye|YIn(e)) = 0. This
last condition implies that H(S, A) = H(S) for any set of
edges A. Lastly, we recast our definition of rate in terms of
the entropy of the information transmitted over each edge.

Lemma 1: Given a network coding solution defined on a
directed acyclic graph G of rate r, there exists a constant b
such that the following hold. For all edges e ∈ E,

H(e) ≤ c(e) log2 b

and for all commodities i ∈ I,

H(S(i)) ≥ rdi log2 b.
A key property of entropy that we will frequently use is

submodularity: for any sets U and V of random variables,
H(U)+H(V ) ≥ H(U∪V )+H(U∩V ). This is easily proven
by the non-negativity of the mutual information I(U \ V ; V \
U | U ∩ V ). The following generalization of submodularity is
also useful, and will be applied in Theorem 27. Let A1, . . . , An

be a collection of sets. Define

Bi,n =
⋃

{α1,...,αi}⊆{1,...,n}
Aα1 ∩ · · · ∩Aαi

for 1 ≤ i ≤ n. The proof of this theorem is given in the
appendix.

Theorem 2 (n-way submodularity):
n∑

i=1

H(Ai) ≥
n∑

i=1

H(Bi,n)

III. SPARSITY

We consider the k-pairs communication problem in finite
directed acyclic graphs. Our goal is to understand cut-based
upper bounds on the maximum achievable rate. A natural place
to begin is by considering cut conditions which supply upper
bounds on the maximum multicommodity flow. The sparsity of
a graph is well-known to be an upper bound on the maximum
multicommodity flow (see, e.g., [19]). However, the network
coding rate can exceed the sparsity in directed acyclic graphs,
as is shown by the well-known example in Figure 1(a), due
to Ahslwede et al. [8]. Understanding why sparsity is not an
upper bound on the maximum network coding rate sheds light
on the type of cut condition we should be considering. In
addition, using sparsity as an upper bound on the maximum
multicommodity flow rate, we give a tight characterization of
the gap between the maximum network coding rate and the
maximum multicommodity flow in terms of the number of
vertices, edges, and commodities in the problem instance.
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A. Preliminaries

To define sparsity, we must first define cuts. Given a graph
G = (V, E) a cut is a subset A of the edge set E. (Such a cut
is also known as a cut-set or a disconnecting edge set.) We
define the capacity of a cut as C(A) =

∑
e∈A c(e). Suppose

there is a k-pairs communication problem defined on G. If
every path from S(i) to T (i) in G intersects A then we say
that A separates commodity i. Let

D(A) =
∑

i: A separates i

di.

Definition 4 (Sparsity): The sparsity of a cut A and a graph
G are respectively defined as

S (A) =
C(A)
D(A)

and SG = min
A⊆E

S (A).

The sparsity is an upper bound on the maximum multicom-
modity flow rate in both directed and undirected graphs (see,
e.g., [19]–[22]). Intriguingly, in a directed graph the sparsity
of the graph is not an upper bound on the maximum network
coding rate [8]. In the remainder of this section we present an
example of this phenomenon.

B. A large gap

One measure of the benefit of network coding solutions over
flow solutions is the ratio of the network coding rate and the
maximum concurrent multicommodity flow rate, which we call
the network coding gap. We now describe a family of graphs
which have a large network coding gap.

The graphs are defined recursively, where G (1) is the
well-known example shown in Figure 1(a). Note that the
capacity of the middle edge e in this example bounds the total
multicommodity flow rate and the concurrent network coding
rate. More formally, suppose edge e has capacity c and that
the rates achievable for the two commodities are f1, f2 (for
flow) and r1, r2 (for network coding). Then we must have
f1 + f2 ≤ c and max{r1, r2} ≤ c, implying a gap of 2.

The approach to obtaining a larger gap is to add more
instances of G (1) that somehow share the capacity of their
middle edges. To do this, we construct a larger graph G (n)
by building up from G (n− 1). We add several new instances
of G (1) in which the middle edge e has been removed. The
idea is that communication through G (n − 1) will play the
role of these missing middle edges. More formally, for each
commodity i in G (n − 1), we add a new instance of G (1)
where s(i) is identified with a, t(i) is identified with b but there
is no edge from s(i) to t(i). Note that the pair (s(i), t(i)) are
no longer a commodity in the new instance. This construction
is illustrated in Figure 1(b).

We now analyze the total multicommodity flow rate in
G (n). The total multicommodity flow rate through an instance
of G (1) is bounded by the capacity of edge e. In our recursive
construction, edge e is omitted but its effective capacity is
determined by the communication rate achievable between the
corresponding commodities in G (n−1). By induction, the total
communication rate of these commodities is at most 1, and
hence the combined effective capacity of the missing middle
edges is 1. Thus the total multicommodity flow rate in G (n)

is at most 1. The concurrent multicommodity flow rate is at
most 1/2n since there are 2n commodities.

We now analyze the network coding rate. In G (1), it is well
known that both commodities can communicate at rate 1: all
source and edge alphabets are Σ = {0, 1} and edge e sends
the exclusive or (XOR) of the source messages. In order for all
commodities in G (n) to communicate at rate 1, each instance
of G (1) must have effective capacity 1 for its missing middle
edge. But by induction this capacity is available in G (n− 1),
and hence the network coding rate in G (n) is 1. One may
verify that this network coding solution is obtained when each
node simply sends the XOR of its inputs on all of its outputs.

It is easy to verify that the graph G (n) has 2n commodities,
Θ(2n) vertices and Θ(2n) edges. Thus we have proven the
following theorem.

Theorem 3: For any k ≥ 2, there exists an instance of the
k-pairs communication problem on a directed acyclic graph
G = (V, E) with |V | = Θ(k) and |E| = Θ(k) for which the
network coding gap is Θ(k).

The graph G (n) clearly illustrates the distinction between
sparsity and network coding rate. Let A be a cut consisting
of the single edge e in the instance of G (1) at the base of
the recursive construction. Then S (A) = 1/2n since this cut
separates all commodities. However, the network coding rate
is 1, which greatly exceeds the sparsity.

C. G is optimal

We now argue that the instance G is optimal in terms of
the gap between the maximum multicommodity flow rate and
the network coding rate. More formally, we provide upper
bounds on the network coding gap that asymptotically match
Theorem 3. In this subsection of the paper, unlike all other
sections, we do not assume that each commodity has its
own source and sink edges which are not shared by other
commodities. This change allows us to provide a stronger
bound for instances in which the number of commodities, k,
greatly exceeds the number of vertices or edges in the network.
The following theorem makes four assumptions: (1) edges
have unit capacity, (2) all commodities have unit demands,
(3) there exists a path from each source to its sink, and (4) no
vertex is both the source and the sink for the same commodity.

Theorem 4: Let G = (V, E) be a directed graph. For
any instance of the k-pairs communication problem satisfying
the above assumptions, the network coding gap is at most
min{|E|, |V |, k}.

Proof: First we show that the gap is bounded by |E|.
A simple pigeon-hole argument shows that the maximum
network coding rate is at most |E|/k. (Using the more
formal tools of Section V, this claim follows since the set E
informationally dominates all sources.) Next we consider the
maximum concurrent multicommodity flow rate. Since there
exists a path from each source to its sink, we can pack these
paths fractionally by scaling their flow by 1/k. Hence the
maximum concurrent flow rate is at least 1/k and the gap is
at most |E|.

Now we bound the gap by |V | and k simultaneously.
Consider a network coding solution achieving rate r. Let
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s(1) s(2)

t(1) t(2)

a

b
e

(a)

s(1) s(2) s(3) s(4)

G (1)

t(1) t(2) t(3) t(4)

e

(b)

G (2)

s(1) s(2) s(3) s(4) s(5) s(6) s(7) s(8)

t(1) t(2) t(3) t(4) t(5) t(6) t(7) t(8)

e

(c)

Fig. 1: (a) The instance G (1), with the sources and sinks for its two commodities indicated. The edge e has unit capacity and
all others have infinite capacity. This instance is due to Ahlswede et al. [8]. (b) The instance G (2) is constructed from G (1).
The sources and sinks for its four commodities are indicated. All new edges have infinite capacity. (c) The instance G (3) is
constructed from G (2). The sources and sinks for its eight commodities are indicated.
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VS be the set of vertices that are sources for at least one
commodity. For a vertex v ∈ VS , let Iv = { i : S(i) = v }
be the set of commodities with v as the source, and let
Tv = { T (i) : i ∈ Iv } be the set of corresponding sinks.
Create a new vertex v′ and for each i ∈ Iv add an edge
(T (i), v′) of capacity r, allowing parallel edges. Then our
network coding solution provides communication at rate r·|Iv|
between vertices v and v′. Thus the minimum cut separating
v and v′ must have capacity at least r · |Iv|. Hence, ignoring
the commodities not in Iv , there exists a v-v′ flow fv of
value r · |Iv|. Moreover, for every w ∈ Tv , the flow to
vertex v′ is at most r times the number of commodities in Iv

whose sink vertex is w. Thus the flow from v to w must be
exactly r·|{ i ∈ Iv : T (i) = w }|. This shows that the flow fv

provides disjoint flows of rate r for all commodities in Iv . We
may fractionally pack the collection of flows { fv : v ∈ VS }
by reducing their rates by a factor of 1/|VS |. This yields a
multicommodity flow solution of rate r/|VS |, and hence the
gap is at most |VS |. Since |VS | ≤ min{|V |, k}, the proof is
complete.

IV. MEAGERNESS

Sparsity does not necessarily provide an upper bound on the
network coding rate in directed acyclic graphs; this is shown
by the example of Ahlswede et al. [8] in Figure 1(a). We now
define a new combinatorial cut condition called “meagerness”
which does provide an upper bound. We also present an
example showing that it is not a tight upper bound.

A. Preliminaries

Let G = (V, E) be a finite directed acyclic graph.
Definition 5 (Isolation): Given an edge set A ⊆ E and a

subset of commodities P ⊆ I, we say A isolates P if for all
i, j ∈ P , every path from S(i) to T (j) intersects A.

A cut A that isolates a set of commodities P must dis-
connect each source for a commodity in P from the sink
for every commodity in P . For a set of commodities P ,
d(P ) =

∑
i∈P di.

Definition 6 (Meagerness): The meagerness of a cut A and
a graph G are respectively defined as

M(A) = min
P : A isolates P

{
C(A)
d(P )

}

MG = min
A⊆E

M(A).

To understand isolating cuts and meagerness, it is useful to
consider again the graph G (1) shown in Figure 1 (a). The edge
e in that example separates the source for each commodity
from the corresponding sink. Therefore, if the set P is a single
commodity, then the middle edge isolates P . On the other
hand, if P is the set of both commodities then the middle
edge does not isolate P .

Lemma 5: For any instance of the k-pairs communication
problem on a directed graph G = (V,E), the network coding
rate is at most MG.

This lemma can be proven by a simple counting argument.
We omit this proof since this lemma also follows from our
stronger results on informational dominance in Section V.

Fig. 2: The split butterfly instance, which has meagerness 1
but network coding rate 2/3.

B. The Split Butterfly

We now describe an instance of the k-pairs communication
problem where the network coding rate is strictly smaller than
the meagerness of the graph. The instance, called the split
butterfly, is depicted in Figure 2. Let G = (V,E) be the graph
corresponding to this instance. The set of commodities is I =
{a, b, c} and the demand for each commodity is 1. Each edge
in G has capacity 1. It is easy to verify that the meagerness
of split butterfly is 1. We will show that the network coding
rate is 2/3.

First we show that rate 2/3 is achievable. Let Σ(S(i)) =
{0, 1}2 for all i and Σ(e) = {0, 1}3 for all e. The message Ma

is transmitted on the only path from s(a) to t(a). Similarly,
the message Mb is transmitted on the only path from s(b) to
t(b). Each of the bits for message Mc are transmitted on one
of the two paths from s(c) to t(c). Therefore, edges e1 and e2

must transmit 3 bits each. Every other edge transmits fewer
than 3 bits.

Our next step is to prove an upper bound of 2/3 on
the network coding rate for the split butterfly. We use the
information theoretic view of network coding described in
Section II.

Lemma 6: The network coding rate of the split butterfly
instance is 2/3.

Proof: From the structure of the graph G, the symbol
transmitted on edge T (b) must be computable from the in-
formation on S(a) and e1. Similarly, the symbol transmitted
on T (a) must be a function of S(b) and e2, and the symbol
transmitted on T (c) must be a function of e1 and e2. These
observations imply the following entropy equalities.

H(S(a), e1) = H(S(a), T (b), e1) (1)
H(S(b), e2) = H(T (a), S(b), e2) (2)
H(e1, e2) = H(T (c), e1, e2) (3)
H(S(a), e1) + H(S(b), e2) (4)
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= H(S(a), S(b), e1) + H(S(a), S(b), e2)
H(S(a))+H(S(b))+H(e1)+H(e2) (5)

≥ H(S(a), S(b), e1, e2) + H(S(a), S(b))
H(e1) + H(e2) ≥ H(S(a), S(b), e1, e2) (6)
H(S(a), S(b), e1, e2) = H(S(a), S(b), S(c), e1, e2) (7)
H(e1) + H(e2) ≥ H(S(a), S(b), S(c), e1, e2) (8)
H(e1) + H(e2) ≥ H(S(a)) + H(S(b)) + H(S(c)) (9)
(c(e1) + c(e2)) ≥ (da + db + dc)r (10)

(1)-(3) follow from the discussion of G. (4) follows from
(1) and (2) and from the fact that YT (a) = YS(a) and
YT (b) = YS(b). (5) follows from (4) by submodularity. (6)
follows from (5) because the sources are independent. (7)
follows from (3). (8) follows from (6) and (7). (9) follows
from (8) since entropy is non-decreasing and the sources are
independent. (10) follows from (9) and Lemma 1, assuming
rate r is achievable. Thus we obtain 2/3 ≥ r since all edges
have capacity 1 and all commodities have demand 1.

This proof shows that the upper bound on rate given by the
meagerness of the graph is sometimes loose.

C. Information Theoretic Constraints

Examining the proof of Lemma 6 carefully, it uses certain
characteristics of entropy, such as submodularity, and certain
inequalities implied by the structure of the graph. These are the
key techniques that are used throughout the rest of the paper.
Let us now formalize the latter type of inequalities. If the
graph structure implies that the information transmitted on a
set of edges B is computable from the information transmitted
on a set of edges A, we say A informationally dominates B.
In the preceding proof, we derived informational dominance
relationships by ad hoc arguments. The next section gives
a combinatorial approach for deriving such inequalities in
arbitrary DAGs.

By combining all informational dominance constraints with
certain properties of entropy, one can obtain an outer bound
on the capacity of arbitrary DAGs. The details of this bound
are deferred to Section VIII, where we give an outer bound
that also holds for cyclic and undirected graphs. Before this
general outer bound can be presented, we must first extend
our basic definitions and informational dominance to general
graphs. This is done in sections VI and VII.

V. INFORMATIONAL DOMINANCE

In this section, we formally define informational domi-
nance and present a condition based on the structure of the
graph that entirely characterizes the informational dominance
relationship. This result provides a complete answer to the
natural question “When does the information on one set of
edges necessarily determine the information on another set
of edges?”, in the case when every k-tuple of messages has a
positive probability of being transmitted by the k sources. This
characterization also leads to a polynomial time algorithm for
finding the set of all edges informationally dominated by a
given set.

A. Preliminaries

Assume we are given a k-pairs communication problem
defined on a directed acyclic graph G. (Recall that G may
be countably infinite, but the terms “path” and “reachable”
refer to paths of finite length.) Without loss of generality, we
assume that every edge is reachable in G from some source
and that for every commodity i there is a path from S(i) to
T (i) in G.

Definition 7 (Informational Dominance): An edge set A
informationally dominates edge set B if for all network coding
solutions and k-tuples of messages x and y, fA(x) = fA(y)
implies fB(x) = fB(y).

Definition 8 (Dom(A)): For an edge set A,

Dom(A) = { e : A informationally dominates e } .

It is clear from the definition that the informational domi-
nance relation is a pre-order (i.e., it is reflexive and transitive).
However, for finite G, it is not clear if determining whether a
set of edges A informationally dominates a set of edges B is
even recursively decidable3. The difficulty arises because the
informational dominance relationship must hold for all net-
work coding solutions, of which there are infinitely many. In
Section V-C we present a characterization of the informational
dominance relationship that is entirely based on the structure
of the graph. The characterization is somewhat cumbersome,
so Section V-B formulates some simple combinatorial condi-
tions which are sufficient but not necessary for informational
dominance. These simple conditions are much easier to work
with than the full necessary and sufficient condition developed
in Section V-C, and they play a role in the outer bound proofs
for specific networks considered in this paper.

B. Simple sufficient conditions

Definition 9 (Downstream): We say that an edge set B is
downstream of edge set A if every path from S to B in G
must intersect A. We denote the relation “B is downstream of
A” using the notation A ; B.

The following lemma relates downstreamness to informa-
tional dominance. Its proof follows from the more general
Theorem 10.

Lemma 7: If A ; B then B ⊆ Dom(A).
For example, the proof of Lemma 6 relies on the following

three downstreamness relationships:

{S(a), e1} ; {S(a), T (b), e1}
{S(b), e2} ; {S(b), T (a), e2}
{e1, e2} ; {T (c), e1, e2}.

A useful special case of downstreamness is the following
relation identified by Jain et al. [13].

Input-Output Inequality. The edges entering a vertex
set U informationally dominate all edges adjacent to
U .

3Informally, “recursively decidable” means that the problem can be solved
by a Turing machine which can run for an arbitrarily large amount of time
but must necessarily terminate. For a formal definition, see Sipser [23].
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Fig. 3: An example of an indirect walk from s(i) to t(i).

More precisely, the input-output inequality can be expressed
by the following corollary of Lemma 7.

Corollary 8 (Jain et al. [13]): Given a vertex set U ⊆
V (G), let Ein(U) denote the set of edges from V (G) \ U
to U , let Eadj(U) denote the set of edges adjacent to U ,
and let S(U) denote the set S ∩ Eadj(U). Then Eadj(U) ⊆
Dom(Ein(U) ∪ S(U)).

Another useful sufficient condition for informational domi-
nance involves the weakly connected components of the graph
G \ A. Recall that two vertices u, v of a directed graph with
edge set E are said to belong to the same weakly connected
component if there exists a path from u to v which ignores
the directions of the edges.

Lemma 9: If σ(i) and τ(i) are in different weakly con-
nected components of G\A then {S(i), T (i)} is information-
ally dominated by A.

Again, the proof is omitted because the lemma follows
immediately from Theorem 10. A similar lemma, called the
“crypto inequality,” was identified by Jain et al. [13]; we will
discuss this lemma in the context of undirected graphs in
Section VII.

C. Combinatorial Characterization of Dom(A)
Recall that for an edge set A, Dom(A) is defined to be the

set of all edges informationally dominated by A. The difficult
part of characterizing Dom(A) is determining when the source
and sink edges for a commodity are informationally dominated
by A. Roughly, we need to determine when the edge T (i)
can determine any information about the message Mi without
using information on edges in A. The notion of an indirect
walk is key to making this determination. An example of an
indirect walk is shown in Figure 3.

Definition 10 (Indirect walk): Let H be a graph and let
S(H) be the set of source edges. For a source edge S(i)
and an edge e, an indirect walk from S(i) to e is a sequence
of (finite length) directed paths Q1, P1, Q2, P2, . . . , Qj in H
where
• The first node in Q1 is the head of S(i) and the last node

in Qj is the tail of e.
• The last node in Q` is the same as the last node in P`

for all ` < j.
• The first node in each path is the head of a source edge

in S(H).
An indirect walk from S(i) to T (i) is called an indirect walk
for commodity i.

We may assume that each path Qi has a distinct source as
its initial vertex, and hence the number of paths in an indirect
walk is indeed finite. Note that the paths Pj essentially traverse
backwards from the tail of Qi to a source. Finally, we need
to define a subgraph G(A, i) of G. We will show that if there
is no indirect walk for commodity i in the subgraph G(A, i),
then S(i) and T (i) are informationally dominated by A. An
example of the graph G(A, i) is shown in Figure 4 (b).

Definition 11 (G(A, i)): Given a graph G, an edge set A
and a commodity i, let G(A, i) be the graph obtained from G
by the following process:
• Remove any edge or vertex that does not have a path to

T (i) in G.
• Remove all edges of A.
• Remove any edge or vertex that is not reachable from a

source edge in the remaining graph.
The remainder of this section is devoted to proving the

following combinatorial characterization of Dom(A).
Theorem 10: For an edge set A, the set Dom(A) satisfies

the following conditions.
Condition 1: A ⊆ Dom(A).
Condition 2: S(i) ∈ Dom(A) if and only if T (i) ∈
Dom(A).

Condition 3: Every edge in E\Dom(A) is reachable
in G \Dom(A) from a source.

Condition 4: For every source edge S(i) in G \
Dom(A), there is an indirect walk for commodity
i in G(Dom(A), i).

Furthermore, any set B satisfying these conditions contains
Dom(A).

Note that Condition 3 is a statement about downstreamness:
it asserts that for any edge e, if A ; {e} then e ∈ Dom(A).
We will prove the two directions of Theorem 10 separately.
Section V-D proves that Dom(A) necessarily satisfies these
conditions. Section V-E proves these conditions are sufficient:
Dom(A) is the unique minimal superset of A meeting these
conditions.

D. Necessary Conditions

Condition 1 is trivially satisfied by reflexivity of informa-
tional dominance. Condition 2 follows from the definition of a
network coding solution, which requires that the messages on
sink edges equal the messages on the corresponding source
edges. For Conditions 3–4, we will show that an edge set
B that violates one of these two conditions informationally
dominates an edge in E \ B. This fact then implies that
Dom(A) must satisfy these conditions. To see this, suppose
otherwise. Then there is an edge e in E \ Dom(A) that is
informationally dominated by Dom(A). By transitivity, e is
also informationally dominated by A. Thus e ∈ Dom(A),
contradicting the choice of e.

1) Condition 3 and Downstreamness: The third condi-
tion says that every edge in E \ Dom(A) is reachable in
G \ Dom(A) by some source edge. Let us consider this
situation in the context of a general edge set B. The following
lemma proves that downstreamness is a sufficient condition for
informational dominance.
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S(a)
S(c)

S(b)

T(b) T(c) T(a)

(a)

S(a)
S(c)

S(b)

T(b) T(c) T(a)

(b)

σ(c)
σ(b)

t(c)
T(a)

S(a)

t’(c)
τ(c)

t(b)
t’(b)
τ(b)

(c)

σ(c)
σ(b)

T(a)

S(a)

t’(c)
τ(c)

t’(b)
τ(b)

S(c)
S(b)

∆(B,i) ∆(B,i)

(d)

Fig. 4: (a) The split butterfly example is depicted here as graph G. The bold edges denote a cut B. (b) The graph G(B, i),
where i is chosen to be commodity a. Note that an edge that is inbound to t(a) is deleted because it is not reachable from a
source edge. (c) The graph Gi introduces “shortcut edges” for all commodities except commodity i. (d) The graph Gi(B, i)
is shown, along with the partition of S into ∆(B, i) and ∆(B, i).

Lemma 11: For any network code and for any sets B and
B′ of edges, if B′ is downstream of B, then there exists a
function h : Σ(B) → Σ(B′) such that h ◦ fB = fB′ .

Proof: Let D be the set of all edges that are downstream
of B and have non-singleton alphabets. Note that B ⊆ D and
B′ ⊆ D. Order the edges of D in topological order so that
for any edge e ∈ D, every edge in In(e) is either not in D
or comes before e in the ordering. Let the ordering of D be
(e1, e2, . . . , e|D|).

We prove by induction on k that fek
= hek

◦ fB for some
function hek

. Consider an arbitrary edge ek and let Dk−1 =
{e1, . . . , ek−1}. Let e be an arbitrary edge in In(ek). We claim

that there is a function he such that fe = he ◦ fB . If e ∈ B
then the claim is trivial. If e ∈ Dk−1 then the claim holds
by induction. If e 6∈ B ∪Dk−1 then, by definition of D and
choice of the ordering, there is a path from a source to e in
G\B. This contradicts the assumption that ek ∈ D and hence
the claim is proven.

By the definition of a network coding solution, there exists
a function gek

: Σ(In(ek)) → Σ(ek) which maps the functions
on edges in In(ek) to fek

in the sense that fek
= gek

◦fIn(ek).
Combining gek

with the functions he for e ∈ In(ek) gives the
desired function hek

.
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Lemma 11 implies that a set of edges B′ that is downstream
of B is informationally dominated by B. Therefore, Dom(A)
must satisfy Condition 3.

2) Condition 4: We now consider the last condition. With-
out loss of generality we assume that Conditions 2 and 3 hold
for a set of edges B but there exists a commodity i with no
indirect walk from S(i) to T (i) in G(B, i). We prove that
T (i) is informationally dominated by B.

We start by simplifying the instance G by adding “shortcut
edges” for all commodities except commodity i. This will
allow us to focus on communication from S(i) to T (i) and ig-
nore whether other commodities are communicated correctly.
We construct the simplified graph Gi from G by the following
process, which is illustrated in Figure 4.
• For each commodity j 6= i, add a node t′(j) and replace

sink edge T (j) = (t(j), τ(j)) with two edges T ′(j) =
(t(j), t′(j)) and T (j) = (t′(j), τ(j)). The latter edge is
the new sink edge for commodity j.

• For each commodity j 6= i, add an edge εj = (σj , t
′(j)).

The graph Gi(B, i) is obtained from Gi as in Definition 11.
Notice that an edge εj cannot be contained in an indirect walk
from S(i) to T (i) in Gi(B, i) because the edges (t(j), t′(j))
have no path to T (i) and are therefore removed. Thus, if there
does not exist an indirect walk for commodity i in G(B, i),
then there does not exist an indirect walk for commodity i in
Gi(B, i).

Given a network coding solution N for G, the network
coding solution N i is defined as follows.
• Source σi sends Mj on edge εj for all j 6= i. That is,

Σi(εj) = Σ(S(j)) and f i
εj

(M) = Mj .
• Let e be an edge in Gi such that e is not a source or

sink edge and e 6= εj for all j. If there exists a path from
e to T (i), then Σi(e) = Σ(e) and f i

e = fe. Otherwise,
Σ(e) = {0} and f i

e(M) = 0.
Again, by construction, if N is a network coding solution for
the original instance then N i is a network coding solution
for the instance defined on Gi. The following lemma proves
another useful property of N i.

Lemma 12: Given two k-tuples of messages x and y and
a set of edges B, if fB(x) = fB(y) under network coding
solution N , then f i

B(x) = f i
B(y) under network coding

solution N i.
Proof: An edge e ∈ B transmits the same function

under N and N i if there is a path from e to T (i). Therefore
f i

e(x) = f i
e(y). If there is no path from e to T (i), then e

always transmits 0 under N i. Therefore, f i
B(x) = f i

B(y).
We are now ready to prove that Condition 4 is necessary.
Lemma 13: If there does not exist an indirect walk for

commodity i in G(B, i), then B informationally dominates
T (i).

Proof: We argue by contradiction. Suppose T (i), and
therefore S(i), is not informationally dominated by B. Then
there exists a network coding solution N and two k-tuples of
messages x and y such that xi 6= yi but fB(x) = fB(y).
Let Gi and N i be defined as above. By Lemma 12, this
implies that in graph Gi under network coding solution N i,
f i

B(x) = f i
B(y) and xi 6= yi. By assumption, there is no

indirect walk from S(i) to T (i) in G(B, i) and hence, as
observed previously, there is none in Gi(B, i) either.

We partition the set of source edges into two sets. Source
edge S(j) ∈ ∆(B, i) if there is no indirect walk from S(j)
to T (i) in Gi(B, i). Let ∆(B, i) = S \ ∆(B, i). Let z be a
k-tuple of messages such that zj = yj for all S(j) ∈ ∆(B, i)
and zj = xj otherwise. We prove three claims which lead to a
contradiction, as explained in the final paragraph of the proof.

Claim 1: zi 6= yi. By assumption, there is no indirect walk
from S(i) to T (i), so S(i) ∈ ∆(B, i). Therefore zi = xi and
by assumption, xi 6= yi. This implies that zi 6= yi.

Claim 2: f i
B(z) = f i

B(y). Of the edges in B, only finitely
many have alphabets which are not singletons. Sort these edges
topologically and label them {e1, e2, . . . , eb}. For every edge
e ∈ B \ {e1, e2, . . . , eb}, the equation f i

e(z) = f i
e(y) holds

trivially since |Σ(e)| = 1. Now suppose that there is an edge
ej ∈ {e1, e2, . . . , eb} such that f i

ej
(z) 6= f i

ej
(y); let ej be the

first such edge. There are four cases to consider:

1) There is no path from ej to T (i) in G.
2) Every path from a source to the tail of ej intersects B.
3) There is a path in Gi(B, i) from a source in ∆(B, i) to

the tail of ej .
4) There is a path in Gi(B, i) from a source in ∆(B, i) to

the tail of ej .

For the first case, if there is no path from ej to T (i) in G,
then f i

ej
(z) = 0 = f i

ej
(y) which contradicts the assumption

that ej transmits a different message under the two k-tuples of
messages. If we are in the second case, then ej is downstream
of the set Bj of edges in B that precede ej in the ordering.
Therefore, ej can only transmit two different symbols if
some edge that precedes it in the ordering also transmits two
different symbols. This contradicts the assumption that ej was
the first such edge.

Therefore we are in case three or four. It is crucial to note
that these two cases are mutually exclusive since, if we were
in both cases, then there would exist an indirect walk from
a source in ∆(B, i) to T (i), contradicting the definition of
∆(B, i). Thus, if we are in case three then ∆(B, i)∪Bj ; ej .
By choice of ej , every edge in Bj transmits the same symbol
under the two k-tuples of messages z and y. In addition, every
S(j) ∈ ∆(B, i) has zj = yj by the definition of z. Therefore,
f i

ej
is determined by values which are identical under message

vectors z and y, contradicting our assumption that f i
ej

(z) 6=
f i

ej
(y). Hence we cannot be in case three.

Finally, suppose that we are in case four. We will argue that
f i

ej
(z) = f i

ej
(x). In case four edge ej is downstream of Bj

and the sources ∆(B, i). Let E be this set of edges and let
h be the function mapping symbols on the edges of E to the
symbol transmitted on ej . Consider an edge e ∈ E . If e ∈ Bj ,
then f i

e(z) = f i
e(y) = f i

e(x), by our choice of ej and choice
of x and y. Otherwise, e = S(j) for some S(j) ∈ ∆(B, i). By
the definition of z, zj = xj . Therefore, for every edge e ∈ E ,
f i

e(z) = f i
e(x). This implies that h(f i

E(z)) = h(f i
E(x)). Since

ej ∈ B, we assumed that it transmits the same symbol under
the two k-tuples of messages x and y. Therefore

h(f i
E(y)) = h(f i

E(x)) = h(f i
E(z))
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This contradicts our assumption that f i
ej

(z) 6= f i
ej

(y). There-
fore, f i

B(z) = f i
B(y).

Claim 3: f i
T (i)(z) = f i

T (i)(y). By the definition of an
indirect walk and the set ∆(B, i), the edge T (i) is downstream
of B and the source edges in ∆(B, i). We have shown that
the set of edges B transmit the same symbols under the two
k-tuples of messages z and y. By construction, z and y assign
the same message to any commodity j with S(j) ∈ ∆(B, i).
Therefore, the tail of T (i) receives the same information under
the two k-tuples of messages.

The three preceding claims show that T (i) transmits the
same symbol under z and y but the message for commodity
i is not the same, contradicting the fact that N i is a network
coding solution. This implies that N is not a network coding
solution and therefore the set B informationally dominates
S(i).

E. Sufficiency of Conditions

We have shown that Dom(A) must satisfy all four condi-
tions of Theorem 10. We now show that if all four conditions
are satisfied by a set of edges B, then B does not informa-
tionally dominate any edge in E \B.

Lemma 14: If all four conditions of Theorem 10 are sat-
isfied by a set of edges B, then B does not informationally
dominate any edge in E \B.

Proof: We need to show two things: that B does not
informationally dominate any source or sink edge in G \ B
and that B does not informationally dominate an edge e which
is not a source or sink edge. We handle these two cases
separately.

For the first case, by Conditions 2 and 4, an edge S(i)
is in G \ B if and only if T (i) is also in G \ B and there
exists an indirect walk from S(i) to T (i) in G(B, i). Let
Q1, P1, . . . , Qj−1, Pj−1, Qj be the indirect walk from S(i)
to T (i) in G(B, i). For each path segment Q` let v` be the
last node in Q`. By the definition of G(B, i), for 1 ≤ ` < j
there exists a path R` from v` to the tail of T (i) in G.

Relabel the sources edges as follows: for all 1 ≤ ` ≤ j,
S(`) now refers to the edge whose head is the first node in Q`.
(Thus, S(i) is now called S(1).) We now sketch the portion
of our network coding solution that transmits M1 from S(1)
to T (1) as follows. (The alphabets will be vector spaces over
the field {0, 1}, and the symbol ⊕ should be interpreted as
the addition operation in one of these vector spaces.)
• For 1 ≤ ` ≤ j, the path Q` is used to send M` from S(`)

to v`.
• For 1 ≤ ` < j, the path P` is used to send M`+1 from

S(` + 1) to v`.
• For 1 ≤ ` < j, the path R` is used to send M` ⊕M`+1

to T (1).
We have not yet specified the alphabets to be used by

this network coding solution. Effectively, all source and edge
alphabets are set to {0, 1}. However, if any of the Q, P or
R paths intersect then we must accommodate all overlap-
ping transmissions by increasing the alphabets of the edges
accordingly. So for an edge e which appears in p of the
paths { P`, Q`, R` : 1 ≤ ` ≤ j }, we put Σ(e) = {0, 1}p. This

increase in alphabet size reduces the rate of the solution but
the rate is irrelevant for this proof.

We now explain how the portion of the network coding
solution described above transmits M1 from S(1) to T (1).
For 1 ≤ ` < j, path R` sends M` ⊕ M`+1 on path R` to
the tail of T (1). In addition, path Qj sends Mj from S(j) to
the tail of T (1). Therefore, the tail of T (1) receives j linearly
independent combinations of the j messages M1,M2, . . . ,Mj .
The message M1 can be computed from the values of these j
symbols and therefore M1 can be transmitted on edge T (1).

To show that B does not informationally dominate any
source or sink edge in G \ B, we must exhibit two k-
tuples of messages x and y, such that fB(x) = fB(y) and
x1 6= y1. The messages x and y are constructed as follows.
For 1 ≤ ` ≤ j, let x` = 0 and y` = 1. For ` > j, let
x` = y` = 0. By construction, x1 6= y1 but for all 1 ≤ ` < j,
x`⊕x`+1 = y`⊕y`+1. Therefore, for 1 ≤ ` < j, every edge in
the path in R` transmits the same symbol for the two k-tuples
of messages. Since these are the only paths that might intersect
B on which any information is transmitted, fB(x) = fB(y).

Repeating the above argument for all S(i) in G \ B in
turn proves that every source and sink in G \ B is not
informationally dominated by B.

Now consider an edge e in G\B that is not a source or sink
edge. By condition 3, edge e is reachable from some source
S(j) in G \ B. Since S(j) is not informationally dominated
by B, there are two k-tuples of messages x and y such that
fB(x) = fB(y) but xj 6= yj . Given this network coding
solution, we augment it by also sending Mj from S(j) to e
along the path in G\B. Edge e then transmits Mj in addition
to whatever information it was already transmitting. Since
xj 6= yj but fB(x) = fB(y), edge e is not informationally
dominated by B.

By Lemma 14, any superset B of A satisfying the four
conditions of Theorem 10 does not informationally dominate
any edges in E \B. Since Dom(A) is defined to be the set of
edges informationally dominated by A, any such set B must
contain Dom(A).

Corollary 15: Any set of edges B that satisfies the four
conditions of Theorem 10 contains Dom(A).

Lemmas 11, 13, 14 and Corollary 15 prove Theorem 10

F. Efficiently Computing Dom(A)

Let G = (V,E) be finite. If we know Dom(A), then we
can easily check if A informationally dominates a set B of
edges by checking if B ⊆ Dom(A). Therefore, we turn our
attention to efficiently finding Dom(A).

Initially we let Ã = A and check if any of the conditions
of Theorem 10 are violated by Ã. If so, then there exists
an edge in E \ Ã that is informationally dominated by Ã.
If such an edge exists, then we add it to Ã and continue.
Our procedure terminates when there are no edges in E \ Ã
that Ã informationally dominates. A straightforward induction
argument shows that the final set is Dom(A).

At each iteration of the algorithm, we either find a new
edge that is informationally dominated by the set Ã or we
stop. Finding a new edge that is informationally dominated
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by Ã can be done by checking each of the four conditions of
Theorem 10. Since we begin with Ã = A and only add edges,
Condition 1 will always be satisfied. Conditions 2 and 3 are
straightforward to check in time linear in |G|. We show how
to check Condition 4 efficiently.

Lemma 16: Given a finite graph G, an edge set Ã and a
commodity i, there exists an indirect walk for commodity i in
G(Ã, i) if and only if S(i) and T (i) are in the same weakly
connected component of G(Ã, i).

Proof: Let U(Ã, i) be the graph obtained from G(Ã, i)
by undirecting all edges. The edges S(i) and T (i) are in the
same weakly connected component of G(Ã, i) if and only if
there is a path from S(i) to T (i) in U(Ã, i).

Suppose there exists an indirect walk for commodity i in
G(Ã, i). If we undirect the edges in this walk and remove
repeated edges, we get a path from S(i) to T (i) in U(Ã, i).

Now suppose there is a path p(A, i) from S(i) to T (i) in
U(Ã, i). We construct an indirect walk for commodity i in
G(Ã, i) from p(A, i). Let p be the set of edges and nodes in
G(Ã, i) corresponding to edges and nodes of p(A, i). The set p
can be decomposed into directed subpaths q1, p1, q2, p2, . . . , qj

where:
• The first node in q1 is the head of S(i).
• The last node in qj is the tail of T (i).
• The last node, v`, in q` is the same as the last node in p`

for 1 ≤ ` < j.
In order to turn p into an indirect walk P =

Q1, P1, Q2, P2, . . . , Pj , we need to extend the subpaths so that
they all start at sources. Since the first node in q1 is S(i), we
let Q1 = q1. For 1 ≤ ` < j, let u` be the first node in p`. Since
u` corresponds to a node in G(Ã, i) there exists a source, S(`),
with a path r` to u` in G(Ã, i). Let P` be the path obtained
by first following r` and then following p`. Note that q`+1

starts at the same node as p`. Let Q`+1 be the path consisting
of r` followed by q`+1. Defining P` and Q`+1 in this way
for 1 ≤ ` < j results in an indirect walk for commodity i in
G(Ã, i).

The graphs G(Ã, i) and U(Ã, i) can be constructed in time
linear in |G|. Furthermore, finding a path from S(i) to T (i)
in U(Ã, i) can also be done in time linear in |G|. This implies
the following corollary.

Corollary 17: Given a directed acyclic graph G and a set
A of edges, the set Dom(A) can be found in time O(|G|3).

This corollary also shows that we can efficiently test
whether a set of edges A informationally dominates a set of
edges B. Since B is informationally dominated by A if and
only if B ⊆ Dom(A), the corollary implies that we can test
this informational dominance relationship in time O(|G|3).

VI. DEFINITIONS FOR GENERAL GRAPHS

In this section we extend the definitions of Section II to
finite undirected graphs and finite graphs with cycles. Given a
k-pairs communication problem on an undirected graph G =
(V, E), we first define a corresponding directed graph Ĝ =
(V̂ , Ê). Each undirected edge {u, v} ∈ E is represented in Ĝ
as two oppositely directed edges (u, v) and (v, u). For directed
cyclic graphs, we simply set Ĝ = G. As was the case with

DAGs, one may assume that each source σ(i) in Ĝ has a
single out-edge S(i) = (σ(i), s(i)) and no in-edges, and that
each sink τ(i) has a single in-edge T (i) = (t(i), τ(i)) and no
out-edges. Next, we must define a network code for the graph
Ĝ. The definition of Section II cannot immediately be used
since it applies only to directed acyclic graphs. The following
subsection addresses this issue.

A. Time-Expanded Graph

When defining a network coding solution in a graph with
cycles, it is important to ensure that the solution has an
operational meaning. Intuitively, we must ensure a solution
could actually be implemented in the network over a sequence
of time steps. This ensures that there exists an appropriate
causality relationship between the random variables on the
network edges. This notion is made precise below by spec-
ifying a leveled directed acyclic graph G∗ representing the
flow of information in G over a sequence of time steps, and
requiring that a network coding solution in G should come
from a network coding solution in G∗. As mentioned earlier,
time-expanded graphs have been used in prior work (see, e.g.,
[8], [15], [16]) for the same purpose of modeling information
flow in a graph with cycles, although our construction differs
in some technical details such as having an infinite number
of levels. A similar approach was advocated in [5], but that
paper proposed a model of network coding based on a slightly
different definition of G∗ where nodes are memoryless. Here,
as in [8], [15], [16], we advocate a model which implicitly
treats each node of G as having infinite memory.

Definition 12 (Time-Expanded Graph G∗): Given an in-
stance of the network coding problem in a directed graph G,
the time-expanded graph G∗ = (V ∗, E∗) is a directed acyclic
graph obtained using the following transformation.
• The vertex set V ∗ includes the set V ×Z. The vertex of

V ∗ represented by the ordered pair (v, t) will be denoted
by vt.

• For each edge e = (u, v) ∈ E there are edges et =
(ut−1, vt) in E∗ for t ∈ Z.

• For each v ∈ V and each t ∈ Z, there is an edge
(vt−1, vt) ∈ E∗. These edges are referred to as memory
edges.

• For each commodity i ∈ I, we add two new vertices
σ(i), σ′(i) connected by a directed edge S(i), and we
add directed edges St(i) = (σ′(i), s(i)t) to E∗, for each
t ∈ Z.

• Similarly, for each i ∈ I, we add two new vertices
τ(i), τ ′(i) connected by a directed edge T (i), and we
add directed edges Tt(i) = (t(i)t, τ(i)) to E∗ for each
t ∈ Z.

Given an edge set A ⊆ Ê = E(Ĝ), the time-expansion A∗ ⊆
E∗ is defined as follows.
• For each source edge S(i) ∈ A, A∗ contains the edges

S(i), {St(i) : t ∈ Z} of G∗.
• For each sink edge T (i) ∈ A, A∗ contains the edges

T (i), {Tt(i) : t ∈ Z} of G∗.
• For every other edge e ∈ A, A∗ contains the edges {et :

t ∈ Z}.
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• For every vertex v ∈ V̂ = V (Ĝ) such that A contains
every incoming edge of v, A∗ contains the memory edges
{(vt, vt+1) : t ∈ Z}.

If a network coding instance is defined on an undirected
graph G, then the graph G∗ is obtained from G by first re-
placing each undirected edge of G by two oppositely directed
edges and then performing the above transformation. Since G∗

is a directed acyclic graph, the definition of a network code and
network coding solution from Section II are still applicable. A
useful property of network coding solutions in G∗ is that they
may be adjusted by “time translations.” In other words, given
a network coding solution N and an integer k, we may obtain
another network coding solution N(k) by using the same edge
alphabets and coding functions, but reassigning them so that
Σ(et) and fet

are assigned to edge et+k rather than edge e.
This definition resolves the foundational issues of defining

a network coding solution in a graph with cycles. However,
it is often easier to reason about the graph Ĝ rather than the
time-expanded graph G∗. For this purpose it is convenient to
have a notion of a network coding solution defined on Ĝ.

Definition 13 (Concise Network Coding Solution): Given
an instance of the network coding problem and a solution
defined in the time-expanded graph model, we define a
concise representation of this solution as follows. For e ∈ Ê:
• The edge alphabet is defined as Σ(e) =

∏∞
j=−∞ Σ(ej).

• The edge function is the function fe : Σ(S) → Σ(e)
where

fe(M) =
(
. . . , fe−1(M), fe0(M), fe1(M), . . .

)
.

B. Rate of a Network Coding Solution

Using the concise representation of a network coding solu-
tion, we define the rate of a solution.

Definition 14 (Rate (directed)): Given an instance of the
network coding problem with underlying directed graph G,
we say a network coding solution achieves rate r if all edge
alphabets in the concise representation are finite, and there
exists a constant b such that logb |Σ(e)| ≤ c(e) for each e ∈ E
and logb |Σ(S(i))| ≥ rdi for each commodity i.

Definition 15 (Rate (undirected)): Given an instance of the
network coding problem with underlying undirected graph G,
we say a network coding solution achieves rate r if all edge
alphabets in the concise representation are finite, and there
exists a constant b such that for each edge e ∈ E (represented
by oppositely directed edges

→
e and

←
e in Ĝ),

logb

(
|Σ(

→
e )| · |Σ(

←
e )|

)
≤ c(e)

and for each commodity i,

logb |Σ(S(i))| ≥ rdi.
Our definition of a rate r code allows the code designer

to split the use of an undirected edge in any possible way.
There could be other interpretations for the capacity region of
an undirected edge; this issue was explored by Kramer and
Savari [7]. For example, one could assume that an undirected
edge (u, v) with capacity c can be used, at each time step,
as either a capacity c channel from u to v or as a capacity c
channel from v to u. Another possibility would be to interpret

this edge as allowing a channel of capacity c from u to v and
a channel of capacity c from v to u. This at most doubles the
maximum achievable rate and would be more restrictive than
just using our definition with doubled edge capacities. We feel
our definition is justified by the following reasons. First, it is
consistent with the well-known push-to-talk two-way channel.
Second, it is consistent with the usual view of network flow on
undirected graphs in the combinatorial optimization literature.

The information theoretic view of network coding on di-
rected acyclic graphs described in Section II extends to graphs
with cycles. The definition is based on concise network coding
solutions. For edge e ∈ Ê, define the random variable
Ye = fe(M), where M is the random variable for the source
messages. As before, we use H(e) as shorthand for H(Ye).
The analogues to Lemma 1 are as follows.

Lemma 18: Let G be a directed graph. Given a concise
network coding solution of rate r, there exists a constant b
such that the following hold. For all edges e ∈ E,

H(e) ≤ c(e) log2 b

and for all commodities i ∈ I,

H(S(i)) ≥ rdi log2 b.
Lemma 19: Let G be an undirected graph and let Ĝ be

the corresponding directed graph. Given a concise network
coding solution of rate r, there exists a constant b such that the
following hold. For any pair

→
e and

←
e of edges corresponding

to an undirected edge e,

H(
→
e ) + H(

←
e ) ≤ c(e) log2 b

and for any edge S(i)

H(S(i)) ≥ rdi log2 b.

VII. INFORMATIONAL DOMINANCE IN GENERAL GRAPHS

In Section V, we introduced combinatorial criteria and an
algorithm for determining when an edge set A informationally
dominates another edge set B in a DAG. In this section we
generalize these characterizations of informational dominance
to graphs with cycles and undirected graphs. Recall that for an
edge set A ⊆ Ê there is a corresponding edge set A∗ ⊆ E∗

(the time-expansion of A) in the time-expanded graph.
Lemma 20: Dom(A)∗ = Dom(A∗).

Proof: We begin by proving that an edge et is informa-
tionally dominated by A∗ if and only if e is informationally
dominated by A. One direction is easy: if e is informationally
dominated by A, then by definition this means that for any
concise network code in Ĝ, the information on A determines
the signal transmitted on e, or equivalently the information on
A∗ determines the signals transmitted on et for all t ∈ Z.
To prove the other direction, if A doesn’t informationally
dominate e, then there is at least one network code N in
G∗ and at least one edge et such that the signal on et is
not determined by A∗. But the property “et is informationally
dominated by A∗” is invariant under time translations: for any
integer k the network code N(k) has the property that et+k

is not determined by A∗. So we find that none of the edges
{et : t ∈ Z} are in Dom(A∗). A similar argument applies to
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the edges St(i), S(i), Tt(i), T (i): each such edge belongs to
Dom(A)∗ iff it belongs to Dom(A∗).

Finally we prove that a memory edge (vt, vt+1) is in
Dom(A)∗ if and only if it is in Dom(A∗). Let µv =
{(vt, vt+1) : t ∈ Z} denote the set of all memory edges at v,
and let B = In(µv). Note that µv is downstream of B \µv . If
all incoming edges of v in G belong to Dom(A) then (by the
preceding paragraph) Dom(A∗) contains B\µv , so Dom(A∗)
contains µv as well. Conversely, if (vt, vt+1) ∈ Dom(A∗) then
every incoming edge of vt must be in Dom(A∗). (Otherwise,
a network code in which A∗ fails to determine the signal on
et−1 = (ut−1, vt) may easily be modified to a network code
in which A∗ fails to determine the signal on e = (vt, vt+1), by
copying the signal from et−1 to e.) Again using the preceding
paragraph, this implies that every incoming edge of v is in
Dom(A), hence (vt, vt+1) ∈ Dom(A)∗.

Next, we show that the conditions of Theorem 10 are
preserved under time-expansion.

Lemma 21: For an edge set B ⊆ Ê, B satisfies conditions
2–4 in Ĝ if and only if B∗ satisfies 2–4 in G∗.

Proof: From the definition of the time-expansion B∗, we
know that for each commodity i, S(i) ∈ B∗ iff S(i) ∈ B and
T (i) ∈ B∗ iff T (i) ∈ B. This establishes condition 2.

For conditions 3 and 4, it is useful to make the following
definition. If P = (v(1), v(2), . . . , v(j)) is a simple path in G,
then P ∗ is the path (v(1)

1 , v
(2)
2 , . . . , v

(j)
j , v

(j)
j+1, v

(j)
j+2, . . . , v

(j)
n )

in G∗. (Note that j ≤ n because P is a simple path.) If P
is a path in Ĝ which traverses a source or sink edge S(i)
or T (i), then P ∗ is the path in G∗ formed by first removing
the source or sink edges from P , then applying the above
transformation to obtain a path in G∗, then prepending the path
(σ(i), σ′(i), v(1)

1 ) or appending the path (v(j)
n , τ(i), τ ′(i)).

If a vertex v ∈ V̂ is reachable from a source in Ĝ\B using
a path P , then P ∗ is a path from a source to vn in G∗ \B∗.
Using time translation, we obtain a path from a source to vt

in G∗, for all t. Conversely, if there is a path P from a source
to a vertex vt in G∗, then by deleting the memory edges of
P and dropping the time coordinates of all other edges, we
obtain a path from a source to v in Ĝ \ B. This establishes
condition 3.

Finally, if Q1, P1, Q2, P2, . . . , Qj is an indirect path in
Ĝ(B, i), then Q∗

1, P
∗
1 , Q∗

2, P
∗
2 , . . . , Q∗

j is an indirect path in
G∗(B∗, i). Conversely, given an indirect path in G∗(B∗, i)
we may obtain an indirect path in Ĝ(B, i) by deleting all
memory edges and dropping the time coordinates of all other
edges. This establishes condition 4.

Corollary 22: For any edge set A ⊆ Ê, Dom(A) satisfies
conditions 1–4. Any other set satisfying conditions 1–4 con-
tains Dom(A).

Corollary 23: There is an algorithm to compute Dom(A)
in time O(|G|3).

Proof: The algorithm described in Section V-F doesn’t
rely on the fact that G is a directed acyclic graph, it only relies
on the combinatorial characterization in terms of properties 1–
4.

Corollary 24: Lemma 7 and Lemma 9 remain valid when
the underlying graph G is any directed graph.

A particularly useful case of Lemma 9 is the following
relation identified by Jain et al. [13].

Crypto Inequality. If a graph G is partitioned into
two parts, the set of edges crossing between the parts
informationally dominates all commodities whose
source and sink are in different parts.

More precisely, the crypto inequality can be expressed as
follows.

Corollary 25 (Jain et al. [13]): Let G be an undirected
graph, whose vertex set is partitioned into two subsets U and
U . Let E(U, U) be the set of all edges in Ĝ with one endpoint
in U and the other in U , and let S(U,U) be the set of all
edges S(i) where i is a commodity whose source and sink
belong to different connected components of G \ E(U, U).
Then S(U,U) ⊆ Dom(A).

VIII. OUTER BOUND FOR GENERAL GRAPHS

In this section we present an outer bound on the maximum
achievable rate for general graphs. This bound is based on the
following constraints. The constraints are applied in the graph
G itself and represent constraints on concise network coding
solutions.
• Polymatroid inequalities: The entropy function H is a

non-negative, non-decreasing, submodular set function. In
other words, for all A,B ⊆ E,

H(B)−H(A ∩B) ≥ H(A ∪B)−H(A) ≥ 0.

• Informational Dominance: For A,B ⊆ E, if A informa-
tionally dominates B, then H(A) ≥ H(B).

• Independence of sources: For any set
S(i1), S(i2), . . . , S(ij) of sources,

H(S(i1), . . . , S(ij)) = H(S(i1)) + · · ·+ H(S(ij)).

• Correctness: For every commodity i, the edges S(i) and
T (i) transmit the same symbol. Consequently, for any set
U of edges, H(U ∪ {S(i)}) = H(U ∪ {T (i)}).

• Rate: A solution of rate r exists if and only if there exists
a constant b such that H(S(i)) ≥ rdi for all i and:
Directed Graphs: For every edge e,

H(e) ≤ c(e) log2 b.
Undirected Graphs: For every edge e,

H(
→
e ) + H(

←
e ) ≤ c(e) log2 b.

The constraints listed above constitute a powerful technique
for proving upper bounds on the rate achievable by network
coding in general graphs. These constraints can be used to
generate a linear program. (Unfortunately the size of the linear
program is exponential in the problem size.) Song, Yeung
and Cai [3] presented a similar LP-bound for directed acyclic
graphs, leaving open the problem of generalizing this bound to
all graphs. (Their bound used a constraint that can be viewed
as a restricted version of informational dominance.) A way
to extend their bound to general graphs is to transform G
into the time-expansion of G∗. Since this is a directed acyclic
graph, the LP-bound of Song, Yeung and Cai then applies.
There are many reasons why this solution is not entirely
satisfactory. First, G∗ is an infinite graph. The bound given by
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considering solutions on any finite truncation of G∗ could be
strictly smaller than the actual maximum network coding rate.
Secondly, working directly with edge sets in the much smaller
graph Ĝ leads to substantially simpler and more condensed
proofs of outer bounds, as well as faster algorithms for finding
such outer bounds.

A. A Bound in Terms of Γ∗

The first constraint says that entropy is a submodular, non-
negative and non-decreasing set function. These characteristics
imply what are known as Shannon-type information inequal-
ities or the basic inequalities. Suppose we have n random
variables. There are 2n − 1 joint entropies associated with
these n random variables (one for every non-empty subset).
For any n, these inequalities define a region in RN where
N = 2n − 1. It is known that there are points in this region
that cannot be interpreted as the joint entropies associated
with a collection of n random variables (see, e.g., [16]).
This implies that the 2n − 1 joint entropies associated with a
collection of n random variables must satisfy some additional
constraints. Yeung defines Γ∗ as the set of points in RN

that correspond to the joint entropies associated with some
n random variables [16]. Recently, a few non-Shannon-type
information inequalities have been found [24], [25] but a
complete characterization of the region Γ∗ is still unknown.

An stronger outer bound could be obtained by replacing the
first constraint with the set of all constraints that define Γ∗,
or possibly the convex closure of Γ∗. Defining either of these
regions in a computable way is a major open question. For
now, we present our bound in terms of the basic inequalities
but note that a better understanding of Γ∗ or its closure could
result in a tighter upper bound on the achievable rate for
network coding.

IX. THE CAPACITY OF DIRECTED CYCLES

We now illustrate the use of informational dominance on
an example problem: characterizing the capacity of directed
cycles. In previous work, Kramer and Savari [7] specifically
considered a 3-cycle with two commodities. This example is
well-known since the cut-set bound obtained by partitioning
the vertices into two sets does not tightly bound the multicom-
modity flow rate [22, Chapter 70]. Kramer and Savari proved
a bound on the capacity that is tighter than the cut-set bound
via Fano’s inequality and properties of mutual information.
They also posed the problem of characterizing the capacity of
arbitrary directed cycles.

We prove that the network coding rate equals the maximum
concurrent multicommodity flow rate for any k-pairs commu-
nication problem on a directed cycle. Let r be the rate of
the maximum concurrent multicommodity flow. We begin by
finding the sparsest cut. For a directed cycle, the sparsest cut
consists of a single edge. This is a consequence of the fact
that for each commodity i, there is only one directed path
from s(i) to t(i). For a single edge u, the sparsity of the edge
is given by the number of commodities whose path from s(i)
to t(i) on the cycle traverses u. Let I(u) be the set of such

commodities and let e be an edge such that

c(e)∑
i∈I(e) di

= r.

In other words, the set {e} is a sparsest cut.
Lemma 26: S is informationally dominated by the set A =

{e} ∪ {S(i) : i /∈ I(e)}.
Proof: Let J ⊆ I be the set of commodities i such

that S(i) is not informationally dominated by A. If J 6= ∅,
then we may label the commodities in J as i1, i2, . . . , iq
according to the order in which their sink is encountered on
the directed cycle starting at the head of edge e. Since S(i1) /∈
Dom(A), Theorem 10 ensures that there is an indirect walk
Q1, P1, Q2, P2, . . . , Qj for commodity i1 in G(Dom(A), i1).
Let ij be the commodity whose source s(ij) is the initial
vertex of path Qj . Note that S(ij) /∈ Dom(A) since S(ij)
belongs to an indirect walk in G(Dom(A), i1); hence ij ∈ J .
As we traverse the directed cycle starting at the head of e, we
do not encounter t(ij) before t(i1) (by the defining property
of i1) and we do not encounter t(i1) before s(ij) (because Qj

is a path from s(ij) to t(i1) in G \ {e}). Hence we do not
encounter t(ij) before s(ij), which means that the path from
s(ij) to t(ij) lies in G \ {e} and hence ij /∈ I(e). But this
means that S(ij) ∈ A, contradicting the fact that S(ij) does
not belong to Dom(A).

Lemma 26 implies that H(A) ≥ H(S). Using the sub-
modularity of the entropy function and the independence of
sources,

H(e) +
∑

i/∈I(e)

H(S(i)) ≥
∑

i∈I
H(S(i))

H(e) ≥
∑

i∈I(e)

H(S(i)).

If r∗ is the rate of this concise solution, then by Lemma 18
there exists a constant b such that

c(e) log b ≥ H(e) ≥
∑

i∈I(e)

H(S(i)) ≥
∑

i∈I(e)

r∗di log b.

We conclude that

r∗ ≤ c(e)∑
i∈I(e) di

.

This shows that the network coding rate equals the multicom-
modity flow rate.

X. THE CAPACITY OF UNDIRECTED GRAPHS

In Section VIII, we presented an outer bound for the rate of
network coding problems on undirected graphs. In this section
we focus on k-pairs communication problems in undirected
graphs. Using the constraints that comprise our outer bound,
we prove a gap between the sparsity of the graph and the
network coding rate. This is the first known proof of such a
gap in an undirected graph.4 An extension of this proof shows
that the network coding rate equals the maximum concurrent
multicommodity flow rate for an infinite class of interesting
graphs.

4As mentioned earlier, the same gap was proven independently and con-
currently by Jain et al. [13] and by Kramer and Savari [14].
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A. Preliminaries

Our objective is to understand the relationship between mul-
ticommodity flow and network coding in undirected graphs.
Network coding in undirected graphs is very different from
network coding in directed graphs. To understand this differ-
ence we must review the definition of sparsity of a graph.

Definition 16 (Sparsity): For a k-pairs communication
problem on an undirected graph G, let I(A) be the set of
commodities whose source and sink are in different connected
components of G′ = (V, E \A). The sparsity of a set of edges
A is given by

S (A) =
∑

e∈A c(e)∑
i∈I(A) di

and the sparsity of G is equal to minA⊆E S (A).
Sparsity illustrates a key difference between undirected and

directed graphs: for undirected graphs, sparsity is an upper
bound on the network coding rate, whereas for directed graphs
it is not. For the directed case, this claim follows from our
results in Section III. For the undirected case, the claim can
be verified by observing that S(i) ∈ Dom(A) whenever A
is an undirected cut which separates the source and sink for
commodity i, and then applying the informational dominance
constraint from Section VIII. Thus, for undirected graphs, we
have the following inequalities:

maximum concurrent flow rate
≤ network coding rate ≤ sparsity.

Therefore, in undirected instances in which the maximum
multicommodity flow rate equals the sparsity of the graph,
network coding provides no improvement to the rate. As
observed by Kramer and Savari [7] and Li and Li [4], this
implies that the network coding rate equals the flow rate for
instances with k ∈ {1, 2} and instances on planar graphs
where the sources and sinks are on the boundary of the outer
face.

However, for some graphs the sparsity can be greater
than the maximum multicommodity flow rate. For example,
Leighton and Rao [21] showed that the sparsity can exceed the
maximum multicommodity flow rate by a factor of Ω(log n),
when the network is a constant-degree expander graph with n
vertices. The interesting open question is whether the network
coding rate can be larger than the maximum multicommodity
flow rate for instances of the k-pairs communication problem
on undirected graphs. Li and Li [4], [17] and Harvey et al.
[5] independently conjectured that these two rates are always
equal. While the only evidence supporting this belief is for
restricted classes of graphs, our justification for making the
conjecture is the same as for Edmonds’ conjecture [26] that
P6=NP:

My reasons are the same as for any mathematical
conjecture: (1) It is a legitimate mathematical pos-
sibility, and (2) I do not know.

One obstacle to proving the conjecture is the difficulty in
proving upper bounds on the network coding rate which are
stronger than those obtained by considering the sparsity of
individual cuts. However, the techniques developed in this

paper allow us to prove the conjecture for a specific class
of graphs where there is a gap between the sparsity and the
maximum multicommodity flow rate. This class of graphs is
described in the following sections. We remark that other
contemporary work, e.g. [13], [14], has also proven bounds
stronger than the sparsity bound.

B. The Okamura-Seymour Example

We consider a small example, shown in Figure 5, due to
Okamura and Seymour [27]. This example is a 4-commodity
flow problem in an undirected graph with 5 vertices. Each
source has demand 1 and each edge has capacity 1. The
maximum concurrent flow in this graph is 3/4, achieved when
each of the commodities a, b, c sends half of its flow on each of
the two-hop paths from its source to its sink, and commodity
d sends one-third of its flow on each of the two-hop paths
from its source to its sink.

Fig. 5: The Okamura-Seymour Example.

The constraints from Section VIII suffice to prove the
following theorem.

Theorem 27: The network coding rate of the Okamura-
Seymour example is 3/4.

Proof: We use
→
uv to refer to the directed edge from u

to v and uv to refer to the pair {→uv,
→
vu}. We define H(

→
uv)

to be the entropy of the random variable associated with edge→
uv.

We start with the following downstreamness relationships.

{S(a),
→
da,

→
ea} ; {S(a), T (c), da, ea}

{S(b),
→
db,

→
eb} ; {S(b), T (a), db, eb}

{S(c),
→
dc,

→
ec} ; {S(c), T (b), dc, ec}

Using the informational dominance and correctness con-
straints, we obtain the following entropy equalities.

H(S(a),
→
da,

→
ea) = H(S(a), S(c), da, ea)

H(S(b),
→
db,

→
eb) = H(S(a), S(b), db, eb)

H(S(c),
→
dc,

→
ec) = H(S(b), S(c), dc, ec)

Considering the right-hand side of these equations, note
that each edge appears exactly once and the sources
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S(a), S(b), S(c) appear exactly twice. Adding these equations
together and applying Theorem 2 we obtain

H(S(a),
→
da,

→
ea) + H(S(b),

→
db,

→
eb) + H(S(c),

→
dc,

→
ec)

≥ H(S(a), S(b), S(c), da, ea, db, eb, dc, ec)
+ H(S(a), S(b), S(c)).

Using submodularity on the left, independence of sources on
the right, and cancelling terms:

H(
→
da,

→
ea) + H(

→
db,

→
eb) + H(

→
dc,

→
ec) (11)

≥ H(S(a), S(b), S(c), da, ea, db, eb, dc, ec).

We now use a new informational dominance relationship:

Dom({S(a), S(b), S(c), da, ea, db, eb, dc, ec})
⊇ {S(a), S(b), S(c), S(d)}

which follows from Lemma 9. Thus we can replace the right-
hand side of Equation (11) with H(S(a), S(b), S(c), S(d)).
Since the sources are independent,

H(
→
da,

→
ea) + H(

→
db,

→
eb) + H(

→
dc,

→
ec) (12)

≥ H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)).

Next, starting with the following two downstreamness rela-
tionships,

{S(d),
→
ad,

→
bd,

→
cd} ; {S(d), ad, bd, cd}

{→ae,
→
be,

→
ce} ; {T (d), ae, be, ce}

a similar sequence of arguments shows

H(
→
ad,

→
bd,

→
cd) + H(

→
ae,

→
be,

→
ce) (13)

≥ H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)). (14)

Adding (12) and (13) together implies

H(
→
da,

→
ea) + H(

→
db,

→
eb) + H(

→
dc,

→
ec)

+ H(
→
ad,

→
bd,

→
cd) + H(

→
ae,

→
be,

→
ce)

≥ 2
(
H(S(a)) + H(S(b)) + H(S(c)) + H(S(d)

)
.

By submodularity, we can replace each of the joint entropies
on the left with the sum of the entropy of the individual
random variables. Applying Lemma 19, if there exists a rate
r solution, then

c(da) + c(db) + c(dc) + c(ea) + c(eb) + c(ec)
≥ 2r(da + db + dc + dd).

In this example, each edge has capacity one and the demand
for each commodity is one. This implies that r ≤ 3

4 .

C. Special Bipartite Graphs

The analysis of the Okamura-Seymour example generalizes
to an infinite family of undirected graphs which we call special
bipartite graphs. This class of graphs contains infinitely many
instances in which there is a gap between the sparsity and the

maximum multicommodity flow rate.5 Here we prove that the
maximum achievable rate with coding equals the maximum
multicommodity flow rate for special bipartite graphs.

Suppose G is a bipartite graph whose vertex set is par-
titioned into two independent sets V and W . Consider an
instance of the k-pairs communication problem in G with the
property that for every commodity, the source and sink both
belong to V or they both belong to W . Let E(W,V ) denote
the set of directed edges from W to V in Ĝ. Let S(V ) denote
the set of sources in V , and S(W ) the set of sources in W .
For a vertex v, let In(v) denote the set of incoming edges of
v in Ĝ, and let T (v) denote the set of edges in T whose tail
is v. Note that S(v) ∈ In(v) and In(V ) = E(W,V ) ∪ S(V ).

The relation In(v) ; (In(v) ∪ T (v)) shows that
Dom(In(v)) ⊇ In(v) ∪ T (v), implying

H(In(v)) ≥ H(In(v) ∪ T (v)).

By the correctness property, we may replace the sink random
variables with source random variables. Consider the right-
hand side of these equations for all v ∈ V . Each edge
in E(W,V ) appears exactly once and each source in S(V )
appears exactly twice. Adding these equations together and
applying Theorem 2 we obtain

∑

v∈V

H(In(v)) ≥ H(In(V )) + H(S(V )).

Applying submodularity to the left-hand side, we obtain
∑

e∈E(W,V )

H(e)+H(S(V )) ≥ H(In(V ))+H(S(V )). (15)

We now claim that S ⊆ Dom(In(V )). This holds because for
any S(i) ∈ S(W ), there is no indirect path from S(i) to T (i)
in G \ In(V ). This yields the inequality

H(In(V )) ≥ H(S). (16)

Combining Equation (15) and Equation (16) and canceling
terms, we obtain

∑

e∈E(W,V )

H(e) ≥ H(S).

A symmetric argument shows that
∑

e∈E(V,W )

H(e) ≥ H(S).

Summing these two inequalities, we obtain an entropy inequal-
ity which implies

∑

e∈E

c(e) ≥ 2
∑

i∈I
rdi

r ≤
∑

e c(e)
2

∑
i di

.

This inequality is tight in instances where each source-sink
pair is joined by a 2-hop path, and a dual-optimal length
function assigns length 1 to every edge of G; we call such
instances special bipartite graphs. The Okamura-Seymour

5However, the gap is never greater than a factor of 2 for special bipartite
graphs.
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example is a special bipartite graph. It is not hard to come
up with infinitely many other bipartite graphs satisfying this
property.

Theorem 28: Multicommodity flow achieves the same max-
imum rate as network coding in any instance of the k-pairs
communication problem defined on an underlying undirected
bipartite graph G where a dual-optimal length function assigns
1 to every edge and every source-sink pair is distance 2 apart.

XI. GENERALIZATION

In this section we describe three generalizations of our
results. First, we show how to extend our outer bound to
general network coding problems. This requires extending our
combinatorial characterization of informational dominance.
We then describe how our outer bound can be modified to
define an outer bound on the region of feasible rate vectors.

A. Preliminaries

In an instance of the general network coding prob-
lem, each commodity i can have multiple sinks T (i) =
{τ(i)1, τ(i)2, . . . , τ(i)|T (i)|}.6 The notions network coding so-
lution, rate, and informational dominance are defined exactly
as before. For our purposes it is still convenient to represent
sources and sinks with directed edges even when the network
itself is represented as an undirected graph. Therefore, for
every commodity i and every sink node τ(i)j , we assume
τ(i)j has no out-edges and T (i)j = (t(i)j , τ(i)j)) is the single
in-edge to τ(i)j .

B. Outer Bound for General Network Coding Problems

We extend our outer bound from Section VIII to general net-
work coding problems. Recall that the bound in Section VIII is
derived from a set of conditions that any network coding solu-
tion must satisfy. Some of these conditions apply unchanged to
general network coding problems, such as the basic properties
of entropy. Others, such as the correctness condition, need to
be adjusted for general network coding problems. We restate
that bound with the necessary adjustments.
• Polymatroid inequalities: H is a non-negative, non-

decreasing, submodular set function.
• Informational Dominance: For A,B ⊆ E, if A informa-

tionally dominates B, then H(A) ≥ H(A,B).
• Independence of commodities: For any set
{S(i1), S(i2), . . . , S(i`)} of source edges,

H(S(i1), . . . , S(i`)) = H(S(i1)) + · · ·+ H(S(i`)).

• Correctness: For every commodity i, the source edge
S(i) and the sink edges T (i)1, . . . , T (i)|T (i)| transmit
the same symbol. Consequently, for any set U ⊆ E and
1 ≤ j ≤ |T (i)|, H(S(i), U) = H(T (i)j , U).

• Rate: A solution of rate r exists if and only if there exists
a constant b such that H(S(i)) ≥ rdi for all i and:

6It is also possible to allow multiple sources for a commodity, each
transmitting an identical message. As remarked earlier, we will omit the details
since they are relatively straightforward and since most realistic scenarios are
covered by the model in which each commodity has only one source.

Directed Graphs: For every edge e,
H(e) ≤ c(e) log2 b.

Undirected Graphs: For every edge e,
H(

→
e ) + H(

←
e ) ≤ c(e) log b.

Our outer bound in Section VIII is computable because
each of the conditions can be used to create a set of linear
constraints. Taken together these constraints form a large
linear program whose optimal value is an upper bound on the
maximum network coding rate. In order to fully extend our
outer bound to general network coding problems we need to
show that the informational dominance condition is decidable.

C. Informational Dominance for General Network Coding

We extend the combinatorial characterization of the infor-
mational dominance relationship to general network coding
problems. The extension is straightforward and implies an
equally straightforward adaptation of our polynomial time
algorithm for information dominance to the general case.
These extensions allow us to restate Theorem 10 for general
network coding problems. Let G(Dom(A), T (i)j) be the
graph G(Dom(A), i) constructed with respect to the sink edge
T (i)j for commodity i.

Theorem 29: For an edge set A, the set Dom(A) satisfies
the following conditions.

Condition 1: A ⊆ Dom(A).
Condition 2: For every commodity i, Dom(A) either

contains the source edge and all sink edges for
commodity i or it does not contain any of these
edges.

Condition 3: Every edge in E\Dom(A) is reachable
in G \Dom(A) from a source.

Condition 4: For every sink edge T (i)j in G \
Dom(A), there is an indirect walk from S(i) to
T (i)j in G(Dom(A), T (i)j).

Furthermore, any set B satisfying these conditions contains
Dom(A).

D. Rate Regions

Thus far we have described our outer bound in terms of a
single rate. We did this to facilitate our comparison of network
coding and multicommodity flow. Suppose instead we wished
to consider a vector of feasible rates r = [r1, r2, . . . , rk] where
the interpretation is that commodity i can send at a rate of ridi.
Our outer bound can easily be modified to handle rate vectors
by replacing the rate condition with the following more general
condition.

• Rate: A solution with rate vector r = [r1, r2, . . . , rk]
exists if and only if there exists a constant b such that
H(S(i)) ≥ ridi for all i and:
Directed Graphs: For every edge e,

H(e) ≤ c(e) log2 b.
Undirected Graphs: For every edge e,

H(
→
e ) + H(

←
e ) ≤ c(e) log b.

All the other conditions from our outer bound remain the same.
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XII. CONCLUSIONS

We have presented several results concerning the capacity of
information networks; similar results have been concurrently
and independently derived by Jain et al. [13] and Kramer
and Savari [14]. First, we have derived an outer bound on
the rate region of general information networks by blending
graph theoretic and information theoretic techniques. Our
bound applies to undirected and cyclic graphs as well as
directed acyclic graphs. We have used our outer bound to
precisely characterize the achievable rates for two infinite
classes of graphs. We have also shown that the capacity is
much larger than the maximum multicommodity flow rate in
certain directed networks.

There are many important open questions related to the
work in this paper.

• Does our outer bound exactly characterize the network
coding rate? Our outer bound relies on properties of
the entropy function and the concept of informational
dominance. Are these the essential ingredients in deter-
mining the capacity of a network? For that matter, do
other concurrently proposed bounds, e.g. [14], give a
tighter bound on the network capacity? Our conditions
can be specified as a linear program, which is extremely
large even for small instances. Does the optimal value
of this linear program equal the network coding rate?
We suspect that the answer is no. For example, perhaps
one can construct an example where non-Shannon-type
information inequalities are needed to obtain a tight outer
bound. In fact, Song, Yeung and Cai [3] stated a bound for
directed acyclic graphs in which they optimized over the
convex closure of Γ∗; as mentioned in Section VIII-A, Γ∗

is the set of all vectors p in R2n−1 for which there exists a
set of n random variables such that p represents the 2n−1
joint entropies defined by the set of n random variables.
This region is defined by Shannon’s basic inequalities, as
well as certain non-Shannon-type information inequalities
which are not fully understood. What bound for general
graphs do we obtain if we optimize over the same set of
vectors that Song, Yeung and Cai do?

• For instances of the k-pairs communication problem on
undirected graphs, does the multicommodity flow rate
equal the network coding rate? This conjecture remains
open. The answer is yes for all instances in which the
maximum multicommodity flow value equals the sparsity.
In addition, we’ve found an infinite class of instances for
which the answer is yes even though there is a gap be-
tween the maximum multicommodity flow value and the
sparsity. Can this result be extended to all instances of the
k-pairs communication problem on undirected graphs? A
related question is to understand the relationship between
the polytope of feasible multicommodity flows and the
polytope characterizing the entropies associated with net-
work coding solutions for a given instance of the k-pairs
communication problem.

• Are there efficient algorithms to compute or approximate
the network coding rate? Our outer bound consists of an
extremely large linear program where any feasible point

gives an outer bound on the network coding rate. Solving
this linear program exactly seems very difficult. Can one
approximate the optimal value to this linear program in
polynomial time? This would give an efficient means for
computing an outer bound on the rate region for general
information networks.

• Are there efficient algorithms to compute solutions with
optimal rate for general network coding problems? Sup-
pose one could exactly solve the linear program cor-
responding to our outer bound. Does the solution give
valid joint entropies for some set of random variables?
Can one construct a network coding solution by finding
coding functions for the edges of the network that match
these joint entropies? If it is computationally hard to find
solutions with optimal rate, one might be content with
an approximately optimal rate. Can the LP of our outer
bound be used to prove the quality of an approximate
solution?
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APPENDIX
n-WAY SUBMODULARITY

We now prove Theorem 2. For notational convenience, let
B0,` = A`+1 and B`+1,` = ∅ (where 1 ≤ ` < n). It is
straightforward to verify that the following two properties hold
for 1 ≤ j ≤ ` + 1.

Bj,` ∪ (Bj−1,` ∩A`+1) = Bj,`+1

Bj,` ∩ (Bj−1,` ∩A`+1) = Bj,` ∩ A`+1

(17)

The proof of Theorem 2 relies on the following lemma.
Lemma 30: Fix a value ` where 1 ≤ ` < n. For 0 ≤ j ≤ `,

∑̀

i=1

H(Bi,`) + H(A`+1)

≥
j∑

i=1

H(Bi,`+1) +
∑̀

i=j+1

H(Bi,`) + H(Bj,` ∩A`+1).

Proof: By induction on j. For j = 0, the statement is
trivial. For j ≥ 1, we have

∑̀

i=1

H(Bi,`) + H(A`+1)

≥
j−1∑

i=1

H(Bi,`+1) +
∑̀

i=j

H(Bi,`) + H(Bj−1,` ∩A`+1)

≥
j−1∑

i=1

H(Bi,`+1) +
∑̀

i=j+1

H(Bi,`)

+ H(Bj,` ∪ (Bj−1,` ∩A`+1))
+ H(Bj,` ∩ (Bj−1,` ∩A`+1))
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=
j−1∑

i=1

H(Bi,`+1) +
∑̀

i=j+1

H(Bi,`)

+ H(Bj,`+1) + H(Bj,` ∩A`+1)

The first inequality holds by induction. The second inequality
follows by applying submodularity to the jth term of the
second sum. The last equality follows from (17).

Proof (of Theorem 2). The proof is by induction on n. For
n = 2, the theorem simply states that H is submodular.
Assuming that the theorem holds for n−1, we prove it for n.

n−1∑

i=1

H(Ai) + H(An) ≥
n−1∑

i=1

H(Bi,n−1) + H(An)

≥
n∑

i=1

H(Bi,n).

The first inequality follows by induction. The second inequal-
ity follows by applying Lemma 30 with ` = n− 1 and j = `.
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