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Abstract

We consider information networks in the absence of inter-
ference and noise, and present an upper bound on the rate at
which information can be transmitted using network coding.
Our upper bound is based on combining properties of entropy
with a strong information inequality derived from the struc-
ture of the network.

The undirected k-pairs conjecture states that the
information capacity of an undirected network supporting k
point-to-point connections is achievable by multicommodity
flows. Our techniques prove the conjecture for a non-trivial
class of graphs, and also yield the first known proof of a gap
between the sparsity of an undirected graph and its capacity.
We believe that these techniques may be instrumental in
resolving the conjecture completely. We demonstrate the
importance of the undirected k-pairs conjecture by connecting
it with a long-standing open question in Input/Output (I/O)
complexity. We also show that proving the conjecture would
provide the strongest known lower bound for computation in
the oblivious cell-probe model and give a non-trivial lower
bound for two-tape oblivious Turing machines.

Finally, we conclude by considering the capacity of di-

rected information networks. We construct a family of di-

rected graphs whose capacity is much larger than the rate

achievable using only multicommodity flows. The gap that

we exhibit is linear in the number of vertices, edges, and com-

modities of the graph, which is asymptotically optimal.

1 Introduction

Suppose we are given a communication network with
capacitated edges, and a set of data streams each of
which has a designated source and sink. What is the
maximum rate at which each stream can be simultane-
ously transmitted through the network? (We call this
rate the maximum concurrent network coding rate, or
simply the coding rate.) This question can be seen
as an information-theoretic counterpart to the problem
of determining the maximum concurrent multicommod-
ity flow rate (more simply, the flow rate), which is
the maximum rate at which physical commodities with
the designated sources and sinks can be simultaneously
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transmitted through the network. While the flow rate
is trivially no greater than the coding rate, it is not
clear that the two rates are equal because it may be
possible to transmit data more efficiently than physi-
cal commodities by applying non-trivial encoding op-
erations that combine data from two or more sources.
Indeed, there are examples of directed graphs in which
this is possible. For instance, Section 7 presents a fam-
ily of graphs with n vertices and m edges in which the
coding rate exceeds the flow rate by a factor of Ω(m).
(Previously, the best known gap had been Ω(

√
m).)

In contrast to these directed networks in which the
coding rate is significantly higher than the flow rate,
there is no known instance of an undirected network in
which the two rates differ. This has led several authors
to formulate the undirected k-pairs conjecture [25,
26, 14], which asserts that the coding rate is equal to
the flow rate in undirected networks. This conjecture is
arguably the most important open problem in the field
of network coding, which is the study of information
networks that allow coding operations on the data
streams. Our main goal in this paper is to introduce
new techniques which may be instrumental in resolving
this conjecture.

Upper bounds on the flow rate in networks are
generally derived using one of the following techniques:

1. Cut based techniques, which argue that the
combined capacity of the edges in a cut must be
greater than or equal to the combined transmission
rate of the commodities separated by the cut.
These techniques lead to an upper bound which
we call the sparsity bound, which is not tight in
general.

2. LP-duality based techniques, which relate the
flow rate to shortest-path metrics defined by assign-
ing lengths to the edges of the graph. Specifically,
given such a metric we can define distance(i) to be
the distance between the source and sink of com-
modity i in this metric. The flow rate r satisfies

(1.1) r ≤
∑

e∈E(G) capacity(e) · length(e)
∑

i demand(i) · distance(i)
,

and there is at least one assignment of edge lengths
which makes this inequality tight.

In the case of multicommodity flow, the validity of (1.1)
is established by an elementary argument which charges
each unit of flow for the total length of the edges it



consumes. It is tempting to postulate that a similar
argument establishes (1.1) for network coding scenarios,
but it is not clear how to define the charging scheme.
(When an edge combines two or more messages using
a non-trivial coding function, how can we say what
fraction of the edge’s capacity is “consumed” by each
of the messages?) In fact, Section 6 presents evidence
that there is no elementary argument establishing (1.1)
for network coding scenarios, by demonstrating that a
proof of the undirected k-pairs conjecture would resolve
a long-standing open question in Input/Output (I/O)
complexity, imply the strongest known oblivious cell-
probe lower bound and provide a non-trivial lower
bound for two-tape Turing machines.

Since no proof of (1.1) is known for the coding rate
r, the following pair of techniques embody the current
state of the art for proving upper bounds in network
coding theory:

1. Pigeonhole-principle based techniques, which
argue that if the messages transmitted on edges in
an edge set A uniquely determine the data sent
on some of the data streams, then the combined
capacity of the edges in A is at least as great
as the combined transmission rate of these data
streams. These are analogous to the cut based
techniques for proving upper bounds on the flow
rate, and in fact they establish that the sparsity
bound is an upper bound on the coding rate in
undirected graphs. However, they cannot improve
on the sparsity bound. In fact, prior to this work
there was no known instance of an undirected graph
with a provable gap between the sparsity bound
and the coding rate.

2. Information-theoretic techniques, which use
entropy inequalities to derive a linear program
whose optimum is an upper bound on the coding
rate. However, unlike the case of multicommodity
flow, this linear programming approach was only
known to be applicable for directed acyclic graphs
(DAG’s), and it leads to an exponential-sized linear
program whose optimum is not even known to
match the coding rate.

In this paper, we strengthen and combine both of these
techniques to obtain stronger upper bounds on the
coding rate in undirected graphs. Specifically, we settle
each of the following questions:

1. What is the most general form of the
pigeonhole-principle argument in network
coding theory? In other words, when do the mes-
sages transmitted on an edge set A uniquely deter-
mine the data sent on some other edge set B? If
so, we say that A informationally dominates B.
Although the definition of informational dominance

is straightforward, it is not at all straightforward
to combinatorially characterize this relation, or to
determine algorithmically whether A information-
ally dominates B. We present such a combinatorial
characterization and algorithm in Section 3. In-
formational dominance strikes us as a fundamental
notion, and we regard the combinatorial character-
ization in Section 3 to be one of this paper’s main
contributions.

2. Can the information-theoretic linear pro-
gramming bound be extended from DAG’s
to undirected graphs, or more generally to
directed graphs with cycles? Section 4 pro-
vides such an extension.

3. Can we improve on the sparsity bound in
undirected graphs by combining these two
techniques, i.e., by combining combinatorial
inequalities derived from informational dom-
inance relations with entropy inequalities de-
rived from information theory? In Section 5
we improve on the sparsity bound for an infinite
family of undirected networks which we call special
bipartite graphs; in fact, we verify the undirected k-
pairs conjecture for special bipartite graphs. Prior
to this work, the validity of the undirected k-pairs
conjecture was known only for networks in which
the sparsity bound equals the flow rate.

We believe that these results constitute significant
progress toward resolving the undirected k-pairs conjec-
ture. Next, we present new evidence of the conjecture’s
importance which also highlights its difficulty: Section 6
shows that proving the conjecture would yield lower
bounds which would settle long-standing open questions
in I/O complexity and other areas. In particular, we
consider the well-studied matrix transposition problem,
in which a matrix given in row-major order must be
written in column-major order while minimizing I/O
operations [11, 3, 10, 1]. Floyd [11], as well as Ag-
garwal and Vitter [3], have demonstrated lower bounds
for this problem under the indivisibility assumption,
where the matrix entries are copied but not otherwise
manipulated. Aggarwal and Vitter [3] conjectured that
the same lower bound is true without the indivisibility
assumption, and described proving this as a challenging
and important open problem. We reduce the problem
of proving such lower bounds to the problem of proving
an upper bound on the capacity of an instance of the
k-pairs communication problem. This approach demon-
strates that proving the undirected k-pairs conjecture
would also resolve Aggarwal and Vitter’s long-standing
conjecture. Additionally, such a proof would imply the
strongest known lower bound in the oblivious cell-probe
model and a non-trivial lower bound for two-tape obliv-
ious Turing machines [28].



The preceding discussion concerns the relation be-
tween the coding and flow rates in undirected networks.
Of equal interest is the relation between these two rates
in directed networks. In Section 7, we present a family
of networks with n vertices and m edges in which the
coding rate exceeds the flow rate by a factor of Ω(m).
Previously the best known example, due independently
to Li and Li [25] and Harvey et al. [14], established a
gap of size Ω(n) in a network with m = Ω(n2) edges.
Our stronger example leads to a tight characterization
(up to constant factors) of the worst-case gap between
the coding and flow rates, as a function of the number
of vertices, edges, and commodities.

1.1 Related Work Traditionally, computer scien-
tists have largely considered network capacity in the
context of transportation networks rather than infor-
mation networks. This has lead to a rich theory of
network flows [5], multicommodity flows [24], Steiner
packings [17, 22], and so on. More recently, the area
of network coding has focused on the capacity of infor-
mation networks where the network nodes can perform
coding operations on the information. The seminal work
of Ahlswede et al. [4] gives a simple example, shown in
Figure 2(b), where the use of coding increases the capac-
ity. Subsequent work focused primarily on multicast

problems, where there is a single information source
and multiple sinks. The coding rate of a multicast in-
stance is determined by a simple cut condition [4] and
the ratio of the coding rate and Steiner packing rate is
determined by the integrality gap of a well-known linear
program [2]. This ratio can be polylogarithmic [16, 2] in
directed graphs and a constant strictly greater than 1 in
undirected graphs [27, 2]. Polynomial time algorithms
exist to compute optimal network coding solutions to
multicast problems [16, 15, 13]. In contrast, the compu-
tational complexity of general network coding problems
is unknown, although finding a particular type of net-
work coding solution, called a linear solution, has been
shown to be NP-hard [23].

Recently, much attention has been given to the k-
pairs communication problem [21, 25, 14, 26, 27, 18].
This work compared the network coding rate to the
corresponding multicommodity flow rate, leading to
the undirected k-pairs conjecture [25, 26, 14]. The
Okamura-Seymour example was presented in [26] but
no formal proof was given that the network coding rate
equals 3/4. It has also been shown [20] that no network
coding solution in this graph achieves rate exactly 1.
However this does not imply a gap between network
coding rate and sparsity since we define the network
coding rate to be a supremum. A connection between
network coding and the matrix transposition problem
was also noted by Riis [29].

Sparsity was originally considered in the context

of multicommodity flows, and it is well known that
there can be a large gap between the flow rate and
the sparsity. This gap can be a factor of Ω(log n) for
undirected graphs and this is tight [24]. For directed
graphs, this gap is known to be at least k−ε and Ω(log n)
[30] and at most O(

√
n) [12]. Closing this gap is a major

open problem.
While our work is the first to explicitly define the

notion of informational dominance in general graphs
and also the first to give necessary and sufficient condi-
tions for informational dominance, the notion was im-
plicit in several prior works which gave only sufficient
conditions for various useful special cases of informa-
tional dominance. Song et al. [31] give a general upper
bound on the coding rate for DAGs, in which models
of communication are greatly simplified. Their bound
uses a local constraint at each vertex that may be re-
garded as a restricted form of informational dominance.
Kramer [19] observes that the d-separation condition
from Bayesian networks is sufficient to establish a subset
of the informational dominance relationships. Kramer
and Savari [20] use this technique to give an upper
bound on the capacity of general graphs. Their bound
is strictly weaker than our bound from Section 4: for
instance, it does not prove Theorem 5.1.

2 Definitions

Definition 2.1. An instance of the k-pairs communi-
cation problem consists of: (1) A graph G = (V,E).
(2) A capacity c(e) ∈ R

+ for each edge e. (3) A set
I of “commodities” of size k. (4) For each i ∈ I, a
source vertex σ(i) ∈ V , a sink vertex τ(i) ∈ V , and a
demanded communication rate di ∈ R

+.

For convenience, we make two modifications to G.
First, if G is undirected we replace each undirected edge

e with two oppositely-directed edges
→
e and

←
e . Second,

it is convenient to discuss the flow of information by
considering only sets of edges. Therefore, we will
treat the sources and sinks as being edges rather than
vertices. Formally, we assume that each source has a
single out-edge S(i) = (σ(i), s(i)) and no in-edges, and
that each sink has a single in-edge T (i) = (t(i), τ(i))
and no out-edges. We refer to S(i) as the source

edge and T (i) as the sink edge for commodity i. Let
S = { S(i) : i ∈ I } and T = { T (i) : i ∈ I }. These
edges have infinite capacity. Each source has a message

that is to be communicated to its sink. Let M(i) be
the set of all possible messages for commodity i and let
M =

∏

i M(i). For a vertex v ∈ V , let In(v) ⊆ E
denote the set of edges whose head is v.

Definition 2.2. A network coding solution for a
graph G specifies, for each e ∈ E, an alphabet Γ(e) and a
function fe : M → Γ(e) specifying the symbol transmit-
ted on edge e. These must satisfy two conditions.



• Correctness: Each sink edge carries the mes-
sage from its corresponding source, i.e., Γ(T (i)) =
Γ(S(i)) = M(i) and fT (i) = fS(i) projects the

source message vector onto its ith coordinate.

• Causality: Every message transmitted on edge e
is computable from information received at its tail
vertex at a time prior to the message’s transmis-
sion.

The informal specification of the causality criterion in
this definition is made precise by requiring the network
code to have a causal computation, defined as follows.

Definition 2.3. A causal computation of a network
code consists of: (1) A sequence of edges ε1, . . . , εT

where each e ∈ E can appear multiple times. (2) A
sequence of alphabets Λ1, . . . ,ΛT . (3) A sequence of
coding functions ρ1, . . . , ρT . These must satisfy the
following conditions: (A) For each function ρt such
that εt = (u, v) is not a source edge, the value of ρt

is uniquely determined by the values of the functions
in the set {ρx : x < t and εx ∈ In(u)}. (B) For each
edge e, the cartesian product of the alphabets in the set
{Λi : εi = e} is equal to Γ(e). (C) For each edge e,
the set of coding functions {ρi : εi = e} together define
the coding function fe specified by the network coding
solution.

We use information theory to define the rate, or
efficiency, of a solution. Suppose that the mes-
sage Mi on source edge S(i) is chosen indepen-
dently and uniformly at random from Mi. Letting
M = (M1, . . . ,Mk), we can define for each edge set
A = (e1, e2, . . . , e|A|) the combined edge function

fA(x) = (fe1
(x), fe2

(x), . . . , fe|A|
(x)). The random vari-

able fA(M) is denoted by YA and its entropy is denoted
H(A). When A is a singleton set {e} we use the nota-
tions Ye and H(e) in place of Y{e} and H({e}).
Definition 2.4. A network coding solution for a graph
G achieves rate r if there exists a constant b ≥ 0 such
that (1) H(S(i)) ≥ r · di · b for each commodity i; and
(2) for each e ∈ E, if G is directed, H(e) ≤ c(e) · b,

or if G is undirected, H(
→
e ) + H(

←
e ) ≤ c(e) · b. For

a given network coding problem, the network coding

rate, also known as the capacity, is defined to be the
supremum of the rates of all network coding solutions.

A key property of entropy that we will frequently
use is submodularity: for any sets A and B of random
variables, H(A) + H(B) ≥ H(A ∪ B) + H(A ∩ B).
The following generalization is also useful, and will be
applied in the proof of Theorem 5.1.

Lemma 2.5. (n-way submodularity)
Let A1, . . . , An be a collection of sets and let Bi

be the union of all their i-way intersections. Then
∑n

i=1 H(Ai) ≥ ∑n

i=1 H(Bi).

3 Informational Dominance

A key ingredient in our upper bound technique is a re-
lation among edge sets called informational domi-

nance. Suppose that an eavesdropper knows the coding
function of each edge in G and has access to all the mes-
sages transmitted on an edge set A. If this information
always allows the eavesdropper to determine the values
of the messages transmitted on some other edge set B,
we say that A informationally dominates B. In this sec-
tion, we formally define informational dominance and
give a polynomial time algorithm for finding the set of
all edges informationally dominated by a given set. This
algorithm relies on a graph theoretic characterization of
informational dominance.

Definition 3.1. An edge set A informationally

dominates edge set B if for all network coding solu-
tions and k-tuples of messages x and y, fA(x) = fA(y)
implies fB(x) = fB(y). For an edge set A,

Dom(A) = { e : A informationally dominates e } .

It is important to note that this definition quanti-
fies over all network coding solutions, which must suc-
cessfully transmit information from all sources to their
sinks. The informational dominance relation is clearly
a pre-order (i.e., it is reflexive and transitive). How-
ever, it is not clear if determining whether a set of
edges A informationally dominates a set of edges B is
even recursively decidable. The difficulty arises because
the informational dominance relation must hold for all
network coding solutions, of which there are infinitely
many. However, we now present a characterization of
the informational dominance relation that is entirely
based on the structure of the graph.

The following subgraph G(A, i) of G is used in the
characterization of informational dominance.

Definition 3.2. Given a graph G, an edge set A and
a commodity i, let G(A, i) be the graph obtained from G
by the following process: (1) Remove any edge or vertex
that does not have a path to T (i) in G. (2) Remove all
edges of A. (3) Remove any edge or vertex that is not
reachable from a source edge in the remaining graph.

Theorem 3.3. For A ⊆ E, the set Dom(A) satisfies
the following four conditions. Furthermore, if B ⊆ E
satisfies these conditions, then Dom(A) ⊆ B. (1)
A ⊆ Dom(A). (2) S(i) ∈ Dom(A) iff T (i) ∈ Dom(A).
(3) Every edge in E\Dom(A) is reachable in G\Dom(A)
from a source. (4) If S(i) /∈ Dom(A), then S(i) and
T (i) are in the same weakly connected component in
G(Dom(A), i).

The proof that Dom(A) necessarily satisfies these con-
ditions is omitted due to space constraints. However,
in Lemma 3.4 and Corollary 3.5 below, we establish
the more illuminating half of Theorem 3.3, i.e., that



(a) (b)

Figure 1: (a) An example of an indirect walk from S(i)
to T (i). (b) The split butterfly instance. Each edge has
capacity 1 and each commodity has demand 1.

Dom(A) is the unique minimal superset of A meeting
these conditions.

Lemma 3.4. If all four conditions of Theorem 3.3 are
satisfied by a set of edges B, then B does not informa-
tionally dominate any edge in E \ B.

Proof. Our first objective is to prove that B does not
informationally dominate any source or sink edge in
G \ B. Let I0 denote the set of all commodities whose
source edge is in G\B. We will construct an example of
a network code in which the message alphabet M(i) is
equal to the field F2 for i ∈ I0, M(i) = {0} for i 6∈ I0,
and such that there exist two k-tuples of messages
x, y ∈ M such that fB(x) = fB(y) but xi 6= yi for
all i ∈ I0. In fact, x and y will be specified by setting
xi = 0, yi = 1 for i ∈ I0, and setting xi = yi = 0 for
i 6∈ I0.

Suppose that S(1) is in G \ B. Conditions 2 and 4
imply that T (1) is also in G \ B and that S(1), T (1)
belong to the same weakly connected component of
G(B, 1). Using the definition of G(B, 1), we can
conclude that there exist paths Q1, P1, . . . , Pj−1, Qj

such that:

1. The first node in Q1 is the head of S(1) and the
last node in Qj is the tail of T (1).

2. The last node in Q` is the same as the last node in
P` for all ` < j.

3. The first node in each path is the head of a source
edge in G(B, 1).

We call such a sequence of paths an indirect walk from
S(1) to T (1) in G(B, 1). Without loss of generality,
S(i) is the edge whose head is the first node in Qi. Let
vi denote the last node of path segment Qi. By the
definition of G(B, 1), for 1 ≤ i < j there exists a path
Ri from vi to the tail of T (1) in G.

We now sketch the portion of our network coding
solution that transmits M1 from S(1) to T (1). All edge
alphabets are vector spaces over F2, and ⊕ denotes
addition in one of these vector spaces. The code sends
Mi from S(i) to vi on Qi (1 ≤ i ≤ j); Mi+1 from Si+1

to vi on Pi (1 ≤ i < j); and Mi ⊕ Mi+1 to T (1) on Ri

(1 ≤ i < j). Let us now consider the dimension of the

alphabets. Initially imagine that all edge alphabets are
set to {0, 1}. If any of the Q, P or R paths intersect then
we must accommodate all overlapping transmissions by
increasing the alphabets of the edges. For an edge e
which appears in p of these paths, we put Γ(e) = {0, 1}p.
Increasing the alphabet size reduces the rate of the
solution but this is irrelevant for our proof.

Let us now consider the information received at
the tail of T (1). The message Mi ⊕ Mi+1 is received
from the path Ri (1 ≤ i < j), and Mj is received
from the path Qj . Therefore, the tail of T (1) receives
j linearly independent combinations of the j messages
M1,M2, . . . ,Mj . Thus M1 can be computed from the
values of these j symbols and therefore M1 can be
transmitted on edge T (1). Also observe that the paths
Ri may intersect B, but the paths Pi, Qi do not. Thus
every bit of information transmitted on edges in B by
this portion of the network code is equal to Mi ⊕Mi+1,
which equals 0 when M = x or M = y.

Arguing similarly for each of the commodities in the
set I0, we obtain a network coding solution in which
each sink edge T (i) (i ∈ I0) can compute the corre-
sponding message Mi, yet every bit sent transmitted on
edges in B is equal to Mi ⊕ Mj for some i, j ∈ I0, and
hence fB(x) = fB(y) = (0, 0, . . . , 0). This completes
the proof that S(i) and T (i) are not informationally
dominated by B for i ∈ I0.

Now consider an edge e in G \ B that is not a
source or sink edge. By condition 3 of Theorem 3.3,
e is reachable from some source S(i) in G \ B. As we
have just shown, there are two k-tuples of messages x
and y and a network coding solution such that fB(x) =
fB(y) but xj 6= yj . We may augment this solution by
additionally sending Mj from S(j) to e. Thus edge e is
not informationally dominated by B.

Corollary 3.5. Any set of edges B that satisfies the
four conditions of Theorem 3.3 contains Dom(A).

Proof. If ∃e ∈ Dom(A) \B then e ∈ Dom(B) since B ⊇
A. Thus e ∈ Dom(B) \ B, contradicting Lemma 3.4.

We now consider how to efficiently compute the
informational dominance relation. Given A, every set
B that is informationally dominated by A is contained
in Dom(A). Thus it is sufficient to construct Dom(A)
efficiently. The approach is to greedily grow a set of
edges Ã that are informationally dominated by A, where
initially Ã = A. We repeatedly check the conditions of
Theorem 3.3 for Ã and, if any is violated, we obtain a
new edge that can be added to Ã. Letting m denote
the number of edges in G, it is clear that Conditions
(1)-(3) can be checked in time O(m), and condition
(4) can be checked in time O(km) since G(B, i) can
be constructed in time O(m) for each commodity i, and
the weak components of G(B, i) can be computed in

time O(m) as well. Our procedure terminates when Ã



satisfies the four conditions of Theorem 3.3. In total,
constructing Dom(A) requires only O(k2m) steps since
we may charge the work required to check condition (4)

to the commodity added to Ã during that step.

4 General Upper Bound on Network Capacity

The definition of informational dominance implies that
if edge set A informationally dominates edge set B, then
each of the random variables YA, YA∪B uniquely deter-
mines the value of the other. Consequently, H(A) =
H(A ∪ B). Combining this equation with some well-
known properties of entropy functions [8], we obtain
the following five constraints which must be satisfied
by every network coding solution.

• Polymatroid inequalities: The entropy function
H is a non-negative, non-decreasing, submodular
set function. In other words, for all A,B ⊆
E, we have H(A) ≥ 0, H(A ∪ B) ≥ H(A),
H(A) + H(B) ≥ H(A ∩ B) + H(A ∪ B).

• Informational Dominance: For A,B ⊆ E, if
A informationally dominates B, then H(A) =
H(A ∪ B).

• Independence of sources: For any set
S(i1), . . . , S(i`) of sources, H(S(i1), . . . , S(i`)) =
∑`

j=1 H(S(ij)).

• Correctness: For every commodity i, the edges
S(i) and T (i) transmit the same symbol. Hence,
for A ⊆ E, H(A ∪ {S(i)}) = H(A ∪ {T (i)}).

• Rate: A solution of rate r exists iff there is a
constant b such that H(S(i)) ≥ rdib for all i,
and for every edge e, H(e) ≤ c(e)b (for directed

graphs), or H(
→
e ) + H(

←
e ) ≤ c(e)b (for undirected

graphs).

These constraints can be viewed as a linear program
whose optimum value bounds the maximum concurrent
network coding rate. An unfortunate aspect of this LP
is that its size is exponential in the problem size. A
similar LP bound that applies only to directed acyclic
graphs was presented by Song, Yeung and Cai [31],
who raised the question of generalizing this bound to
all graphs as an important open problem. Our work
answers this question by defining and characterizing the
informational dominance relation in arbitrary graphs.

4.1 Example of the Upper Bound Technique As
a concrete example of applying the five constraints listed
above, consider an instance of the k-pairs communica-
tion problem, called the split butterfly, which is illus-
trated in Figure 1(b). We will prove that the network
coding rate of the split butterfly instance is 2/3, which
is equal to the maximum concurrent multicommodity
flow rate. Note that there is no elementary proof of
this bound using a single cut and the pigeonhole princi-
ple, since there is no pair of edges which informationally

dominates all three sources.

Lemma 4.1. The network coding rate of the split but-
terfly instance is 2/3.

Proof. Using Theorem 3.3, or arguing directly from the
graph structure, we obtain the following informational
dominance relations: S(b) ∈ Dom({S(a), e1}), S(a) ∈
Dom({S(b), e2}), S(c) ∈ Dom({S(a), S(b), e1, e2}).
These observations imply the inequalities (4.2)-(4.4).

H(S(a), e1) = H(S(a), S(b), e1)(4.2)

H(S(b), e2) = H(S(a), S(b), e2)(4.3)

H(S(a), S(b), e1, e2)(4.4)

= H(S(a), S(b), S(c), e1, e2)

H(S(a), e1) + H(S(b), e2)(4.5)

= H(S(a), S(b), e1) + H(S(a), S(b), e2)

H(S(a)) + H(S(b)) + H(e1) + H(e2)(4.6)

≥ H(S(a), S(b), e1, e2) + H(S(a), S(b))

H(e1) + H(e2) ≥ H(S(a), S(b), e1, e2)(4.7)

H(e1) + H(e2) ≥ H(S(a), S(b), S(c), e1, e2)(4.8)

H(e1) + H(e2)(4.9)

≥ H(S(a)) + H(S(b)) + H(S(c))

(c(e1) + c(e2)) ≥ (da + db + dc)r(4.10)

(4.5) follows by summing (4.2) and (4.3). (4.6) follows
from (4.5) by submodularity. (4.7) follows from (4.6)
because the sources are independent. (4.8) follows
from (4.7) and (4.4). (4.9) follows from (4.8) since
the sources are independent. (4.10) follows from (4.9)
and Definition 2.4, assuming rate r is achievable. Thus
2/3 ≥ r, since all edges have capacity 1 and all
commodities have demand 1.

5 The Capacity of Undirected Graphs

We now consider the relationships between multicom-
modity flow, network coding, and the sparsity of edge
cuts in undirected graphs. Given a k-pairs communi-
cation problem on a graph G = (V,E) we define a cut

to be an edge set A ⊆ E. If every path from S(i) to
T (i) in G intersects A then we say that A separates

commodity i. The sparsity of a cut A and the graph G
are respectively defined as

S (A) =

∑

e∈A c(e)
∑

i: A separates i di

and SG = min
A⊆E

S (A).

Sparsity illustrates a key difference between undirected
and directed graphs: for undirected graphs, sparsity is
an upper bound on the network coding rate, whereas for
directed graphs it is not. For the undirected case, this
claim can be verified by observing that S(i) ∈ Dom(A)
whenever A is an undirected cut which separates the
source and sink for commodity i, and then applying the



informational dominance constraint from Section 4. For
the directed case, the claim follows from our results in
Section 7.

For undirected graphs, we have:

(5.11) flow rate ≤ coding rate ≤ sparsity.

It is known that for some graphs (e.g., constant de-
gree expanders [24]), the sparsity can exceed the max-
imum multicommodity flow rate by a factor as large
as Ω(log n). Hence, for some graphs, at least one of
the inequalities in Equation (5.11) is strict. The undi-
rected k-pairs conjecture asserts that the first inequality
is never strict. In this section we make progress on this
conjecture by proving that the second inequality is strict
in some instances, e.g., the Okamura-Seymour example
illustrated in Figure 2(a). An extension of this proof
verifies the undirected k-pairs conjecture for an infinite
class of graphs which contains the Okamura-Seymour
example.

Let G = (V ∪W,E) be a bipartite graph. Consider
an instance of the k-pairs communication problem in G
where, for every commodity, the source and sink both
belong to V or both belong to W . Let E(W,V ) denote
the set of directed edges from W to V in G. Let S(V )
denote the set of sources in V , and S(W ) the set of
sources in W . For a vertex v, let In(v) denote the set of
incoming edges of v in G, and let T (v) denote the set of
sink edges in T whose tail is v. Note that S(v) ⊆ In(v),
In(V ) = E(W,V ) ∪ S(V ), and S = S(V ) ∪ S(W ).

Since In(v) contains all inbound edges to vertex v,
it informationally dominates all outbound edges from
v. Hence In(v) ∪ T (v) ⊆ Dom(In(v)), implying that
H(In(v) ∪ T (v)) ≤ H(In(v)). By the correctness
constraint, we may replace the sink random variables
with source random variables. Now consider the set of
these entropy inequalities for all v ∈ V . Examining
the left-hand sides of these inequalities, each edge in
E(W,V ) appears exactly once and each source in S(V )
appears exactly twice. Adding these equations together
and applying Lemma 2.5 we obtain

H(In(V )) + H(S(V )) ≤
∑

v∈V

H(In(v))

≤
∑

e∈E(W,V )

H(e) + H(S(V )).
(5.12)

We now claim that S ⊆ Dom(In(V )). This holds
because for any S(i) ∈ S(W ), there is no indirect
walk from S(i) to T (i) in G \ In(V ). This yields the
inequality H(In(V )) ≥ H(S). Substituting this into
Equation (5.12) and canceling terms, we obtain

∑

e∈E(W,V )

H(e) ≥ H(S).

By symmetry, a similar inequality holds for the edges
in E(V,W ). Summing these two inequalities, we obtain
an entropy inequality which implies that

∑

e∈E c(e) ≥
2
∑

i∈I rdi. This shows that r ≤
(
∑

e c(e)
)

/
(

2
∑

i di

)

.
This inequality is tight in instances where each

source-sink pair is joined by a 2-hop path, and the
optimum of the dual to the multicommodity flow LP
is achieved by assigning length 1 to every edge of G;
we call such instances special bipartite graphs. The
Okamura-Seymour example is a special bipartite graph.
It is not hard to come up with infinitely many other
bipartite graphs satisfying this property.

Theorem 5.1. The maximum multicommodity flow
rate equals the network coding rate for all instances of
the k-pairs communication problem on special bipartite
graphs.

6 Network Coding, I/O Complexity,
Cell-Probe Model, and Turing Machines

Generalizing Theorem 5.1 to all graphs would prove
the undirected k-pairs conjecture. In this section, we
provide evidence that this problem is difficult: prov-
ing it would resolve a long-standing open question in
Input/Output (I/O) complexity, imply the strongest
known lower bound in the oblivious cell-probe model,
and imply a non-trivial bound for a certain model of
two-tape Turing machines. We consider the I/O com-
plexity model of Floyd [11], although our techniques ap-
ply equally well to Aggarwal and Vitter’s more sophis-
ticated model [3]. In Floyd’s model, there is a slow and
large memory consisting of pages, each of which contains
p records. We assume here that each record consists of a
single bit. The basic operation in this model is to read
in two pages, and write a new page based on the in-
formation in the two read pages. Floyd’s original model
makes an indivisibility assumption: the new page con-
sists of a subset of the records in the two read pages.
We consider here the effect of relaxing that assumption:
the new page can be an arbitrary function of the two
read pages.

We consider the matrix transposition problem,
where the input is a p × p matrix stored in row-major
order, and the objective is to produce the transpose of
the matrix: the same bits stored in the slow memory
in column-major order. Floyd demonstrates that, in
his model, p log p I/O operations are sufficient for this
problem, and, with the indivisibility assumption, this
number of I/Os are also necessary. Aggarwal and Vit-
ter conjectured that the same lower bound is true with-
out the indivisibility assumption, and described proving
this as a challenging and important open problem. Any
super-linear lower bound on this problem would be a
significant advancement.

As a first step, we describe an alternative proof



of a lower bound assuming indivisibility. We then
show that this new proof would imply lower bounds
without the indivisibility assumption if the undirected
k-pairs conjecture were true. For this lower bound we
assume that the computation is oblivious: the pattern
of memory accesses does not depend on the values in
the matrix. This assumption is natural for the matrix
transposition problem, since the mapping of bits in the
input to bits of the output is oblivious.

Theorem 6.1. Any indivisible matrix transposition al-
gorithm requires at least p log p I/O operations.

Proof. For any computation C performed by the I/O
machine, we can construct a graph G(C), which has a
vertex for every for every input block and every block
written by the I/O machine. We denote the input blocks
by s1, . . . , sp. There are also vertices corresponding to
the (column major) output of the I/O machine, which
we denote by t1, . . . , tp. The graph has directed edges
for each operation, where each non-input vertex v has
two edges directed towards it: one from each vertex read
by the I/O machine on the operation that produces v.

We also assign to each vertex v the set of records
that are written on the operation corresponding to v.
Note that for each pair i, j (1 ≤ i, j ≤ p), there is a
record rij that is assigned to both si and tj . Let Nij be
the number of vertices that are assigned rij . We now
claim that for any j (1 ≤ j ≤ p),

∑p
i=1 Nij ≥ p log p. To

see this, note that if a record r is assigned to a non-input
vertex v, then r must also be assigned to one of the two
vertices with edges directed towards v. Thus, for each
i, there is a path from si to tj , with rij assigned to each
vertex. Since every vertex has in-degree at most 2, the
union of these paths is a rooted tree with p leaves and at
most 2 children per internal node. This establishes the
claim. Consequently,

∑p

i=1

∑p

j=1 Nij ≥ p2 log p. The
theorem follows from the fact that the total number of
records assigned to any vertex can be at most p.

The following theorem shows that if we remove
the indivisibility assumption then the Ω(p log p) lower
bound for matrix transposition still holds, assuming
that the undirected k-pairs conjecture is true.

Theorem 6.2. If there is an oblivious I/O machine
algorithm for matrix transposition that requires α(p) =
o(p log p) operations then there is an undirected k-pairs
communication problem with p2 commodities, where the
network coding rate is a factor of Ω( p log p

α(p)+p
) larger than

the multicommodity flow rate.

Proof. Any computation C that uses N(C) I/O oper-
ations can be converted to a computation that uses
O(N(C)) I/O operations and reads any page at most
twice. (Simply make a new copy of a page when read-
ing it for the second time.) Thus, we henceforth assume
that any page of slow memory is read at most twice.

For any computation C requiring α(p) operations, we
again consider the graph G(C). Let G(C) be the graph
obtained by undirecting the edges of G(C). We consider
the k-pairs communication problem in G(C), where
there are p2 commodities: one for each record rij , with
source si, sink tj , and demand 1. Each edge has capac-
ity p.

We first show that the network coding rate must be
at least 1. To see this, construct the network coding
solution where each edge has alphabet {0, 1}p, and the
function fe for any edge e directed out of vertex v
in the graph G(C) is the vector of values computed
during the I/O operation that wrote vertex v. Since the
final result of the I/O computation must have column
j of the matrix stored in block tj , every commodity rij

must be sent successfully to its destination tj . Next we

consider the multicommodity flow rate in G(C). Let
L(i, j) be the distance from node si to tj in G(C).

Since G(C) has maximum degree at most 4, for any
j,

∑p

i=1 L(i, j) = Ω(p log p). Since each di = 1, the
concurrent multicommodity flow rate r is the minimum
amount of any commodity that is sent. Let aijk be
the amount of commodity rij that is sent on edge
ek. It must be the case that for any commodity rij ,
∑

k aijk ≥ rL(i, j). Thus,
∑

i,j,k aijk ≥ rp2 log p. Since
the capacity of any edge is at most p, and there are
at most O(α + p) edges, it must be the case that
r = O( α+p

p log p
).

We have shown that proving the undirected k-
pairs conjecture implies a Ω(p log p) lower bound for
matrix transposition in the I/O complexity model. This
model may be viewed as a special case of the cell-
probe model where each cell contains p bits, there
are p read-write cells, and the program is of size
22p + O(1) (i.e., there is free internal storage of 2p
bits). Thus another consequence of the undirected k-
pairs conjecture would be a Ω(p log p) lower bound for
oblivious matrix transposition algorithms in the cell-
probe model. This would represent significant progress
since the strongest known oblivious cell-probe lower
bound for any problem only provides a ω(p) lower bound
for space-bounded computation (i.e., when there are o(p)
read-write cells) [7, 6].

Furthermore, proving the undirected k-pairs con-
jecture implies a non-trivial lower bound for a certain
model of two-tape Turing machines. Specifically, we
consider oblivious Turing machines [28], where, for any
input of size n, the Turing machine tape head follows
the same sequence of left and right moves. This follows
since the following theorem shows that the I/O complex-
ity model can simulate the oblivious Turing machine.

Theorem 6.3. Any two-tape Turing machine compu-
tation that runs in β steps can be performed in O(β/p)
steps of an I/O machine. Also, any oblivious two-tape



Turing machine computation that runs in β steps can be
performed in O(β/p) steps of an oblivious I/O machine.

7 Network Coding Gap of Directed Graphs

We turn now to considering the network coding gap

for directed graphs, i.e., the ratio of the coding rate and
the flow rate. We describe a family of directed graphs
that have a large network coding gap. (This family of
graphs also demonstrates that the network coding rate
can exceed the sparsity, though this fact was already
well-known, e.g., because of the instance illustrated in
Figure 2(b).) The graphs are defined recursively, where
G (1) is the graph shown in Figure 2(b), in which all
commodities have unit demand, all edges have unit
capacity, and the network coding gap is equal to 2
(as is proved below). The graph G (n) is built from
G (n − 1) as follows: for each commodity i in G (n − 1),
we eliminate the demand for commodity i and replace it
with two commodities each with unit demand, by taking
a copy of G (1), deleting the edge e = (a, b) from it, and
adjoining the resulting graph to G (n−1) by identifying
a ∈ V (G (1)) with s(i) ∈ V (G (n − 1)) and identifying
b ∈ V (G (1)) with t(i) ∈ V (G (n−1)). This construction
is illustrated in Figure 2(c).

We now analyze the network coding gap in G (n).
An inductive argument shows that the total multicom-
modity flow rate in G (n) is at most 1, since all flow
must cross edge e. Hence the concurrent multicommod-
ity flow rate is at most 1/2n since there are 2n com-
modities. However, G (n) has a rate 1 network coding
solution where edge alphabets are Γ = {0, 1} and each
node simply sends the xor of its inputs on all of its out-
puts. This proves the first half of the following theorem;
a proof of the second half will appear in the full version
of this paper.

Theorem 7.1. For all k ≥ 2, there is an instance of the
k-pairs communication problem on a DAG G = (V,E)
with |V | = Θ(k) and |E| = Θ(k) where the network
coding gap is Θ(k). Moreover, for any instance of the
k-pairs communication problem on a graph G = (V,E),
the network coding gap is at most min{|E|, |V |, k}.

8 Open problems

The most prominent open question related to our work
is the undirected k-pairs conjecture. Resolving the
conjecture in either direction would profoundly increase
our understanding of the power of network coding as
a model of information transmission in networks, and
resolving it affirmatively would also lead to new lower
bounds as described in Section 6. Without settling
the conjecture for general networks, it would still be
interesting to discover other infinite classes of graphs
for which the conjecture can be verified, or to prove
that the gap between sparsity and network coding rate

in undirected graphs can be as large as Ω(log n), as in
the case of the maximum multicommodity flow rate.

It is known [32] that entropy functions satisfy some
non-trivial inequalities which are not consequences of
the polymatroidal inequalities; these are known as non-
Shannon-type inequalities. Characterizing all such in-
equalities remains a challenging open problem. It is also
unknown whether there are instances in which combin-
ing non-Shannon-type inequalities with the inequalities
defined in Section 4 yields a tighter bound on network
coding rate than can be proved by applying the inequal-
ities of Section 4 alone.

Much of the past work on network coding has fo-
cused on the special case of linear or vector-linear codes,
in which the edge alphabets Γ(e) are vector spaces over
a field F, and the coding functions fe are linear func-
tions. It is possible that one can prove stronger upper
bounds in this special case, or perhaps even settle the
undirected k-pairs conjecture. Dougherty et al [9] have
recently given an example of a directed network in which
linear codes can not achieve the maximum rate achiev-
able by non-linear codes. How large can the gap be
between linear and non-linear network coding rates?

Finally, most questions concerning the computa-
tional complexity of network coding problems remain
wide open. Some hardness results for linear network
coding were proved in [23], but nothing is known about
the complexity of general (i.e., non-linear) network cod-
ing problems. For example, neither of the following al-
ternatives is currently known to be false:

• Given an instance of the general network coding
problem in a directed graph G and a real number
r, there is a polynomial-time algorithm which
computes a solution achieving rate r if one exists,
and otherwise reports that this is impossible.

• Given an instance of the k-pairs communication
problem in an undirected graph G and a real num-
ber r, it is recursively undecidable to determine
whether the network coding rate is less than r.
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