
Iteratively Constructing Preconditioners
via the Conjugate Gradient Method

John Dunagan
Microsoft Research

Redmond, WA
jdunagan@microsoft.com

Nicholas J.A. Harvey
MIT

Cambridge, MA
nickh@mit.edu

ABSTRACT
We consider the problem of solving a symmetric, positive def-
inite system of linear equations. The most well-known and
widely-used method for solving such systems is the precondi-
tioned Conjugate Gradient method. The performance of this
method depends crucially on knowing a good preconditioner
matrix. We show that the Conjugate Gradient method itself
can produce good preconditioners as a by-product. These
preconditioners allow us to derive new asymptotic bounds on
the time to solve multiple related linear systems.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Linear systems (direct and iterative methods)

General Terms
Algorithms, Theory

Keywords
Conjugate Gradient Method, Preconditioning

1. INTRODUCTION
One of the most basic and useful computational problems

is to solve a system of linear equations Ax = b, where A
is a given matrix, b is a given vector, and x is a vector
of unknowns. In this paper, we consider solvers for linear
systems over the reals, in which the matrix A is symmet-
ric and positive definite. Such systems have applications in
a wide range of areas, including computer graphics [9], ma-
chine learning [16], scientific computing, and many branches
of engineering.

A comprehensive introduction to linear system solvers can
be found in standard references [7, 11, 17, 19]. Roughly
speaking, solvers can be divided into two categories.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

Direct solvers. These typically work by factoring the matrix
A into a canonical form such that the system becomes
easy to solve. The prototypical examples are Gaussian
elimination (LU factorization), Cholesky factorization,
etc.

Iterative solvers. These produce a sequence of “guesses” for
the solution. Each iteration of the algorithm adjusts the
previous guess, obtaining a new guess which is closer to
the final solution. This process is similar to function
minimization by gradient descent. The prototypical it-
erative solvers are Steepest Descent and CG (Conjugate
Gradient).

Iterative solvers are of interest for a number of reasons.
First, there are numerous circumstances in which it is prefer-
able to rapidly compute an approximate solution to a prob-
lem instead of waiting the amount of time needed to compute
an exact solution. Next, iterative solvers often have superior
performance when the system being solved is sparse. For ex-
ample, if A has size n× n and only m non-zero entries, then
the CG solver requires only O(mn) operations to produce an
exact solution. In contrast, the best theoretical running time
known for any direct solver is O(n2+ω), where 0.37 < ω ≤ 1.

Iterative solvers are so widely used that specialized ver-
sions have been developed for various problem families, e.g.,
the Multigrid method [20] and the algorithm of Spielman-
Teng [18]. For a lengthier discussion of iterative solvers, we
refer the interested reader to the literature [2, 11, 12, 19].

A qualitative difference between direct and iterative solvers
is that the efficiency of iterative solvers usually depends more
crucially on the spectrum of the matrix A. This is usually
formalized by defining a condition number, a quantity derived
from A which captures the attractiveness of its spectrum,
then analyzing the convergence of the iterative solver as a
function of the condition number.

This motivates the study of preconditioning. Instead of
solving the system Ax = b, one introduces a matrix P (called
a preconditioner), then solves the related system PAx = Pb.
The intention is that PA should have a smaller condition
number than A, so the problem has become easier to solve,
and that introducing P does not impose significant additional
costs. The importance of preconditioning techniques is em-
phasized by Trefethen and Bau [19]:

Nothing will be more central to computational sci-
ence in the next century than the art of transform-
ing a problem that appears intractable into an-
other whose solution can be approximated rapidly.
For [iterative solvers], this is preconditioning.

While provably good pre-conditioners have been derived
for many problems with special structure [12, 13, 18], pre-
conditioners for the general symmetric positive definite case
are typically based on heuristics [2, 3].

This paper investigates a new approach for constructing
preconditioners. We present an algorithm that iteratively
constructs a good preconditioner for A by observing the ex-
ecution of the Conjugate Gradient method (or Steepest De-
scent) on the system Ax = b.

1.1 Overview
We begin with an informal overview of our algorithm. The

problem Ax = b amounts to finding the minimum of ‖Ax− b‖2,
which is a convex, quadratic function (its level sets are el-
lipsoids). Steepest Descent and CG work roughly as follows:
given a guess x, they compute an improved guess by comput-
ing the gradient at x, then moving x in the direction of that
gradient. This works since the gradient at x points roughly
towards the minimum. If the level sets are nearly spherical
then this procedure works very well because the gradients will
point closely towards the minimum. However, if the level sets
are far from spherical, then more iterations will be required.
Having nearly spherical level sets amounts to A having small
condition number.

Our algorithm repeatedly performs iterations of CG, at
each step measuring how much progress was made towards
the minimum. If an iteration fails to make much progress,
this yields a certificate that the level sets are not spherical
in the direction of x. This certificate can then be used to
find a new preconditioner for A which improves the condition
number. The new preconditioner acts on A by squashing the
level sets to make them more spherical.

Stated more generally, our algorithm’s approach is to mon-
itor the progress of a basic algorithm (CG). When the basic
algorithm is slow, this indicates that the given instance has
some undesirable properties (bad condition number). One
then takes some alternative action to improve the instance
(update the preconditioner), thereby accelerating the perfor-
mance of the basic algorithm. A similar approach under-
lies the linear program solvers of Dunagan-Vempala [8] and
Kelner-Spielman [14]. In [8], the basic algorithm is the per-
ceptron method, which has running time that is exponential
in the input size, and the improvement process accelerates the
runtime to polynomial. In [14], an analogous improvement is
obtained when the basic algorithm is a certain variant of the
simplex method.

For the case of linear systems, our iterative preconditioner
updates do not provably accelerate the performance of the al-
ready “diabolically fast” [19] CG algorithm. Instead, the it-
erative preconditioner construction makes the following three
contributions. First, it gives an entirely different approach to
deriving asymptotic bounds comparable to some of the known
asymptotic bounds for Conjugate Gradient. Second, these
bounds hold even if the basic algorithm used to construct the
preconditioners is Steepest Descent (see Section 6); this is in
marked contrast to Steepest Descent’s inferior performance
relative to CG in the absence of iterative preconditioner up-
dates. Finally, regardless of whether CG or Steepest Descent
is used, the preconditioner serves an additional purpose: it
can be used to accelerate the solution of related linear sys-
tems (same matrix A, new vector b), analogous to how direct
solvers can reuse a matrix factorization after computing it
once.

1.2 Designing Preconditioners
As mentioned above, an ideal preconditioner should im-

prove the condition number of the given system without in-
troducing much additional computational cost. Naturally
there is a tradeoff between these two objectives, and it is not
well understood what tradeoffs can be achieved for general
linear systems. Our algorithm gives a framework for making
precise tradeoffs between these objectives.

As outlined above, our algorithm produces a sequence of
suggested improvements to the preconditioner P . Each im-
provement amounts to a “rank-1 update” of P , which in-
creases the cost of a computing matrix-vector products with
P (see Section 6.1). On the other hand, the algorithm can
precisely determine the extent to which each suggested up-
date decreases a condition number of the system. Thus our
algorithm allows an implementer to design an arbitrary pol-
icy for deciding which suggested improvements to accept and
which to reject. To the best of our knowledge, no such frame-
work was previously known.

There do exist other solvers similar to CG which, in some
sense, iteratively compute a new “preconditioner” at each
step of the algorithm. These are the so-called quasi-Newton
or variable metric methods from non-linear optimization, such
as the BFGS and DFP algorithms [4, 5, 6, 10, 15]. The pre-
conditioners computed by these algorithms do successively
improve in quality in the sense that they converge towards
A−1. However, unlike our framework, these algorithms do
not show how the condition number improves at each step.

2. OVERVIEW OF THE ALGORITHM
We denote the system of linear equations we are trying to

solve byMx = d, whereM is symmetric positive definite, and
has size n×n. If x∗ is the actual solution to the system, and
x is a guess for the solution, then the error is defined to be
e = x− x∗. The residual is defined to be r = Mx− d = Me.
We will solve the system by incorporating a preconditioner
P . Consider the new system

P TMPx̃ = P Td.

The new system is equivalent to the original one because,
given any solution x̃ to the new system, we obtain a solution
x to the original one by setting x = P x̃. Furthermore, the
matrix P TMP is symmetric positive definite, assuming that
P is non-singular.

Pseudocode for our algorithm is shown in Algorithm 1. It
generates a sequence of guesses for the solution x1, x2, . . . and
a sequence of preconditioners P1, P2, At iteration i of the
algorithm, define

Ai = P T

i MPi and bi = P T

i d.

At step i, the error and residual (after preconditioning) are
respectively defined to be ei = xi − x∗ and ri = Aixi − bi.

2.1 Potential Functions
Our algorithm and its analysis are based on two potential

functions, which we now define. Let X be a positive definite
matrix. We define a new condition number for X, called its
eccentricity, as follows.

E(X) = det
(X1/2 +X−1/2

2

)

The two potential functions are φ(i) = ‖ri‖2 and ψ(i) =

Algorithm 1: An overview of our main algorithm.

Let x0 = an arbitrary initial guess, and let P0 = I .
Repeat

Initialize the Conjugate Gradient Algorithm.
Repeat

Increment i.
Step 1: Perform one iteration of the Conjugate
Gradient algorithm to compute a better guess xi+1,
so that ‖ri+1‖ < ‖ri‖.
If ‖ri+1‖ is sufficiently small then Halt.

Until ‖ri+1‖ is not much smaller than ‖ri‖.
Now ri is a certificate that Ai is “eccentric”.
Step 2: Compute a better preconditioner Pi+1 from
Pi, so that Ai+1 is less “eccentric” than Ai.
Modify xi+1 to match the new preconditioner.

Forever

Algorithm 2: A single iteration of our variant of the Con-
jugate Gradient algorithm (which is Step 1 in Algorithm 1).
Initially xi is the current guess for the solution, ri is the cur-
rent residual, and di is the current search direction. The new
vectors are xi+1, ri+1, and di+1 respectively.

αi = −
(
dT

i Ari
)
/
(
dT

i A
2di
)

[Equivalently, αi = −
(
rT

i Ari
)
/
(
dT

i A
2di
)

by Eq. (C.3)]
xi+1 = xi + αidi
ri+1 = ri + αiAdi
βi =

(
rT

i+1A
2 di
)
/
(
dT

i A
2di
)

[Equivalently, βi =
(
rT

i+1Ari+1

)
/
(
rT

i Ari
)

by Eq. (C.4)]
di+1 = ri+1 + βidi

E(Ai). The function φ(i) measures the magnitude of the
residual in the transformed space, i.e., after preconditioning.

The purpose of ψ(i) is to measure the quality of the cur-
rent preconditioner, i.e., the extent to which the level sets of
‖Aixi − bi‖ = ‖ri‖ are not spherical. The following lemma
makes this precise. To illustrate this lemma, consider the
examples shown in Figure 1.

Lemma 2.1. E(X) is uniquely minimized when X is the iden-
tity matrix, which has E(I) = 1.

This lemma shows that ψ(i) measures the extent to which
the level sets of ‖ri‖ are not the unit sphere. That is, our
eccentricity function has the property that it is not invariant
under scaling, i.e., E(X) 6= E(cX) for most scalars c 6= 1. We
discuss this issue further in Section 7.

3. THE CONJUGATE GRADIENT
ALGORITHM

Step 1 of Algorithm 1 is based on a variant of the Conjugate
Gradient (CG) algorithm. Algorithm 2 presents pseudocode
for a single iteration of our variant of CG. Readers familiar
with CG will notice several differences between our variant
and the usual formulation; we discuss these differences in
Section 3.1. Readers unfamiliar with CG may learn more
from the highly readable exposition of Shewchuk [17].

An Iteration: For convenience, let us drop the subscripts
on Ai and bi. Also, define the inner product 〈x, y 〉 = xTA2y.
The CG algorithm maintains three vectors: x, r and d. Each

iteration updates x according to the formula

xi+1 = xi + αidi, (3.1)

where αi = − 〈 di, ei 〉
〈 di, di 〉

= − dT

i Ari
dT

i A
2di

. (3.2)

(The value of αi is chosen to minimize φ(i+1), as can be seen
by Eq. (3.10), although this fact is not used in the proofs.)
The vectors d0, d1, . . . are called search directions, and they
are defined by the formula

d0 = r0, and di+1 = ri+1 + βidi ∀i ≥ 0, (3.3)

where βi = −〈 ri+1, di 〉
〈 di, di 〉

. (3.4)

Eq. (3.1) implies similar equations for the error and residual:

ei+1 = ei + αidi (3.5)

ri+1 = ri + αiAdi. (3.6)

A standard proof of our variant of CG is in Appendix B.

Lemma 3.1. In Algorithm 2, we have

dT

i Ari = rT

i Ari (3.7)

αi = − rT

i Ari
〈 di, di 〉

(3.8)

〈 di, di 〉 ≤ 〈 ri, ri 〉. (3.9)

Change in Potential: How do the potential functions change
after performing a CG iteration? Clearly ψ is unchanged.
The decrease in φ is given by

φ(ri+1)

φ(ri)

=
rT

i+1ri+1

rT

i ri
=

(ri + αiAdi)
T(ri + αiAdi)

rT

i ri

= 1 + 2αi
dT

i Ari
rT

i ri
+ α2

i
dT

i A
2di

rT

i ri
. (3.10)

By Lemma 3.1, we obtain

= 1 − 2

(
rT

i Ari
)2

〈 di, di 〉 · rT

i ri
+

(
rT

i Ari
)2

〈 di, di 〉 · rT

i ri

= 1 −
(
rT

i Ari
)2

〈 di, di 〉 · rT

i ri
.

By Lemma 3.1 again, this is

≤ 1 −
(
rT

i Ari
)2

〈 ri, ri 〉 · rT

i ri
= 1 −

(
rT

i Ari
)2

rT

i A
2ri · rT

i ri
.

To summarize this computation, Fact 2 in Appendix A
implies that φ indeed decreases, unless ri = 0. That is,

0 ≤ φ(ri+1)

φ(ri)
< 1.

If
φ(ri+1)

φ(ri)
� 1, then the residual has decreased substantially,

and we have made progress towards solving the linear sys-
tem. If φ does not decrease substantially then the following
inequality holds:

(rT

i Ari)
2

(rT

i A
2ri)(rT

i ri)
� 1. (3.11)

Figure 1: Two examples illustrating the definition of eccentricity. Any positive definite matrix A corresponds to an ellipsoid
for which the principal axes point in the directions of the eigenvectors of A. The ellipsoid for A−1 has its axes in the same
directions. The length of each axis in the ellipsoid for A−1 equals the corresponding eigenvalue of A, whereas the length of
that axis in the ellipsoid for A equals the reciprocal of that eigenvalue. The ellipsoid for (A+A−1)/2 is obtained by averaging
the axis lengths of the ellipsoids for A and A−1; the resulting ellipsoid always contains the unit sphere, and it converges to
the unit sphere as the eigenvalues of A approach 1. The determinant of (A + A−1)/2 is proportional to the volume of the
corresponding ellipsoid, which is minimized when the eigenvalues equal 1.

A+A-1

A-1

2
A

Unit Sphere

A+A-1

A-1

2

A

Unit Sphere

In this case, the vector ri is a certificate of eccentricity. This

is because
(rT

i Ari)
2

(rT

i A
2ri)(r

T

i ri)
= 1 if and only if ri is an eigenvector

of A. Thus the certificate of eccentricity proves that A has
at least two distinct eigenvalues, and hence the level sets of f
are eccentric (elliptical rather than spherical). When Step 1
of the algorithm fails to decrease the norm of the residual by
more than a prescribed amount, we are guaranteed to have
such a certificate of eccentricity for use in Step 2.

Informally, the certificate of eccentricity is a proof of “non-
sphereness” of the ellipsoid corresponding to Ai, which means
that it is also a certificate of “non-unit-sphereness”, the prop-
erty captured by ψ(i).

3.1 Comparison to Usual CG
There are three main differences between the our formula-

tion of CG and the usual one.

(1) We use a non-standard potential function for analyzing
progress, namely φ(i) = ‖ri‖2 = xTA2x− 2bTAx+ bTb.

(2) We use a different definition of conjugacy, namely or-
thogonality relative to A2 rather than A.

(3) Our initial search direction is the residual vector, which
is not the gradient of our potential function φ(i), but
is the gradient of the usual CG potential function.

Our choice of this CG variant was not by accident. We
found that the usual formulation of CG did not produce the
guarantees needed for our later analysis, namely, the certifi-
cates of eccentricity in Eq. (3.11). Interestingly, we are not
aware of previous work finding such a need to depart from
the usual formulation of CG.

As mentioned in point (3) above, our search directions are
not based on the gradient of our potential function φ, but
instead on the gradient of the usual CG potential function.
Rather remarkably, we obtain stronger certificates of eccen-
tricity by using a mismatched gradient and potential func-
tion.

4. IMPROVING THE PRECONDITIONER
Step 2 of our algorithm updates the preconditioner by ap-

plying a rank-1 update. Specifically, we set

Pi+1 = Pi
(
I + σ

vTv
vvT

)
,

where σ > −1 is a scalar and v is a non-zero vector, both to
be specified later. The algorithm also sets xi+1 appropriately
for the new preconditioner. We discuss these changes in detail
below.

Choosing v and σ: Note that Ai+1 becomes
(
I + σ

vTv
vvT

)
Ai
(
I + σ

vTv
vvT

)
.

We now analyze how this change affects ψ.

Lemma 4.1. The change in ψ is given by

ψ(i+ 1)

ψ(i)
=

E(Ai+1)

E(Ai)

= (1 + σ)−1 ·
(

1 +
2σ + σ2

vTv
vTAi(Ai + I)−1v

)

.

The change in ψ could be less than or greater than 1, de-
pending on the choice of σ and v. Ideally the change would
be less than 1, because this means that the eccentricity de-
creased. How can we ensure that this happens? Suppose
that the previous Step 1 produced a certificate of eccentric-
ity. Then by Fact 2, we have

1 � ε :=
(rT

i Airi)
2

(rT

i A
2
i ri) · (rT

i ri)
≥ (rT

i A
2
i ri)

2

(rT

i A
4
i ri) · (rT

i ri)
. (4.1)

This certificate will allow us to choose σ and v such that ψ
decreases significantly.

First, define the scalars

ζ =
vTA(A+ I)−1v

vTv
and σ = −1 +

√
1 − ζ√
ζ

. (4.2)

The eigenvalues of A(A+ I)−1 are obviously {λi/(1 + λi) },
where {λi } are the eigenvalues of A. Since A is positive

definite, we obtain 0 < ζ < 1, so σ is indeed well-defined.
For any choice of v, the definition of σ in Eq. (4.2) is actually

the value that minimizes ψ(i+1)
ψ(i)

.

We choose v by considering two cases that result from the
last inequality of Eq. (4.1).

Case 2a:
rT

i A
2
i ri

rT

i ri
<

√
ε.

In this case, pick v = (Ai + I)ri = Airi + ri.

Case 2b:
rT

i A
2
i ri

rT

i A
4
i ri

<
√
ε.

In this case, pick v = (Ai + I)Airi = A2
i ri + Airi.

Using these definitions, together with the formula given in
Lemma 4.1, one may design a variety of policies for deciding
when Algorithm 1 should perform a Step 2. One possible
policy is to perform a Step 2 whenever ε is sufficiently small,
say ε ≤ 2−16. This policy will be assumed for the remainder
of the paper. As shown in the following lemma, this policy
ensures that each Step 2 provably decreases ψ by a factor of at
least ε1/16. Though this policy is sufficient for our asymptotic
analysis, an actual implementation might benefit from using
a different policy.

Lemma 4.2. If Step 2 is performed with ε ≤ 2−16 then the
following claims hold.

• In Case 2a, ζ < ε1/4 and 0 < σ <
√

1/ζ − 1.

• In Case 2b, 1 − ζ < ε1/4 and −1 < σ < 0.

• In both cases, ψ(i+1)
ψ(i)

< 2
√
ζ
√

1 − ζ < ε1/16.

Choosing xi+1: Modifying the preconditioner changes the
linear system that is being solved. It might be the case that xi
is a good guess for Aix = bi but a bad guess for Ai+1x = bi+1.
Therefore, we specify a new value for xi+1 as follows:

xi+1 =
(
I + σ

vTv
vvT

)−1 · xi =
(
I − σ/(1+σ)

vTv
vvT

)
· xi.

Lemma 4.3. The choice of xi+1 affects φ as follows:

φ(i+ 1)

φ(i)
≤

{√

1/ζ (in Case 2a)

1 (in Case 2b).

5. RUNTIME ANALYSIS
In this section, we analyze the number of iterations needed

to reduce the residual to a fraction ν of its original magnitude.
Recall that there are two residuals under consideration.

Transformed residual: ri = P T

i MPixi − P T

i d

Untransformed residual: r = M(Pixi) − d

As is clear from these expressions, the relationship between
the transformed and untransformed residuals is r = P−T

i ri.
Our algorithm seeks to minimize ‖r‖ by performing steps that
decrease ‖ri‖. Of course, both norms are uniquely minimized
when r = ri = 0, but when ri is non-zero, a step which
decreases its norm might actually increase ‖r‖. So to analyze
the progress in decreasing ‖r‖, one must consider P−T

i , the
matrix which relates r and ri. Specifically, we have ‖r‖ ≤∥
∥P−T

i

∥
∥ · ‖ri‖.

Recall that the preconditioner matrix Pi is modified only
during Step 2. When Step 2 modifies the preconditioner,
this impedes the effort to reduce the untransformed residual
in two ways.

Issue 1: The norm of the transformed residual might in-
crease, as Lemma 4.3 suggests.

Issue 2: The norm of P−T

i might increase. In other words,
Step 2 might increase the upper bound on the gap be-
tween the transformed residual and the untransformed
residual.

To analyze these issues, let εi, σi and ζi denote their re-
spective values during the ith iteration of Step 2. First we
deal with Issue 1. Lemma 4.3 implies that the total amount
by which the norm of the transformed residual increases is
at most

∏

i in Case 2a

√

1/ζ. This quantity is bounded in the
following lemma.

Lemma 5.1.
∏

i in Case 2a

√

1/ζ < E(M)2.

The second issue is dealt with by the following lemma.

Lemma 5.2. For any k, we have
∥
∥P−T

k

∥
∥ < E(M)2.

From our analysis of issues 1 and 2, we find that Step 1
must decrease the norm of the residual by an additional factor
of at most E(M)4. This discussion yields the following result.

Theorem 5.3. The number of iterations required by Algo-
rithm 1 to decrease the untransformed residual by a factor of
ν is at most O

(
log(1/ν) + log E(M)

)
.

Proof. Since each Step 1 decreases ‖ri‖ by a constant fac-
tor, we obtain the following upper bound on the number of
times that our algorithm needs to perform Step 1:

O
(

log(1/ν) + log E(M)
)
.

Step 2 is performed at most O
(
log E(M)

)
times. �

6. COMPARISON OF ASYMPTOTICS
As mentioned in Section 1, the best known asymptotic

analysis for a direct solver is O(n2+ω) where ω > 0.37. The
asymptotic analysis of CG does not admit such a simple
closed form, and instead requires finding low-degree poly-
nomials f such that f(λi) is small for all the eigenvalues
λi of M . In particular, most analyses rely on properties of
the Chebyshev polynomials. One interesting aspect of our
present work is that it provides a self-contained analysis for
a variant of CG, without resorting to arguments based on
polynomials.

Several useful bounds on CG are given in the article of
Axelsson and Lindskog [1]. For example, the number of iter-
ations required to decrease the error by a factor of ν can be
bounded by the following expressions.

O
(√

λn/λ1 · log(1/ν)
)

(6.1)

O
(√

λn−b

λ1
· log(1/ν) + b

)

, for any b (6.2)

O
(√

λn
λa+1

·
(
log(1/ν) + log

∏a
i=1

λn
λi

)
+ a
)

, for any a (6.3)

The classical bound that is used in most contexts is Eq. (6.1).
Other extensions and combinations of these bounds are pos-
sible. Additionally, it is known that CG finds an exact so-
lution in at most n iterations, as mentioned in Appendix B,
although this bound frequently fails to hold in practice be-
cause of the use of inexact arithmetic.

The bound of Algorithm 1 stated in Theorem 5.3 is similar
to the bound on CG given by Eq. (6.3), in the special case
a = n− 1. To see this, suppose for example that the matrix
is normalized so that λn = 1. Then we have log

∏a
i=1

λn
λi

=

Θ(log E(M)).
We remark that Theorem 5.3 remains valid even if Algo-

rithm 1 is simplified to use ordinary Steepest Descent iter-
ations instead of CG in Step 1. The standard bound [17]
on Steepest Descent is that it requires O

(
(λn/λ1) · log(1/ν)

)

iterations to decrease the error by ν. The iterative precon-
ditioner updates accelerate the Steepest Descent algorithm
such that its performance is comparable to CG, i.e., the
bound of Eq. (6.3) with a = n− 1.

6.1 Iteration Cost
The preceding discussion considers only iteration counts

and neglects the computational cost of each iteration. Each
iteration of CG involves only O(1) matrix-vector products,
and hence requires O(m) time, where m is the number of
non-zero entries of M . If one also uses a preconditioner, the
added overhead is the cost of multiplying a vector by the
preconditioner.

The cost of using the preconditioners produced by our al-
gorithm depends on how they are represented. The simplest
option is to store P explicitly; it will typically have Θ(n2)
non-zero entries after the first rank-1 update. This option
only seems attractive if the given matrix M is dense, i.e.,
m = Θ(n2). In this case, our preconditioner P does not
substantially increase the cost of matrix-vector products.

The alternative option is to store the accumulated rank-1
updates that constitute P as separate vectors. A matrix-
vector product P · w is then computed by considering the
individual updates: each product (I + γvvT)w can clearly
be computed in O(n) time. A refinement of this approach,
which has identical asymptotics but better performance in
practice, is the WY factored form. This refinement stores
the updates in two rectangular matrices, and is frequently
used in the Householder QR algorithm [11].

When P is represented by separate rank-1 updates or in
WY form, the cost of multiplying a vector by Ai becomes
O(m+ pn), where p is the number of preconditioner updates
that occurred by the ith iteration. Because p is never more
than log(E(M)O(1)), we obtain the following runtime bounds
on Algorithm 1.

(

m+ n log(E(M)O(1))
︸ ︷︷ ︸

matrix-vector product cost

)

·
(

log
(
(1/ν)E(M)O(1)

)

︸ ︷︷ ︸

of Step 1’s

+ log
(
E(M)O(1)

)

︸ ︷︷ ︸

of Step 2’s

)

= O
((
m+ n log E(M)

)
·
(
log(1/ν) + log E(M)

))

6.2 Multiple Related Systems
Let us now consider the performance of Algorithm 1 in

a scenario where one must solve k instances of the problem
Mx = d for different d but the same M . Direct solvers are
well suited for such problems because a factorization of M
can easily be used to solve all k systems rapidly. In contrast,
CG is not able to reuse work performed when solving with a
prior d vector. Algorithm 1 is able to reuse all the work done
in Step 2, giving it some of the advantages of a direct solver
in this setting. We now present a concrete example where

this leads to an asymptotic improvement in running time.
Let M be a dense matrix such that its ith eigenvalue is

2−2α−i

, where α > 0 is a fixed parameter. The eccentricity
of M is asymptotically

n∏

i=1

22α−i

= 22α ∑n
i=1 2−i

= 2Θ(2α).

The bounds on the number of iterations required by CG with
this matrix are all large.

Eq. (6.1):
√

λn/λ1 is at least 22α−3

.

Eq. (6.2): If b < n − 1, then
√

λn−b/λ1 is at least 22α−3

. If
b = n− 1, then the bound is O(log(1/ν) + n).

Eq. (6.3): If a > 0 then log
∏a
i=1

λn
λi

> log λn
λ1

> 2α−2.

Take α = (ω/2) log n, where 2 + ω is the exponent in the
asymptotic analysis of direct solvers mentioned in Section 1.
We obtain that log E(M) = Θ(nω/2), and all stated bounds

on CG are also Ω(nω/2). Let k = nω/2 and ν = n−Θ(1). Then
the running times for the solvers are:

Direct Solvers: O
(
n2+ω + k · n2

)
= O

(
n2+ω

)

CG: O
(
k · (n2+ω/2 + log 1/ν)

)
= O

(
n2+ω

)

Algorithm 1: O
(
n2 · (log E(M) + k · log 1/ν)

)

= O
(
n2+ω/2

)

This analysis illustrates a class of problems where Algo-
rithm 1’s bound is an improvement on the bounds for CG
and direct solvers.

7. DISCUSSION
There are many interesting questions left open by our work.

• Our definition of eccentricity is not scale-invariant, as
noted in Section 2.1. This is undesirable for several
reasons. Intuitively, this causes the algorithm to favor
wasteful updates which push the eigenvalues towards 1,
rather than useful updates which push the eigenvalues
closer together. A natural way to resolve this problem
would be to run the algorithm on the rescaled matrix

M/
∏n
i=1 λ

1/n
i rather than M . Is there a way to esti-

mate
∏n
i=1 λ

1/n
i (the geometric mean of the eigenvalues)

more rapidly than computing detM? Alternatively, is
there an alternative approach to updating the precondi-
tioner which does not affect the scaling (i.e., detPi = 1
for all i)?

• Suppose one needs to solve two systems Ax = a and
By = b, where A ≈ B. Intuitively, a good precon-
ditioner for A should be a good preconditioner for B.
That is, if E(P TAP) is small then E(P TBP) should
be also. Can this be made rigorous? Does this lead
to interesting analyses of interior point LP solvers or
quasi-Newton algorithms?

• Can Step 1 of Algorithm 1 be modified to use the stan-
dard conjugate gradient algorithm, rather than our vari-
ant? For example, can the inner product 〈x, y〉 = xTAy
be used instead of xTA2y?

• Can the preconditioner updates be modified so that
they maintain conjugacy? In other words, is it nec-
essary to reinitialize CG after each Step 2?

• Do the iteratively updated preconditioners have attrac-
tive numerical stability properties?

• Can Algorithm 1 be extended to handle rank-deficient
matrices?

We are cautiously optimistic that progress on these ques-
tions could positively impact solving linear systems in prac-
tice.

Acknowledgements
The authors thank Alan Edelman, Steven G. Johnson, Daniel
Spielman, Gilbert Strang and Shang-Hua Teng for helpful
discussions. The second author was supported by a Natural
Sciences and Engineering Research Council of Canada PGS
Scholarship, by NSF contract CCF-0515221 and by ONR
grant N00014-05-1-0148.

8. REFERENCES
[1] O. Axelsson and G. Lindskog. On the rate of

convergence of the preconditioned conjugate gradient
method. Numerische Mathematik, 48:499–523, 1986.

[2] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, 1987.

[3] M. Benzi. Preconditioning Techniques for Large Linear
Systems: A Survey. Journal of Computational Physics,
182:418–477, 2002.

[4] C. G. Broyden. The convergence of a class of
double-rank minimization algorithms. J. Inst. Math.
Appl., 6:222–231, 1970.

[5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited
memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16(5), 1995.

[6] W. C. Davidon. Variable metric method for
minimization. SIAM J. Optimization, 1:1–17, 1991.

[7] T. A. Davis. Direct Methods for Sparse Linear Systems.
SIAM, 2006.

[8] J. Dunagan and S. Vempala. A simple polynomial-time
rescaling algorithm for solving linear programs. In
Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC), pages 315–320, June
2004.

[9] R. Fedkiw, J. Stam, and H. W. Jensen. Visual
simulation of smoke. In E. Fiume, editor, SIGGRAPH
2001, Computer Graphics Proceedings, pages 15–22.
ACM Press / ACM SIGGRAPH, 2001.

[10] R. Fletcher and M. J. D. Powell. A rapidly convergent
descent method for minimization. Computer Journal,
6:163–168, 1963.

[11] G. H. Golub and C. F. Van Loan. Matrix
Computations. SIAM, 1997.

[12] K. D. Gremban. Combinatorial Preconditioners for
Sparse, Symmetric, Diagonally Dominant Linear
Systems. PhD thesis, Carnegie Mellon University, 1996.

[13] A. Joshi. Topics in Optimization and Sparse Linear
Systems. PhD thesis, University of Illinois at
Urbana-Champaign, 1997.

[14] J. Kelner and D. Spielman. A randomized
polynomial-time simplex algorithm for linear

programming. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC), pages
51–60, May 2006.

[15] J. Nocedal and S. Wright. Numerical Optimization.
Springer, second edition, 2006.

[16] R. Rifkin, G. Yeo, and T. Poggio. Regularized least
squares classification. In Suykens, Horvath, Basu,
Micchelli, and Vandewalle, editors, Advances in
Learning Theory: Methods, Model and Applications,
NATO Science Series III: Computer and Systems
Sciences, volume 190, pages 131–153. IOS Press, 2003.

[17] J. R. Shewchuk. An introduction to the conjugate
gradient method without the agonizing pain, Aug.
1994. Manuscript.

[18] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the 36th
Annual ACM Symposium on Theory of Computing
(STOC), pages 81–90, June 2004.

[19] L. N. Trefethen and D. Bau, III. Numerical Linear
Algebra. SIAM, 1997.

[20] P. Wesseling. An Introduction to Multigrid Methods.
John Wiley and Sons Ltd., 1992.

APPENDIX

A. GENERAL FACTS

Fact 1. Let M be a matrix. The matrix M
(
I + σ

vTv
vvT

)
is

called a rank-1 update of M . The matrix
(
I + σ

vTv
vvT

)
has

several useful properties.

• It is symmetric, positive definite (assuming σ > −1).

• Its inverse is
(
I − σ/(1+σ)

vTv
vvT

)
.

• Its determinant is 1 + σ.

• Its norm is
∥
∥I + σ

vTv
vvT

∥
∥ =

{

1 + σ (if σ > 0)

1 (if −1 < σ ≤ 0)

Proof. The first property is trivial. The second property is
the Sherman-Morrison formula [11]. Let us now consider the
eigenvalues of

(
I + σ

vTv
vvT

)
. The eigenvalue in the direction

of v is 1 + σ, and the eigenvalues are all 1 in the subspace
orthogonal to v. This implies the third and fourth properties.
�

Fact 2. Let X be positive definite and let w be a non-zero
vector.

0 <
(wTXw)2

(wTw)(wTX2w)
≤ 1. (A.1)

Furthermore,

(wTX2w)2

(wTw)(wTX4w)
≤ (wTXw)2

(wTw)(wTX2w)
. (A.2)

Proof. Recall Hölder’s inequality, which states that, for any
p, q ∈ R

+ with 1
p

+ 1
q

= 1,

∣
∣
∣

∑

i

xiyi

∣
∣
∣ ≤

(∑

i

|xi|p
)1/p (∑

i

|yi|q
)1/q

. (A.3)

Let {v1, . . . , vn} be orthonormal eigenvectors of X and
let λi be the eigenvalue associated with vi. We may write

w =
∑

i civi. Then, for any j, we have wTXjw =
∑

i c
2
iλ
j
i .

This quantity is positive for all j, proving the lower bound in
Eq. (A.1). Apply Hölder’s inequality with xi = ci, yi = ciλi,
and p = q = 2 (i.e., Cauchy-Schwarz). Squaring Eq. (A.3)

yields
(
wTXw

)2 ≤ (wTw)(wTX2w), establishing the upper
bound of Eq. (A.1).

To prove Eq. (A.2), we show the following upper bound.

1 ≥ (wTX2w)2

(wTw)(wTX4w)
· (wTw)(wTX2w)

(wTXw)2

=
(wTX2w)3

(wTX4w)(wTXw)2
.

Apply Hölder’s inequality with p = 3, q = 3/2, xi = c
2/3
i λ

4/3
i ,

and yi = c
4/3
i λ

2/3
i . Taking the cube of Eq. (A.3) yields

(∑

i

c2i λ
2
i

)3

≤
(∑

i

c2i λ
4
i

) (∑

i

c2i λi
)2

=⇒ (wTX2w)3 ≤ (wTX4w) (wTXw)2,

which is our desired upper bound. �

B. PROOF OF CG VARIANT
In this appendix we show that the inner loop of Algorithm 2

is indeed a variant of CG. The defining criteria of a CG algo-
rithm are: (1) the search directions are conjugate (orthogo-
nal relative to the specified inner product), and (2) the error
at the ith step is conjugate to the subspace spanned by the
previous search directions. (Note that these criteria imply
convergence of the CG algorithm in at most n iterations.)
We formalize these criteria with the following predicates.

D(i) : 〈 dj , di 〉 = 0 ∀ j < i

E(i) : 〈 dj , ei 〉 = 0 ∀ j < i

Both are trivial for i = 0. Assuming both are true for i, we
will inductively prove them for i+ 1.

Claim B.1. E(i+ 1) is true.

Proof. For j = i, we have

〈 di, ei+1 〉 = 〈 di, ei 〉 − 〈 di, ei 〉
〈 di, di 〉

〈 di, di 〉 = 0

directly from Eq. (3.5) and Eq. (3.2). For j < i, we have

〈 dj , ei+1 〉 = 〈 dj , ei 〉
︸ ︷︷ ︸

=0 by E(i)

+ αi 〈 dj , di 〉
︸ ︷︷ ︸

=0 by D(i)

= 0.

�

Claim B.2. rT

jArk = 0 for all j < k ≤ i+ 1.

Proof. By Eq. (3.3), if 0 < j ≤ k, we have

〈 dj , ek 〉 = 〈 rj , ek 〉+ βj−1 〈 dj−1, ek 〉
︸ ︷︷ ︸

=0 by E(k)

= 〈 rj , ek 〉, (B.1)

and similarly if j = 0. By our assumption that j < k, E(k)
implies that 0 = 〈 dj , ek 〉 = 〈 rj , ek 〉. Expanding 〈 rj , ek 〉 as
rT

jA
2ek and using rk = Aek yields the desired result, rT

jArk =
0. �

Claim B.3.

〈 ri+1, dj 〉 =

0 if i > j

rT

i+1Ari+1/αi if i = j

−rT

i+1Ari+1/αi+1 if i = j − 1

Proof. For arbitrary i and j we have

〈 ri+1, dj 〉 =
(
rT

i+1Arj+1 − rT

i+1Arj
)
/αj ;

this follows from Eq. (3.6) by multiplying by rT

i+1A and rear-
ranging. Claim B.2 shows that the terms on the right-hand
side are zero in accordance with the statement of the claim.
�

Claim B.4. D(i+ 1) is true.

Proof. For j = i, we have

〈 di, di+1 〉 = 〈 di, ri+1 〉 −
〈 ri+1, di 〉
〈 di, di 〉

〈 di, di 〉 = 0

directly from Eq. (3.3) and Eq. (3.4). Now for j < i, we have

〈 dj , di+1 〉 = 〈 dj , ri+1 〉
︸ ︷︷ ︸

=0 by Claim B.3

+ βi 〈 dj , di 〉
︸ ︷︷ ︸

=0 by D(i)

= 0.

�

C. PROOFS OF LEMMAS
Proof (of Lemma 2.1). For any matrix X, let λj(X) denote
the jth eigenvalue of X. If X is positive semi-definite, then
λj(X

1/2+X−1/2) =
√

λj(X) + 1/
√

λj(X). Clearly x+1/x ≥
2 whenever x > 0, and equality holds iff x = 1; this follows
from 0 ≤ (x− 1)2 = x2 − 2x+ 1. Thus we obtain

det
(

(A
1/2
i + A

−1/2
i)/2

)

=
n∏

j=1

λj
(

A
1/2
i + A

−1/2
i

)

/2

=
n∏

j=1

(
(√

λj(Ai) + 1/
√

λj(Ai)
)

/2

)

≥ 1.

Furthermore, equality holds iff λj(Ai) = 1. But the unique
matrix with all eigenvalues equal to 1 is the identity matrix,
so the lemma is proven. �

Lemma C.1. 〈 di, ri+1 〉 + βi〈 di, di 〉 = 0.

Proof. The following calculations prove the lemma.

βi = − 〈 ri+1, di 〉
〈 di, di 〉

= − rT

i+1Ari+1

αi〈 di, di 〉
(C.1)

where the second equality follows from Claim B.3.

〈 di, ri+1 〉 + βi〈 di, di 〉

= 〈 di, ri+1 〉 − rT

i+1Ari+1

αi
,

by the second expression for βi in Eq. (C.1),

=
(

〈 di, ri 〉 + αi〈 di, Adi 〉
)

−
(

rT

i Ari + 2αi〈 di, ri 〉 + α2
id

T

i A
3di
)

/αi,

by Eq. (3.6),

= −
(

rT

i Ari/αi + 〈 di, ri 〉
)

= −
(

rT

i Ari/αi − rT

i Ari/αi
)

= 0,

by Claim B.3. �

Proof (of Lemma 3.1). From Eq. (B.1), we have

dT

i Ari = dT

i A
2ei = 〈 di, ei 〉 = 〈 ri, ei 〉 = rT

i Ari. (C.2)

This leads to the desired expression for αi.

αi = − rT

i Ari
〈 di, di 〉

(C.3)

For βi, we obtain

βi = −〈 ri+1, di 〉
〈 di, di 〉

= − rT

i+1Ari+1

αi〈 di, di 〉
=

rT

i+1Ari+1

rT

i Ari
, (C.4)

as in the derivation of Eq. (C.1), and also using Eq. (C.3).
By Eq. (3.3), we have di = ri + βi−1di−1, so

〈di, di 〉 = 〈 ri, ri 〉 + 2βi−1〈di−1, ri 〉 + β2
i−1〈di−1, di−1 〉.

Therefore it suffices to show that

2βi−1〈 di−1, ri 〉 + β2
i−1〈 di−1, di−1 〉 ≤ 0.

This follows straightforwardly:

2βi−1〈 di−1, ri 〉 + β2
i−1〈 di−1, di−1 〉

= 2βi−1

(

〈 di−1, ri 〉 + βi−1〈 di−1, di−1 〉
)

− β2
i−1〈 di−1, di−1 〉

= −β2
i−1〈 di−1, di−1 〉 (by Lemma C.1)

≤ 0.

Thus the proof is complete. �

Lemma C.2. Let B = (I + γvvT)A (I + γvvT). Then

det
(

B1/2 +B−1/2
)

= det
(

(I + γvvT)A1/2 + (I + γvvT)−1A−1/2
)

.

Proof. The proof uses only the fact that the determinant
is a homomorphism. First, note that

det
(

B1/2 +B−1/2
)

= det
(

B + I
)

· det
(

B1/2
)−1

.

But

det
(

B1/2
)

=
(

detB
)1/2

=
(

det(I + γvvT) · detA · det(I + γvvT)
)1/2

=
(

detA · det(I + γvvT)2
)1/2

= det
(

A1/2 (I + γvvT)
)

.

Thus,

det
(

B1/2 +B−1/2
)

= det
(

B + I
)

· det
(

A1/2 (I + γvvT)
)−1

= det
(

B + I
)

· det
(

(I + γvvT)−1A−1/2
)

= det
(

(I + γvvT)A1/2 + (I + γvvT)−1A−1/2
)

.
�

Proof (of Lemma 4.1). For convenience, we drop i sub-
scripts, letting A denote Ai and r denote ri. By Lemma C.2,
we have

E(i+ 1)

E(i)

=
det

((
I + σ

vTv
vvT

)
A1/2 +

(
I + σ

vTv
vvT

)−1
A−1/2

)

det
(
A1/2 + A−1/2

)

=

(

det
(
I + σ

vTv
vvT

))−1

· det
((
I + σ

vTv
vvT

)2
A + I

)

det(A+ I)

= (1 + σ)−1 · det
(

I + 2σ+σ2

vTv
vvTA(A+ I)−1

)

= (1 + σ)−1 ·

det
(

I + 2σ+σ2

vTv

√

A(A+ I)−1vvT
√

A(A+ I)−1
)

= (1 + σ)−1 ·
(

1 + 2σ+σ2

vTv
vTA(A+ I)−1v

)

,

by Fact 1. �

Proof (of Lemma 4.2). Again, we drop i subscripts, letting
A denote Ai and r denote ri. By Lemma 4.1, we wish to
analyze

ψ(i+ 1)

ψ(i)
= (1 + σ)−1 ·

(

1 +
2σ + σ2

vTv
vTA(A+ I)−1v

)

=
1 + (2σ + σ2)ζ

1 + σ
(C.5)

=
1 +

(
− 1 + 1−ζ

ζ

)
ζ

√
1−ζ√
ζ

= 2
√

ζ
√

1 − ζ, (C.6)

by Eq. (4.2).

Case 2a: In this case, we set v = (A+ I)r, implying that

ζ =
vTA(A+ I)−1v

vTv
=

rTA(A+ I)r

rT(A+ I)2r
. (C.7)

The condition of Case 2a is

rTA2r < ε1/2 · rTr

=⇒ rTAr ≤
√
rTr · rTA2r < ε1/4 · rTr,

(C.8)

by Eq. (A.1).

Claim C.3. Assuming the hypothesis of Case 2a and that

ε ≤ 2−4, we have ζ < ε1/4 and ψ(i+1)
ψ(i)

< 2ε1/8.

Proof. First we show that ζ < ε1/4. By Eq. (C.7), this is
equivalent to showing:

rTA(A+ I)r < ε1/4
(
rT(A+ I)2r

)

⇐⇒ rTA2r + rTAr < ε1/4
(
rTA2r + 2rTAr + rTr

)

⇐⇒ (1 − ε1/4)rTA2r + (1 − 2ε1/4)rTAr − ε1/4rTr < 0

⇐= (1 − ε1/4)ε1/2rTr + (1 − 2ε1/4)ε1/4rTr − ε1/4rTr < 0

by ε ≤ 2−4 and Eq. (C.8),

⇐⇒ − ε3/4 − ε1/2 < 0,

which holds for all ε > 0. From Eq. (C.6), we therefore obtain
ψ(i+1)
ψ(i)

< 2
√
ζ < 2ε1/8. �

Recall that σ = −1 +
√

1/ζ − 1. Since ζ < ε1/4 and ε ≤
2−4, we have ζ < 1/2 and therefore 0 < σ <

√

1/ζ − 1, as
desired.

Case 2b: In this case, we set v = (A+ I)Ar, implying that

ζ =
vTA(A+ I)−1v

vTv
=

rTA3(A+ I)r

rTA2(A+ I)2r
. (C.9)

The condition of Case 2b is

rTA2r < ε1/2 · rTA4r

=⇒ rTA3r ≤
√
rTA2r · rTA4r < ε1/4 · rTA4r,

(C.10)

by Eq. (A.1).

Claim C.4. Assuming the hypothesis of Case 2b and that ε ≤
2−4, we have 1 − ζ < ε1/4 and ψ(i+1)

ψ(i)
< 2ε1/8.

Proof. Using Eq. (C.9) and Eq. (C.10), an argument similar

to Claim C.3 shows that 1 − ζ < ε1/4. From Eq. (C.6), we

obtain ψ(i+1)
ψ(i)

< 2
√

1 − ζ < 2ε1/8. �

Since 1 − ζ < ε1/4 and ε ≤ 2−4, we have ζ > 1/2. Since

σ = −1 +
√

1/ζ − 1, it follows that −1 < σ < 0, as desired.
To conclude the proof of Lemma 4.2, if ε ≤ 2−16, then from

Claim C.3 and Claim C.4 we obtain the following bound on
the decrease in ψ:

ψ(i+ 1)

ψ(i)
< 2ε1/8 ≤ ε1/16. �

Proof (of Lemma 4.3). The new residual becomes

ri+1 = Ai+1xi+1 − bi+1

=
(

(I + σ
vTv

vvT)Ai(I + σ
vTv

vvT)
)(

(I + σ
vTv

vvT)−1xi
)

−
(

(I + σ
vTv

vvT)bi
)

=
(
I + σ

vTv
vvT

)
ri.

Thus ‖ri+1‖ ≤
∥
∥I + σ

vTv
vvT

∥
∥ · ‖ri‖. By Fact 1, we have

‖ri+1‖ ≤
{

(1 + σ) · ‖ri‖ (if σ > 0)

‖ri‖ (if −1 < σ ≤ 0)

By Lemma 4.2, the proof is complete. �

Proof (of Lemma 5.1). We have

E(M) ≥
∏

i

1

2
√
ζi
√

1 − ζi
, (C.11)

from Lemma 2.1 and Lemma 4.2,

>
∏

i in Case 2a

1

2
√
ζi
,

since
√

1 − ζi < 1 and 2
√
ζi
√

1 − ζi < 1. Since εi < 2−16

and, by Lemma 4.2, ζi < ε
1/4
i , we have ζi < 2−4. Thus

2
√
ζi < ζ

1/4
i . Consequently,

E(M) >
∏

i in Case 2a

ζ
−1/4
i , (C.12)

which proves the lemma. �

Proof (of Lemma 5.2). As in Eq. (C.11), we have

E(M) ≥
∏

i

1

2
√
ζi
√

1 − ζi
>

∏

i in Case 2b

1

2
√

1 − ζi
.

In Case 2b, we have 1 − ζi ≤ ε1/4 by Lemma 4.2. Since
ε ≤ 2−16, it follows that 1

2
√

1−ζi

≥ 1

(1−ζi)
1/4

. Thus

E(M)2 >
∏

i in Case 2b

1√
1 − ζi

. (C.13)

For the `2-norm, we have
∥
∥P−T

k

∥
∥ =

∥
∥P−1

k

∥
∥. We may write

Pk =
k∏

i=1

(

I + σi

vT

i vi
viv

T

i

)

=⇒ P−1
k =

k∏

i=1

(

I − σi/(1+σi)

vT

i vi
viv

T

i

)

(by Fact 1)

=⇒
∥
∥
∥P

−T

k

∥
∥
∥ ≤

k∏

i=1

∥
∥
∥I − σi/(1+σi)

vT

i vi
viv

T

i

∥
∥
∥

≤
∏

1≤i≤k
i in Case 2b

(

1 − σi
1 + σi

)

=
∏

1≤i≤k
i in Case 2b

1

1 + σi
(by Fact 1)

=
∏

1≤i≤k
i in Case 2b

√
ζi√

1 − ζi

<
∏

1≤i≤k
i in Case 2b

1√
1 − ζi

< E(M)2,

by Eq. (C.13). �

