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Abstract

We prove nearly tight lower bounds on the number of rounds

of communication required by efficient protocols over asym-

metric channels between a server (with high sending capac-

ity) and one or more clients (with low sending capacity).

This scenario captures the common asymmetric communica-

tion bandwidth between broadband Internet providers and

home users, as well as sensor networks where sensors (clients)

have limited capacity because of the high power require-

ments for long-range transmissions. An efficient protocol in

this setting communicates n bits from each of the k clients

to the server, where the clients’ bits are sampled from a

joint distribution D that is known to the server but not the

clients, with the clients sending only O(H(D)+k) bits total,

where H(D) is the entropy of distribution D. In the single-

client case, there are efficient protocols using O(1) rounds

in expectation and O(lg n) rounds in the worst case. We

prove that this is essentially best possible: with probabil-

ity 1/2O(t lg t), any efficient protocol can be forced to use t

rounds. In the multi-client case, there are efficient protocols

using O(lg k) rounds in expectation. We prove that this is

essentially best possible: with probability Ω(1), any efficient

protocol can be forced to use Ω(lg k/ lg lg k) rounds. Along

the way, we develop new techniques of independent interest

for proving lower bounds in communication complexity.

1 Introduction

Many network systems have an inherent asymmetry be-
tween two (or more) classes of devices that leads to
asymmetric communication channels between devices of
different class. For simplicity we call the two classes
“servers” (powerful) and “clients” (weak), with faster
communication from server to client than from client to
server. In some cases the asymmetry arises from the net-
work medium: for example, Internet service providers
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(servers) recognize that most home users and some busi-
ness users (clients) download significantly more than
they upload, so the network is built (or artificially lim-
ited) to have higher server-to-client bandwidth than
client-to-server bandwidth. The main examples are
broadband connections—asymmetric digital subscriber
lines (ADSLs), cable modems, and satellite (fast down-
link for more rural areas, with uplink via phone-line
modems)—which have a download/upload bandwidth
ratio typically between a factor of 5 and 15. Even mod-
ern phone-line modems are asymmetric, because the
upstream traffic must be passed through a PCM en-
coder before transmission on the digital backbone, re-
sulting in quantization noise that reduces upstream ca-
pacity. In other cases the asymmetry arises from the
devices: because there are usually fewer servers than
clients and servers are usually tethered, the network
can afford to place more resources, particularly com-
putation and power, on the servers. For example, in
wireless networks, mobile devices (clients) such as sen-
sors, cell phones, laptops, vehicles, and spacecraft have
limited power for long-distance transmission, whereas
reception is relatively cheap and tethered base stations
(servers) can afford to transmit long distances at high
bandwidth.

Adler and Maggs [3] considered the simplest sce-
nario of one client and one server, and showed that, in
certain circumstances, the server can use the client’s fast
downlink to reduce the expected number of bits sent by
the client across a slow uplink to significantly less than
the length of the client’s message. Specifically, in the
asymmetric transmission problem, the client wants
to send an n-bit string x that is drawn from a probabil-
ity distribution D (as is assumed for source codes such
as Shannon-Fano codes [26] or Huffman codes [16]), but
only the server knows the distribution D (e.g., by gath-
ering statistics that the client cannot afford to maintain,
or using global knowledge that the client cannot obtain).
The client and the server must exchange enough infor-
mation that the server learns the string x. There are
three important objectives to minimize: the number of
bits sent by the client, the number of bits sent by the
server, and the number of rounds of communication.
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In the original solution proposed in [3], the client
sends at most 1.71 H(D) + 1 bits in expectation, the
server sends O(n) bits in expectation, and the number
of rounds is O(1) in expectation. By Shannon’s The-
orem [26], the client must send at least H(D) bits in
expectation, so in this measure the protocol is optimal
up to constant factors. The expected number of bits
sent by the client has been improved to 1.089 H(D) + 1
by Laber and Holanda [15] (using the same protocol),
to (1 + ε) H(D) + 1 by Ghazizadeh et al. [14], and to
H(D) + 2 by Watkinson et al. [29, 30] (though in the
last, the server sends a factor of H(D) more bits). On
the other hand, it is shown in [3] that, for many distribu-
tions, the total amount of communication between the
client and server must be at least n bits; thus, assuming
that the client achieves some savings and sends at most
(1− ε)n bits, the server must send Ω(n) bits. Thus the
original protocol is optimal up to constant factors by
this measure as well. Techniques from these protocols
are useful in circumventing web censorship and surveil-
lance [10], as well as in the design of websites [5].

The focus of this paper is the number of rounds in
the communication protocol. This measure is particu-
larly important because of latency. Any time savings
obtained from reducing the number of bits sent by the
client could easily be lost by the extra latency cost in-
duced by multiple rounds in the protocol, particularly
in long-distance networks, such as satellites, where com-
munication has very high latency. The O(1) expected
guarantee and the O(lg n) worst-case guarantee of all
existing protocols are not ideal. However, we show that
these results are nearly the best possible: no o( lg n

lg lg n )
bound on the number of rounds can hold with high
probability, assuming that the client and server trans-
mit near-optimal numbers of bits. The only previously
known lower bound is that one round does not suffice,
for a distribution depending on the protocol [3].

The multi-client version of the asymmetric trans-
mission problem was introduced in [1] as the sensor
transmission problem. Here there are k clients, each
wanting to transmit an n-bit string to the server. The
additional catch is that the strings may be arbitrarily
correlated; the probability distribution D is now over
length-k lists of n-bit strings. Thus we can expect to
save substantially more than if we just ran a single-
client solution seperately for each client. As before,
only the server knows the distribution D; the clients
do not know their correlation to each other, though we
can allow them to communicate with each other. Again
there are three important objectives to minimize: the
total number of bits sent by the clients, the number of
bits sent by the server, and the number of rounds of
communication.

This problem captures a fundamental and well-
studied task in sensor networks: collecting correlated
information that is distributed across a set of clients
to a central server. Information collected from sensor
networks can be correlated in various scenarios, such
as sensing the image of an object from similar but
distinct viewpoints or measuring weather data from
points in the same geographic region. Collecting such
correlated information was first studied by Slepian and
Wolf [27], who introduced distributed source coding.
The impractical nature of Slepian and Wolf’s encoding
technique has inspired considerable recent work on
distributed source coding; see, e.g., [12, 24, 28, 4, 2, 19,
20, 21, 18, 13, 23, 7]. A comprehensive survey of this
work is found in [31]. All of the work described in [31]
makes significant restrictions on the distribution D,
and [31] stresses handling of more general distributions
as the main technical issue to overcome in order to
deploy distributed source coding to sensor networks. On
the positive side, most of these results use only a single
round, with no feedback from the server to the clients.

Adler [1] develops a solution to the k-client sen-
sor transmission problem that is effective for any dis-
tribution D, at the cost of requiring several rounds of
communication. In this protocol, the total number of
bits sent by the clients is O(H(D) + k), which is opti-
mal up to constant factors: Shannon’s Theorem gives a
lower bound of H(D), and each client may be required
to send 1 bit. The number of bits sent by the server is
O(kn+H(D) lg n), which in most cases is optimal up to
constant factors: the lower bound from [3] shows that at
least kn bits total must be sent. The number of rounds
is O(1 + lg min{H(D), k}) in expectation. We prove
here that this number of rounds is nearly the best pos-
sible: there is a family of distributions with H(D) ≥ k
(as usual) and on which any protocol must use Ω( lg k

lg lg k )
rounds with constant probability.

To stress the importance of the number of rounds in
the character of this problem, we show how the (multi-
client) sensor transmission problem can be solved in
a serial fashion using a solution to the (single-client)
asymmetric transmission problem. The server collects
the n-bit string from each client in turn, conditioning
the distribution of the next client on the values received
from the previous clients. By the definition of condi-
tional entropy, this protocol is optimal up to constant
factors in terms of the total number of bits sent in ei-
ther direction. However, the number rounds is Ω(k).
Thus the main contribution of [1] was to parallelize this
process, achieving O(1+lg k) rounds, while maintaining
(rough) optimality up to constant factors for the number
of bits sent in each direction. Our lower bounds show
that this parallelization is nearly the best possible.



1.1 Our Results. In this paper, we prove lower
bounds on the number of communication rounds re-
quired for both the sensor transmission problem and the
asymmetric transmission problem. These lower bounds
are nearly tight with respect to the upper bounds
from [1] and [3] respectively. In particular, we demon-
strate that Ω( lg k

lg lg k ) rounds are required for any pro-
tocol in which the clients send O(H(D) + 1) bits in
each round (in expectation), even if the server sends up
to 2n1−ε

bits, for any ε > 0. In the single-client set-
ting we demonstrate that, for any t = O(lg n/ lg lg n),
there is a distribution D such that any efficient proto-
col for the asymmetric transmission problem requires t
rounds with probability 2−O(t lg t). As a consequence,
there is no high-probability bound of o(lg n/ lg lg n) on
the number of rounds. Again, these results assume that
the client sends O(H(D) + 1) bits and allow the server
to send up to 2n1−ε

bits.
To prove our lower bounds, we reformulate

the problems in the usual communication-complexity
framework where two parties collaboratively compute a
function. To do so, we define a new problem, called the
string-color problem SCn. The setup is identical to
the asymmetric transmission problem, except that the
server also has a map that associates a color with each
binary string of length n, i.e., the server’s inputs are
a distribution D and a map φ : {0, 1}n → {red, blue}.
The objective is for both parties to learn the color of the
client’s string. Clearly, SCn reduces to the asymmetric
transmission problem with only one additional round,
and one additional bit of communication.

Our main theorem for the single-client asymmetric
transmission problem, phrased in terms of the string-
color problem, is as follows. Here H is an upper bound
on the entropy of any distribution D which the server
can receive as an input.

Theorem 1.1. For any ε > 0, there is a constant c > 0
such that, for any t ≤ c lg n

lg lg n , there is a distribution D
on inputs to SCn for which any communication protocol
for SCn, in which the client sends O(t · (H + 1)) bits
in expectation and the server sends at most 2n1−ε

bits
in expectation, uses at least t rounds with probability
2−O(t lg t).

It is instructive to understand why the constraints
on the numbers of bits sent are necessary: relaxing them
too much trivializes the problem. First, if the client
is allowed to send n bits (or if H(D) = n), then the
problem can be solved trivially in one round by direct
encoding of the string. Second, if the server is allowed
to send Ω(2n) bits, then the server can send an encoding
of the distribution D (or at least an approximation

thereof), and the client can send a Huffman encoding [9]
of its string to the server using only O(H(D) + 1)
bits, for a total of one round. Finally, imposing a
hard bound on the message lengths, rather than a
bound in expectation, would significantly simplify our
lower-bound proof. However, it would also make the
problem meaningless because there are distributions
with constant entropy such that representing a sample
from the distribution requires Ω(n) bits in the worst
case.

Let SCn,k denote the k-client version of the string-
color problem. The setup is identical to the sensor
transmission problem, and the server again has a map
φ : {0, 1}n → {red, blue}. The objective is for the
server to learn the color of all clients’ strings, and for
each client to learn the color of its own string. Clearly,
SCn,k reduces to the asymmetric transmission problem
with only one additional round, and k additional bits
of communication from the server. Our main theorem
for the sensor transmission problem, phrased in terms
of the string-color problem, is as follows.

Theorem 1.2. For any ε > 0, there is a constant c > 0
such that, for any k ≤ nc, there is a distribution D on
inputs to SCn,k for which any communication protocol
for SCn,k, in which the clients send O((H + 1) · lg k

lg lg k )
bits in total in expectation and the server sends at most
2n1−ε

bits in expectation, uses Ω(lg k/ lg lg k) rounds
with probability Ω(1). This lower bound holds even if all
messages, in particular those from clients, are broadcast
(seen by everyone), and even if the string of each client
is chosen independently (no correlation).

1.2 Technical Contributions. Our lower bounds
are proved in the realm of communication complexity;
for a general introduction to the field, see [17]. We
develop several new techniques and ideas, which we feel
are of independent interest and we expect are useful for
other problems in this field.

For context, we describe two standard message-
elimination techniques which we use: message switching
and the round-elimination lemma. To state these
results, it is necessary to define some variants of a given
communication problem. An abstract communication
problem is specified by a function f : X × Y → Z,
where X is the domain of Alice’s input and Y is
the domain of Bob’s input. We let fA denote the
communication problem in which Alice communicates
first; fB is defined similarly. We define f (k) to be
a communication problem based on f , where Alice is
given x1, . . . , xk ∈ X and Bob is given y ∈ Y and
i ∈ {1, . . . , k}. Their goal is to compute f(xi, y). Given
a distribution D on inputs to f , we may define a related



distribution D (k) on inputs to f (k). First we draw
k pairs (x1, y1), . . . , (xk, yk) from the distribution D .
Next, we choose i uniformly from {1, . . . , k}. Finally,
Alice is given (x1, y1), . . . , (xk, yk) and Bob is given yi

and i. The resulting distribution is D (k).
The message-switching lemma of Chakrabarti

and Regev [6] states that Bob can postpone sending his
first message if instead Alice sends him every possible
reply.

Lemma 1.1. (Message-switching lemma [6]) If
fB has a t-message protocol in which Bob’s messages
have size b and Alice’s messages have size a, then fA

has a (t − 1)-message protocol with the same error
probability in which Alice’s first message has size 2ba,
Bob’s next message has size 2b, and all subsequent
messages are of the usual size.

Now consider a protocol for f (k),A in which Alice’s
first message has much fewer than k bits. Because Alice
does not know i, we would expect her message to be
rather useless, as she cannot send even one bit about
each of her k inputs. This intuition is formalized by
the round-elimination lemma, originally due to Mil-
tersen et al. [22], and refined by Sen [25]. The following
is a slight reformulation of Sen’s statement. Let εP

D be
the error made by protocol P under distribution D .

Lemma 1.2. (Round-elimination lemma [25])
Suppose the communication game f (k),A has a t-
message protocol P in which Alice’s first message has
a bits. Then fB has a (t− 1)-message protocol Q where
all messages have the same size and εQ

D ≤ εP
D(k) +

√
a/k.

One of the most serious issues in applying these
lemmas to our problem is that we do not have hard
bounds on the message sizes, but only expected bounds.
In principle, one could simply apply a Markov bound
and impose a hard limit on all messages, by introducing
some error. However, this is not feasible in our case,
because of the following characteristic of our lower
bound. The probability that t rounds are needed
decreases exponentially with t. Hence, after each round
elimination, our proof needs to restrict itself to a rapidly
shrinking probability space. Thus, the error that we
can afford to introduce must be sufficiently small to be
negligible in this exponentially small probability space.
Consequently, a simple Markov bound would cause the
client’s messages to be too large.

Instead of imposing a hard limit on message sizes
from the beginning, we need more careful control over
the clients’ expected message size in the course of mes-
sage elimination. To achieve this, we use a bicriterion
round-elimination lemma, which can eliminate the first

message while bounding both the error and some other
parameter (in our case, the expected length of future
messages).

However, simply delaying a hard restiction on the
message lengths in this fashion turns out to be insuffi-
cient. The alternative we propose, which is one of the
most interesting technical aspects of our proof, is to deal
with two types of errors simultaneously. The first type
is the ordinary distributional error εP

D , which is an er-
ror made by protocol P when the inputs are distributed
according to D . This error can depend on both Alice’s
and Bob’s inputs. The second type is unilateral error,
denoted µP

D , which is a type of error which can depend
only on the input of one player (say Bob). When consid-
ering the natural matrix describing the communication
protocol over X ×Y, this error consists of entire rows of
the matrix. By definition, any error made by the proto-
col must be accounted for by either the ordinary or the
unilateral error (or both). Because of the structure of
our proof, we can deal with much larger unilateral error
than unrestricted error, which justifies our interest in it.

2 The Hard Input Distribution

We now describe the distribution over the problem
inputs under which the lower bound of Theorem 1.1
comes true. Specifically, we describe a collection Dn,t of
distributions over n-bit strings, parameterized by t and
n. In the hard instance, the server receives a uniformly
random D ∈ Dn,t and the client receives a sample
from {0, 1}n chosen according to D. We view such
a distribution D as a binary tree where each leaf has
depth n. A leaf represents a sample from the support of
the distribution; the bits of the sample are determined
by the directions of the children on the root-to-leaf path.

An example of a binary tree corresponding to a
distribution is shown in Figure 1. The tree consists
of several instances of a structure which we call T . The
root of an instance of T has one vestigial child and one
nonvestigial child. When generating a distribution D
from Dn,t, we choose at random which child is vestigial.
The vestigial child’s subtree consists of single path
directly to a sample at depth n. All nodes on this path
are chosen to be left or right children at random. The
nonvestigial child’s subtree is a complete binary tree,
whose size will be specified later.

Each leaf of T in the nonvestigial subtree has be-
neath it another instance of T . This iterative construc-
tion proceeds for t layers. All leaves of T in the last
layer generate a path directly to a sample. We say that
the topmost instance of T is at layer 1, the instances
of T immediately beneath it are at layer 2, and so on.
Each instance of T at layer i is chosen to have height
1 + hi, with the nonvestigial subtree of height hi (to
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Figure 1: A distribution D ∈ Dn,t, represented as a binary tree. For each instance of the subtree T , one of the
root’s children is “vestigial” and generates a path directly to a sample at depth n. The other child has beneath
it a complete binary tree, underneath which are more instances of T . There are t layers in total.

be determined), and hence the number of nonvestigial
leaves in this instance is `i := 2hi .

After the tth layer, there is a final layer t + 1 that
consists solely of vestigal paths down to depth n, with
no branching even at the top node. Thus every leaf is
at the end of a vestigal path from some layer between 1
and t + 1, and has depth n as desired.

Thus far we have described D as a tree, but not
as a probability space. For every internal node, we
specify the probabilities of going to the left and right
children (conditioned on having already reached the
parent). The probability of a sample (leaf) is then
the product of the edge probabilities on the root-to-
leaf path. At the root of an instance of T at layer
i, the probability that we go down the vestigial path
is 1 − 1

vi
, where vi is to be determined. There is

nothing to specify along the vestigial path, because
there is no branching. Inside a nonvestigial subtree,
the sample chooses between the left and right children
uniformly. The result of this construction is that a
sample generated from a vestigial node at layer i has

probability mass
(∏i−1

j=1
1

vj ·2hj

)
· (1− 1

vi
).

To summarize, choosing D fromDn,t involves choos-
ing two random features: which child is vestigial for ev-
ery T root, and how each vestigial path evolves down to
level n. As explained above, the server is given a D cho-
sen at random from Dn,t and a coloring φ of the leaves
of D, while the client is given a sample Y drawn from D.
Let D denote this distribution on triples (D,φ, Y ); this
is the hard input distribution for SCn. Define Lk to be
the event that the client’s string is generated at layer at
least k. Define nk := n−

∑k−1
i=1 hi. We use the notation

Dk to denote the distribution on strings of length nk by
starting the above construction at layer k. Note that
Dk is a distribution on inputs to SCnk

.

3 Message-Elimination Machinery

In this section, we discuss the message-elimination
aspects of our proof, deferring a detailed analysis to
Section 4. The general approach of our proof is to
take any protocol for the string-color problem, restrict
the protocol to t rounds, and then argue that such



a protocol must have error 2−O(t lg t). To do so, we
argue by contradiction: supposing that the protocol has
smaller error, we show how to iteratively eliminate all
t rounds, yielding a protocol that solves a nontrivial
problem without any communication.

Let A be the expected number of bits communicated
by the server per round. Let B the expected total
number of bits communicated by the client over all
rounds. For simplicity of notation, we will occasionally
treat B as its corresponding random variable, not as an
expectation; it will be clear from context which meaning
of B is intended. The precise values of A and B are
irrelevant for our present discussion, and are specified
later.

Eliminating a round involves three steps. By adding
at most one round we can assume that the client sends
the first message.

1. We eliminate the client’s message through message
switching, at the cost of increasing the server’s
message. This requires a hard bound on the client’s
message, which we obtain by keeping track of the
expected number of remaining bits to be sent by
the client (via the quantity B), and applying a
Markov bound. An important observation is that
this bound introduces only unilateral error.

2. We restrict ourselves to the probability space in
which the sample comes from the nonvestigial child
of the current T structure. Because this is a
smaller probability space, the ordinary error and
B can increase by vi. However, we can show that
the unilateral error does not change because the
marginal distribution of the sample does not change
(because each vestigial path is chosen uniformly at
random).

3. We eliminate the server’s message through the
round-elimination lemma. The nonvestigial subtree
of the T structure naturally defines a collection of
subproblems (the T structures in the leaves). A key
observation is that the round elimination increases
both the ordinary error and the value of B, but not
the unilateral error.

In order to apply the round-elimination lemma, we
need a hard bound on the server’s message length, as
well as on the random variable B. These bounds need
not be too tight, so we can apply them in the beginning
of the proof, at the cost of a small error. Note that this
hard bound on B is much looser than the hard bound
we apply as part of message switching in each round.

Throughout a round elimination, we need to pay
close attention to two quantities: the expected error
ε and the expected number of bits sent by the client,

B. To handle these two criteria, we define a random
variable Z := ε + γB, where γ will be chosen later.
(Here, ε and B are treated as random variables.) Our
goal is to eliminate a round without increasing Z too
much. This implies a good bound on the increase in the
error and B, with a tradeoff controlled by γ.

3.1 Imposing Hard Bounds. Suppose we have a
protocol for SCn with no errors. For convenience, we
define s := t6t. One may think of 1/s as roughly
the probability of choosing a sample at layer t from
a distribution in Dn,t. We impose the following hard
bounds on this protocol:

• the protocol has t rounds,

• each of the server’s messages has at most A := 4stA
bits, and

• each of the client’s messages has at most B := 4stB
bits.

If one of these bounds is ever violated, the protocol
returns an arbitrary answer. We will show that for
t ≤ c · lg n

lg lg n , such a protocol has error at least 1
s . Notice

that the probability any message exceeds its hard bound
is at most 1

2s by a Markov bound on each message and
a union bound over all. Then, the probability that the
original protocol exceeds t rounds has to be at least
1
2s = 2−O(t lg t), which is our desired conclusion. Finally,
note that the expected number of bits sent by the
client cannot increase as a result of this transformation,
because we only discard some messages.

3.2 Eliminating the Client’s Message. If the
client sends at most B bits in expectation, the first mes-
sage is also bounded by B in expectation. By Markov,
we can bound it to 8tB bits with probability 1− 1

8t . Note
that the error of 1

8t that is introduced is unilateral error
µ, because the size of the message is a random variable
that is a function of the client’s input, but not of the
server’s input. Now we can eliminate the client’s mes-
sage by message switching (Lemma 1.1). This change
does not introduce error. Also, it does not affect B,
because we only postpone sending the client’s message.

3.3 Reduction from SC(`) to SC. The following
lemma identifies the desired reduction in a T structure:

Lemma 3.1. Let Z be an arbitrary positive random
variable. Given a protocol P for SCnk

, one can con-
struct a protocol Q for SC(`k)

nk+1
with the same unilateral

error and E
D

(`k)
k+1

[
ZQ

]
≤ vk · EDk

[
ZP

]
.



Proof. The two parties construct an instance of SCnk

starting with an instance of SC(`k)
nk+1

, and then run
protocol P . The server constructs a new distribution
D where the root is a new instance of T with `k

leaves. Beneath the leaves in the nonvestigial half of
T , we attach the subtrees correspond to the server’s
`k inputs. The client prepends the variable i to its
sample, which effectively selects among these inputs.
The remaining random features are these: which child is
vestigial, the vestigial path, and the color of the vestigial
sample. We imagine selecting these features randomly
through public coins. Then, we can fix these coins
deterministically to achieve the same expectation on Z.
Note that the client must know which child is vestigial,
because it must set the first bit of its sample to point
to the nonvestigial subtree.

By construction, if the instance of SC(`k),A
nk+1

is dis-

tributed according to D
(`k)
k+1 , the induced distribution on

instances of SCA
nk

is Dk, conditioned on the event Lk+1.
Recall that Lk+1 is the event that a sample is vestigial
at layer at least k + 1, and that Pr[Lk+1 | Lk ] = 1

vk
.

Then

E
D

(`k)
k+1

[
ZQ

]
= EDk

[
ZP | Lk+1

]
≤

EDk

[
ZP

]
PrDk

[Lk+1 ]
= vk · EDk

[
ZP

]
.

It remains to analyze the unilateral error. By the above,
µQ

D
(`k)
k+1

= µP
Dk|Lk+1

. Now observe that the marginal

distribution on the client’s sample is uniform under both
Dk and Dk|Lk+1 , because the vestigial child and the
vestigial path are chosen uniformly at random. Because
unilateral error depends only on the client’s sample,
µP

Dk
= µP

Dk|Lk+1
= µQ

D
(`k)
k+1

, as required. 2

3.4 Eliminating the Server’s Message. Observe
that our variable Z satisfies 0 ≤ Z ≤ 1+γ·(t·B). We use
the following modification of Sen’s Round Elimination
Lemma (Lemma 1.2), with Alice being the server and
Bob being the client:

Lemma 3.2. Let Z be a random variable whose range
is contained in the interval [0, Zmax]. Suppose there is
a protocol P for f (`),A such that Alice’s first message
has a bits. Then there is a protocol Q for fB in
which Alice’s first message is never sent, such that
ED

[
ZQ

]
≤ ED(`)

[
ZP

]
+ Zmax ·

√
a/`. Any unilateral

error depending on Bob’s input is unchanged.

Proof sketch. The proof is similar to Sen’s, with two dif-
ferences. First, we can avoid Yao’s minimax principle,
because we already know the distribution on the inputs.

Second, we do not focus specifically on the error, but
consider a general random variable Z. Full details are
deferred to the full paper. 2

4 Proof of the Single Client Lower Bound

To recapitulate our proof outline, we assume that we
have an error-free protocol for the string-color problem.
We restrict this protocol to t rounds, and then assume
that the resulting protocol has ordinary error at most
1/s. The goal of this section is to eliminate messages
from this protocol and carefully analyze the increase in
error. We arrive at a contradiction by eliminating all
messages, obtaining at a protocol that solves a nontriv-
ial problem without any communication. The conclu-
sion is that the original protocol required t rounds with
probability at least 1/2s = 2−O(t lg t). In Section 4.1, we
analyze the range of parameters for which this proof is
valid, thereby establishing Theorem 1.1.

We now consider iterating the previous process
until all rounds have been eliminated. To perform this
analysis, we introduce the following more convenient
notation:

• bi is the hard length restriction imposed on the
client’s ith message.

• ai is the hard length of the server’s ith message,
after applying message switching to the client’s
previous message.

• εi is the ordinary error (under Di+1) after eliminat-
ing the server’s ith message.

• µi is the unilateral error (under Di+1) after elimi-
nating the server’s ith message.

• Bi is the expected remaining number of bits that
the client has left to send, after eliminating the
server’s ith message.

Lemma 4.1. If hi ≥ 8ti ·
(
1 + 2

t

)i−1 ·
(∏i−1

j=1 vj

)
· B +

10t2 + lg A, the message-elimination techniques from
above lead to the following bounds:

bi ≤ 8ti ·Bi−1, ai ≤ 2bi ·A,

µi ≤
i

8t
, εi ≤

(t + 2)i

s
·
(∏i

j=1vj

)
,

Bi ≤
(
1 +

2
t

)i

·
(∏i

j=1vj

)
·B.

Proof. The proof is by induction, the base case i = 0
being that b0 = a0 = µ0 = 0, ε0 = 1

s , B0 ≤ B.
Now we consider i ≥ 1. To obtain a hard limit on the
client’s ith message, we assume (pessimistically) that it
has expected size Bi−1. That is, we assume that all of



the client’s remaining bits are used in this next message,
but also assume that the number of remaining bits does
not decrease. Using the Markov bound, we impose a
hard limit of 8tBi−1. This introduces unilateral error
1
8t , and is the only source of unilateral error. Hence we
see that µi ≤ µi−1 + 1

8t ≤
i
8t . The client’s ith message

also has to include message i − 1 because message
switching only postpones the sending of a message.
Thus bi ≤ bi−1 + 8tBi−1 ≤ 8tiBi−1. Now, applying
message switching, we obtain the size of the server’s
message: ai ≤ 2biA.

When performing the ith round elimination, we
choose γ = ti

sB . Consequently, we have Zmax =
1 + γtB = 1 + ti

sB t(4stB) ≤ 5ti+2. Applying the
reduction from SC(`) to SC increases Z by a factor
of vi. Lemma 3.2 increases Z additively by Zmax ·√

(ai + 1)/`i, so we obtain that

εi + γ ·Bi ≤ vi(εi−1 + γBi−1) + 5ti+2 ·
√

(ai + 1)/`i.

To analyze this, we first observe that

εi−1 + γBi−1

≤
(∏i−1

j=1vj

)( (t + 2)i−1

s
+ γ ·

((
1 +

2
t

)i−1

B
))

≤
(∏i−1

j=1vj

)
· (t + 2)i−1

s
· (1 + t).

Next, recall that A = 4stA, `i = 2hi , and s = t6t =
26t lg t. Thus we obtain that

lg
ai + 1

`i
≤
(
bi + lg(4stA) + 1

)
−

(
8ti ·

(
1 +

2
t

)i−1

·
(∏i−1

j=1vj

)
·B + 10t2 + lg A

)
≤
(
lg(4stA) + 1

)
−
(
10t2 + lg A

)
≤ −9t2.

This inequality implies that 5ti+2·
√

(ai + 1)/`i ≤ 5ti+2·
2−4t2 ≤ 2−3t2 ≤ 1

s . In conclusion, we obtain that

εi + γ ·Bi ≤
(∏i

j=1vj

)
·
( (t + 2)i−1

s

)
· (2 + t).

Because εi and Bi are both nonnegative, this inequality
immediately implies the desired bound on εi. Recalling
that γ = ti

sB , we have

Bi ≤
(∏i

j=1vj

)
· (t + 2)i

γs
=
(∏i

j=1vj

)(
1 +

2
t

)i

·B,

as required. 2

After eliminating all messages, we obtain a protocol
for the problem SCnt+1 which sends no messages. The
distribution under consideration is Dt+1: the support is
just one string, of a random color. Clearly, the client
cannot guess the color with probability more than 1

2
without communication. However, Lemma 4.1 shows
that µt ≤ 1

8 . As explained in the following section,
we may choose our parameters such that εi < 1

4 .
Thus our final protocol sends no messages and yet
the client correctly announces the color of his string
with probability strictly greater than 1

2 , which is a
contradiction. This contradicts our assumption that the
t-round protocol has error at most 1/s. This completes
the framework of our proof. To complete the proof of
Theorem 1.1, we now specify the various parameters of
our proof.

4.1 Fixing the Parameters. We now define the
three parameters left unspecified in the construction of
Dn,t, namely vi, hi, and B. First we choose hi to satisfy
the hypothesis of Lemma 4.1:

hi := 8ti ·
(
1 +

2
t

)i

·
( i−1∏

j=1

vj

)
·B + 10t2 + lg A.

We now explain why this is an appropriate choice. All
distributions in Dn,t have the same entropy, which we
denote by H. The hypothesis of Theorem 1.1 is that
the expected total number of bits sent by the client is
O(t · (H + 1)). Our proof refers to this quantity as B,
so we must ensure that B ≥ c2 · t · (H + 1), for an
arbitrary constant c2. Because the distributions in Dn,t

are on n-bit strings, we must also ensure the heights of
the layers are valid, i.e.,

∑t
i=1(1 + hi) ≤ n. We begin

by computing H, which leads to our choice of vi and B.

H =
t∑

i=1

(entropy at layer i) · Pr[ sample’s layer ≥ i ]

≤
t∑

i=1

( 1
vi
· hi + 1

)
·

i−1∏
j=1

1
vj

=
t∑

i=1

(
8ti (1 + 2/t)i ·B

vi
+

10t2 + lg A∏i
j=1 vj

+
1∏i−1

j=1 vj

)

We now choose B := 4c2t(1 + lg A
t2 ). In order to obtain

a small coefficient of (1 + lg A
t2 ) on the right-hand side,

we choose vi := 32c2t
4(1 + 2

t )
i. Hence we obtain that

H <
t∑

i=1

(
(1 + (lg A)/t2)

t
+

t2 + lg A

t4

)
+ 1

<

(
2 +

1
t

)
·
(

1 +
lg A

t2

)
.



Thus H + 1 < (3 + 1
t ) · (1 + lg A

t2 ) and B ≥ c2t(H + 1).
This establishes the desired bound on B.

We now focus on the constraint on the heights of
the layers. Note that

∏i−1
j=1 vj =

∏i−1
j=1 32c2t

4(1 + 2
t )

j =
2O(i lg t) because (1 + 2

t )
j < e2 for 1 ≤ j ≤ t. Thus,

t∑
i=1

(1 + hi) ≤
t∑

i=1

(
1 + 8ti e2 2O(i lg t) B + 10t2 + lg A

)
= 2O(t lg t) ·

(
1 +

lg A

t2

)
+ O(t3 + t lg A)

= 2O(t lg t) · lg A,

which is less than n for t ≤ c · lg n
lg lg n and lg A = O(n1−ε),

for any constant ε > 0 and for an appropriate constant
c > 0 (dependent on ε).

Finally, now that vi has been chosen, we must verify
our claim from the previous section that εi < 1

4 . By

Lemma 4.1, we obtain that εi ≤ (t + 2)i ·
(∏i

j=1vj

)
/s.

Hence,

εi ≤ 2i lg(t+2) ·
(∏i

j=132c2t
4
(
1 +

2
t

)j)
· 2−6t lg t

= 2i lg t+O(i) ·
(∏i

j=12
4 lg t+O(1)

)
· 2−6t lg t

= 2i lg t+4i lg t+O(i)−6t lg t = 2O(i)−t lg t,

which is less than 1
4 for sufficiently large t.

5 The Lower Bound for Multiple Clients

Assume k ≤ nc and let t = c · lg k
lg lg k , for a small

enough constant c. For each i ∈ {1, . . . , k}, the server
receives Di chosen independently at random from Dn,t,
and client i receives a sample yi from Di. Clearly, the
entropy of the joint distribution is H(D) = kH(Di). Let
the bound on the total communication from the clients
be c1kH(Di). Consider the expected number of bits
sent by each client. By Markov, there is a set of k

2 light
clients, each of which sends at most 2c1H(Di) bits in
expectation.

We now argue that, if a client i sends O(H(Di)+1)
bits in expectation in a multiclient scenario, the single-
client lower bound applies. Indeed, our previous lower
bound allowed for nonuniformity, so the client and
the server can nonuniformly fix some good setting of
(Dj , yj) for j 6= i, and simulate the other clients without
communication (because both the client and the server
know the assumed inputs of the other clients). By a
bicriterion averaging argument, there is a setting of
the other (Dj , yj) which simultaneously doubles both
the expected communication from client i and the
probability that client i needs t rounds. Thus, we have
probability 2−O(t lg t) that client i cannot finish in t

rounds. For a sufficiently small c, this probably is at
least 1

k .
Now we want to show that, with constant proba-

bility, some light client cannot finish in t rounds. We
prove by induction that the probability the first i light
clients can all finish in t rounds is at most (1− 1

k )i. Set-
ting i = k

2 then proves the theorem, as (1 − 1
k )k/2 =

e−1/2−O( 1
k ) = Ω(1). Assume the induction hypothesis

for i, and let us prove it for i + 1. If the probability of
the first i light clients finishing in t rounds is already at
most (1− 1

k )i+1, we are done. Otherwise, condition on
this event. Because i ≤ k, the probability of the event
is e−1 − O( 1

k ) = Ω(1), so the expected number of bits
sent by the (i + 1)st light client increases by at most
a constant factor when conditioning. By the previous
paragraph, we have probability at most 1 − 1

k that the
(i+1)st light client finishes in t rounds. This proves the
claim, concluding the proof of Theorem 1.2.
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