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Abstract—The multiplicative weights method is an
algorithm for the problem of prediction with expert
advice. It achieves the optimal regret asymptotically if
the number of experts is large, and the time horizon is
known in advance. Optimal algorithms are also known
if there are exactly two, three or four experts, and the
time horizon is known in advance.

In the anytime setting, where the time horizon is
not known in advance, algorithms can be obtained
by the “doubling trick”, but they are not optimal, let
alone practical. No minimax optimal algorithm was
previously known in the anytime setting, regardless
of the number of experts.

We design the �rst minimax optimal algorithm for
minimizing regret in the anytime setting. We consider
the case of two experts, and prove that the optimal
regret is γ

√
t/2 at all time steps t, where γ is a natural

constant that arose 35 years ago in studying funda-
mental properties of Brownian motion. The algorithm
is designed by considering a continuous analogue of
the regret problem, which is solved using ideas from
stochastic calculus.

This is the extended abstract of the paper. The full
paper can be found in [arXiv:2002.08994].
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I. Introduction

We study the problem of prediction with expert

advice, whose origin can be traced back to the 1950s

[1]. The problem is a sequential game between an

adversary and an algorithm as follows. There are n
actions, which are called “experts”. At each time step,

the algorithm computes a distribution over the experts,

then randomly chooses an expert according to that

distribution; concurrently, the adversary chooses a cost

for each expert, with knowledge of the algorithm’s

distribution but not its random choice. The cost of

each expert is then revealed to the algorithm, and

the algorithm incurs the cost that its chosen expert

incurred. The goal is to design an algorithm whose

expected regret is small. That is, the goal is to minimize

the di�erence between the algorithm’s expected total

cost and the total cost of the best expert. This problem

and its variants have been a key component in many

results in theoretical computer science; see, e.g., [2].

The most well-known algorithm for the experts

problem is the celebrated multiplicative weights update

algorithm (MWU) [3], [4]. In the �xed-time setting

(where a time horizon T is known in advance), MWU

su�ers a regret of

√
(T/2) lnn at time T , where n

is the number of experts [5], [6]. This bound on the

regret of MWU is known to be tight for any even n [7].

It is also known [5] that

√
(T/2) lnn is asymptotically

optimal for any algorithm as n, T →∞, in an appro-

priate sense. Hence, MWU is a minimax optimal
1

algo-

rithm as n, T →∞. Interestingly, MWU is not optimal

for small values of n. For n = 2, Cover [8] observed

decades earlier that a natural dynamic programming

formulation of the problem leads to a simple analysis

showing that the minimax optimal regret is

√
T/2π.

For some applications, the time horizon T is not

known in advance; examples include any sort of online

tasks (e.g., online learning), or tasks requiring conver-

gence over time (e.g., convergence to equilibria). An

alternative model, more suited to those scenarios, is

the anytime setting2
, in which algorithms are not given

T but must bound the regret for all T . Yet another

model is to assume that T is random with a known

distribution [9]. For example, the geometric horizon
setting of Gravin, Peres, and Sivan [10] assumes that

T is a geometric random variable. In this setting, they

gave the optimal algorithm for two and three experts.

They also propose a conjecture on the relationship

between the �xed-time and the geometric horizon

settings that could lead to optimal bounds for all n.

Our focus is the anytime setting. One can convert

algorithms for the �xed-time setting to the anytime

setting by the well-known “doubling trick” [5, §4.6].

This involves restarting the �xed-time horizon algo-

rithm every power-of-two steps with new parameters.

If the �xed-time algorithm has regret O(T c) at time

T for some c ∈ (0, 1) then the doubling trick yields

an algorithm with regret O(tc) at time t for every

t ≥ 1. Although this reduction is conceptually simple,

1
This means that the algorithm minimizes the maximum, over all

adversaries, of the regret.

2
Other authors have referred to this setting as an “unknown time

horizon” or “bounds that hold uniformly over time”.



restarting the algorithm and discarding its state is

clearly wasteful and probably not very practical.

In lieu of the doubling trick, one can use variants

of MWU with a dynamic step size; see, e.g., [11, §2.3],

[12, Theorem 1], [13, §2.5], [14, Corollary 5.5]. This

is a much more elegant and practical approach and is

even simpler to implement. However, the analysis is

more di�cult than for MWU, and is rarely taught. It

is known that, with an appropriate choice of step sizes,

MWU can guarantee
3

a regret of

√
t lnn for all t ≥ 1

and all n ≥ 2 (see [13, Theorem 2.4] or [15, Proposition

2.1]). Until our work it was unknown, for every n,

whether

√
t lnn is the minimax anytime regret.

Results and techniques: This work considers the

anytime setting with n = 2 experts. We show that

the optimal regret is
γ
2

√
t, where γ ≈ 1.30693 is a

fundamental constant that arises in the study of Brow-

nian motion [16]. (Note that γ/2 ≈ 0.653 < 0.833 ≈√
ln 2.) It is not a priori obvious why this fundamental

constant should play a role in both Brownian motion

and regret. Nevertheless, some connections are known.

For example, in the �xed-time setting, the optimal

algorithms for n ∈ {2, 3, 4} (see [10]) and the optimal

lower bound for n → ∞ all involve properties of

random walks. Since Brownian motion is a continuous

limit of random walks, a connection between anytime

regret and Brownian motion is plausible.

Our techniques to analyze the optimal anytime re-

gret are a signi�cant departure from previous work

on regret minimization. First, we de�ne a continuous-

time analogue of the problem which expresses the

regret as a stochastic integral. This allows us to utilize

tools from stochastic calculus to arrive at a potential

function whose derivative gives the optimal continu-
ous-time algorithm. Remarkably, the optimal discrete-
time algorithm is the discrete derivative of the same

potential function. We do note that some prior work

on regret minimization have also made use of discrete

derivatives of other potential functions [17], [18].

The potential function that we derive involves a

“con�uent hypergeometric function”. Such functions

often arise in solutions to di�erential equations, and

are useful in discrete mathematics [19, §5.5]. In addi-

tion, they appear to be inherent to our problem since

they also arise in the matching lower bound.

Application: An interesting application of our re-

sults is to a problem in probability theory that does

not involve regret at all. Let (Xt)t≥0 be a standard

random walk. Then E [ |Xτ | ] ≤ γ E [
√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be

3
It can be shown, by modifying arguments of [7], that this is the

optimal anytime analysis for MWU with step sizes c/
√
t.

improved.
4

This result is originally due to Davis [20,

Eq. (3.8)], who proved it �rst for Brownian motion

and later derived the result for random walks (via the

Skorokhod embedding). We give a new derivation of

Davis’ result from our results in Subsection II-D.

Related work: The minimax regret for the ex-

perts problem has been well-studied in the �xed-time

horizon setting. For two experts the minimax regret

was shown to be

√
T/2π by Cover in 1965 [8]. It

has been known for twenty years that

√
T ln(n)/2

is the minimax regret as n→∞ [5], [6]. Building on

the work of Gravin et al. [10], it has recently been

shown that the minimax regret is

√
8T/9π for three

experts [21] and

√
πT/8 for four experts [22]. The

anytime setting is not as well understood. In the two-

experts setting, Luo and Schapire [9] demonstrate that,

if the time horizon T is chosen by an adversary and

unknown to the algorithm then the algorithm may be

forced to incur regret at least

√
T/π. This exceeds

the minimax regret of

√
T/2π if T is known to the

algorithm a priori, which indicates that the adversary

has more power to force regret when it is allowed to

select the time horizon.

Recently, interactions between algorithms in discrete

and continuous time have been fruitful in other lines of

work, e.g., [23], [24], [25], [26], [27], [28], [29]. There

is also a line of work that makes connections between

the experts problem (in the �nite-time horizon and

geometric-time horizon setting) and PDEs [22], [30],

[31], [32], [33], [34]. There is also work connecting

regret minimization to option pricing [35] and to

the Black-Scholes formula [36], which is based on

Brownian motion and stochastic calculus. Intuitively,

stochastic calculus is a crucial tool to optimally hedge

against future costs, which we exploit too.

Our work crucially uses stopping times for Brown-

ian motion hitting a time-dependent boundary. Such

techniques have also been used for non-adversarial

bandits to approximate Gittins indices (see, e.g., [37]).

II. Discussion of results and techniqes

A. Formal problem statement
The previous section informally described the model

as involving an algorithm that randomly selects an

expert. Here we will instead describe the algorithm as

being deterministic but selecting a distribution over

experts. The latter de�nition is consistent with the

viewpoint of online convex optimization (see, e.g., [13],

[38]). We will mention below some subtleties that arise

when the algorithm makes random selections.

4
At �rst glance, the inequality may seem to contradict the law of

the iterated logarithm. However, we remark that if τ := inf{t >
0 : |Xt| ≥ c

√
t ln ln t} for some c ∈ (0,

√
2) then E

[√
τ
]
=∞

(despite τ being a.s. �nite) and the inequality is trivial.



Let n denote the number of experts. There is a de-

terministic algorithm A, and a deterministic adversary

B that knows A. For each integer t ≥ 1, there is a

prediction task that is said to occur at time t. In this

task, A picks a probability distribution xt ∈ [0, 1]n,

and B picks a cost vector `t ∈ [0, 1]n. The coordinate

`t,j denotes the cost of the jth
expert at time t.

After xt is chosen the vector `t is revealed, so xt
depends on `1, . . . , `t−1 (and implicitly x1, . . . , xt−1).

The vector `t depends on A and on `1, . . . , `t−1

(and implicitly x1, . . . , xt, since A is deterministic and

known to B). The game can end whenever B wishes, or

continue forever. Since A is deterministic and known

to B, the entire sequence of interactions, including the

ending time, can be predetermined by B.

The cost incurred by the algorithm at time t is

the inner product 〈xt, `t 〉. This may be thought of

as the “expected cost” of the algorithm, although the

algorithm is actually deterministic. The total expected

cost of the algorithm up to time t is

∑t
i=1〈xi, `i 〉. For

j ∈ [n], the total cost of the jth
expert up to time t

is Lt,j =
∑t
i=1 `i,j . The regret at time t of algorithm

A against adversary B is the di�erence between the

algorithm’s total expected cost and the total cost of the

best expert, i.e.,

Regret(n, t,A,B) =

t∑
i=1

〈xi, `i 〉 − min
j∈[n]

Lt,j .

Anytime setting: This work focuses on the any-

time setting. In this setting, one may view the algo-

rithm as running forever, with the goal of minimizing,

for all t, the regret normalized by

√
t. Alternatively,

one may view the game as ending at a time chosen by

the adversary, and the algorithm must minimize the

regret at that ending time. (It does not matter whether

the adversary chooses the ending time in advance or

dynamically, since A and B are deterministic so all

interactions are predetermined.) These two views are

equivalent because the algorithm cannot distinguish

between them.

Formally, we will design an algorithm which

achieves the in�mum in the following expression.

AnytimeNormRegret(n)

:= inf
A

sup
B

sup
t≥1

Regret(n, t,A,B)√
t

. (II.1)

The minimax anytime regret is unknown even in the

case of n = 2. The best known bounds at present are

0.564 ≈
√

1/π ≤ AnytimeNormRegret(2)

≤
√

ln 2 ≈ 0.833. (II.2)

The lower bound, due to [9], demonstrates a gap

between the anytime setting and the �xed-time setting,

where the optimal normalized regret is

√
1/2π [8].

Our main result is that AnytimeNormRegret(2) =
γ/2 ≈ 0.653 and consequently neither inequality in

(II.2) is tight.

As mentioned above, MWU with a dynamic step

size shows that AnytimeNormRegret(n) ≤
√

lnn for

all values of n at least 2 [13, §2.5]. The lower bound

lim infn→∞AnytimeNormRegret(n)/
√

lnn ≥
√

1/2
follows from the bound in the �xed-time setting [5].

Thus, the upper bound is loose by at most a factor

√
2.

Remark on randomization: Several alternative

formulations of the problem arise if A selects a single

expert It ∈ [n] randomly at each time t, and the adver-

sary chooses an ending time τ . The di�erences relate

to the power of the adversary B. The most powerful

adversary has `t depending on I1, . . . , It, in which case

it is easy to design B with Regret(n, t,A,B) = Ω(t).

Another interesting possibility is if the cost vector `t
and the event τ = t are determined by I1, . . . , It−1.

(This is analogous to the “non-oblivious opponent” of

[11, §4.1].) In this case, one can design an adversary

B for which E
[

Regret(n,τ,A,B)√
τ log log τ

]
= Ω(1); this is a

consequence of the law of the iterated logarithm.
5

A third possibility is if `t and τ depend only on

A and not its random choices I1, I2, . . .. (This is

analogous to the “oblivious opponent” of [11, §4.1].)

The expected regret in this model is identical to the

regret in the deterministic model described at the start

of this section. We favour this third model because

its minimax regret has the familiar bound Θ(
√
t), and

it is consistent with the online convex optimization

literature. It is intriguing that in the anytime setting,

a non-oblivious adversary has more power than an

oblivious adversary. In contrast, the two adversaries

have the same power in the �xed time setting [11,

§4.1].

B. Statement of results

To state our results, we require two de�nitions.

Recall that the imaginary error function is de�ned as

erfi(x) = 2√
π

∫ x
0
ez

2

dz. Next, we de�ne

M0(x) = ex −
√
πx erfi(

√
x). (II.3)

The function M0 is an example of a con�uent hy-

pergeometric function, a very broad class of spe-

cial functions that includes, e.g., Bessel functions and

Laguerre polynomials. Our analysis makes use of a

few elementary properties of these functions. A key

5
The asserted lower bound holds for “reasonable” algorithms that

never place more than half the weight on the worst expert. We

believe that the lower bound holds for all algorithms but have not

worked out the details.



constant used in this paper is γ, which is de�ned to

be the smallest
6

positive root
7

of M0(x2/2), i.e.,

γ := min
{
x > 0 : M0(x2/2) = 0

}
. (II.4)

Numerically, γ ≈ 1.30693 . . ..

Theorem II.1 (Main result). In the anytime setting

with two experts, the minimax normalized regret (over

deterministic algorithms A and adversaries B) is

AnytimeNormRegret(2) =
γ

2
. (II.5)

The proof of this theorem has two parts: an upper

bound, in Section III, which exhibits an optimal algo-

rithm, and a lower bound, in Section IV, which exhibits

an optimal randomized adversary. The algorithm is

very short, and it appears below in Algorithm 1.

One might imagine that some form of duality theory

is involved in our matching upper and lower bounds.

Indeed, if the costs are in {0, 1} one may write

AnytimeNormRegret(2) as the value of an in�nite-

dimensional linear program, although we do not ex-

plicitly adopt this viewpoint. Instead, γ arises in our

lower bound as the maximizer in (IV.3), whereas γ
arises in our upper bound as the optimizer of a certain

boundary condition for a PDE (see Section V). Nev-

ertheless, our algorithm and our lower bound can be

seen as constructing feasible primal and dual solutions,

respectively, to the aforementioned linear program.

Comparison to existing techniques: A duality

viewpoint is adopted by Gravin et al. [10] in the

�xed-time and geometric horizon settings using von

Neumann’s minimax theorem. Their dual problem is

characterized by properties of random walks, which

allows one to determine the optimal dual value directly

without reference to the primal. It is conceivable that

some form of von Neumann’s minimax theorem can be

applied for the anytime setting, although it is unclear

due to the appearance of the supremum and 1/
√
t in

(II.5). Our results of Section IV may be viewed as using

random walks to construct feasible dual solutions of

value γ/2− ε ∀ε > 0, but it is not obvious that these

solutions converge to the optimal dual value.

The only way we know of to prove optimality

of those dual solutions is to construct an algorithm

whose regret is γ
√
t/2. This is the more challenging

part of this paper, which we discuss in Sections III.

Interestingly, unlike some previous work, we explicitly

obtain an optimal algorithm for costs in [0, 1], not just

for costs in {0, 1}.

6
In fact, γ is the unique positive root.

7
The roots of certain con�uent hypergeometric functions have

appeared in studying some natural phenomena of Brownian motion;

for some examples see [39], [20], [40], [16].

Remark. Our lower bound can be strengthened to

show that, for any algorithm A,

sup
B

lim sup
t≥1

Regret(2, t,A,B)√
t

≥ γ

2
.

In particular, even if A is granted a “warm-up” period

during which its regret is ignored, an adversary can

still force it to incur large regret afterwards. More

details can be found in the full version of this paper.

The algorithm’s description and analysis relies heav-

ily on a function R : R≥0 × R→ R de�ned by

R(t, g) =


0 (t = 0)

g
2 + κ

√
tM0 (g2/2t) (t > 0 & g ≤ γ

√
t)

γ
√
t

2 (t > 0 & g ≥ γ
√
t)

,

(II.6)

where κ = 1√
2π erfi(γ/

√
2)

and M0 as de�ned in (II.3).

The function R may seem mysterious at �rst, but in

fact arises naturally from the solution to a stochastic

calculus problem; this is brie�y discussed in Section V

and more details can be found in the full version

of the paper. In our usage of this function, t will

correspond to the time and g will correspond to the

gap between (i.e., absolute di�erence of) the total

loss for the two experts. One may verify that R is

continuous on R>0 ×R because the second and third

cases agree on the curve

{
(t, γ
√
t) : t > 0

}
since γ

satis�es M0(γ2/2) = 0. We next de�ne a function p
to be

p(t, g) = 1
2

(
R(t, g + 1)−R(t, g − 1)

)
. (II.7)

This is the discrete derivative of R at time t and

gap g. The algorithm constructs its distribution xt
so that p(t, g) is the probability mass assigned to

the expert with the greatest accumulated loss so far.

It is shown later that p(t, g) ∈ [0, 1/2] whenever

t ≥ 1 and g ≥ 0 so that p is indeed a probability

and the algorithm is well de�ned. We remark that

p(t, 0) = 1/2 (Lemma III.3) for all t ≥ 1 so the

algorithm places equal mass on both experts when

their cumulative losses are equal.

C. Techniques
Lower Bound: The common approach to prove

lower bounds in the experts problem is to consider

a random adversary that changes the gap by ±1 at

each step. In the �xed-time setting, the adversary

has no control over the time horizon; it is known to

both the adversary and the algorithm beforehand. The

adversary in the anytime setting has the additional

power to choose the time horizon, without informing

the algorithm, and therefore it is not surprising that an

adversary using a �xed time horizon does not provide

a good anytime lower bound.



Algorithm 1 The algorithm achieving the minimax

anytime regret for two experts. At each time step, each

expert incurs a cost in the interval [0, 1], so the cost

vector `t lies in [0, 1]2. Here, p is the function de�ned

by (II.7).

1: Initialize L0 ← [ 0
0 ].

2: for t = 1, 2, . . . do
3: Swap indices so that Lt−1,1 ≥ Lt−1,2.

4: The current gap is gt−1 ← Lt−1,1 − Lt−1,2.

5: Set xt ←
[
p(t, gt−1), 1−p(t, gt−1)

]
.

6: . Observe vector `t and incur cost 〈xt, `t 〉.
7: Lt ← Lt−1 + `t
8: end for

To obtain the optimal lower bound, we allow the

adversary to select a random time, τ , as the time

horizon. As a �rst step, let us view the regret as a

discrete stochastic process. To analyze this stochastic

process, we use an elementary identity known as

Tanaka’s Formula for random walks, which allows us

to write the regret process as Regret(t) = Zt + gt/2
where Zt is a martingale with Z0 = 0 and gt is the

current gap at time t. When τ is a su�ciently “nice”

stopping time8
, the Optional Stopping Theorem (OST)

yields E [Zτ ] = Z0 = 0. (This step is trivial in the

�xed-time and geometric horizon settings since they

involve stopping times that are always nice.)

In particular, we consider adversaries that select τ
as the �rst time that the gap gt exceeds some time de-

pendent boundary f(t)9
. Applying the OST, one might

expect that E [ Regret(τ) ] = E [ gτ ] /2 ≥ E [ f(τ) ] /2.

Unfortunately, such an argument must involve addi-

tional assumptions; otherwise the adversary could just

select the boundary f(t) to be arbitrarily large, and

the resulting regret lower bound would violate known

upper bounds.

The issue lies in the fact that the OST requires

certain conditions on the martingale and stopping time.

First observe that it is not su�cient for the stopping

time to be almost surely �nite. (Otherwise, one could

use a boundary f(t) = Θ(
√
t ln ln t) and the law of

the iterated logarithm [41] to prove lower bounds that

contradict the O(
√
t) upper bound of Cover or MWU.)

It is tempting to �x this by considering only boundaries

where E [ τ ] <∞. However, this restriction makes the

adversaries much too weak. Suppose that we consider

boundaries of the form f(t) = c
√
t, as this would be

in harmony with the known Θ(
√
t) regret bounds.

To ensure that E [ τ ] < ∞, it is known [42], [39]

that choosing c < 1 is necessary and su�cient.

8
Intuitively, a stopping time must make the decision that now is

the time to stop without knowledge of future random bits.

9
Note that τ = min { t ≥ 0 : gt ≥ f(t) } is a stopping time.

Unfortunately this would yield a regret lower bound

of

√
t/2, which is trivial since the algorithm can easily

be forced to have regret 1/2 at time t = 1. Therefore,

we must relax the restriction that E [ τ ] <∞.

Fortunately there is a strengthening of the OST

with a weaker and somewhat surprising hypothesis

that leads to optimal results in our setting. We show

that the optimal adversary chooses a stopping time to

satisfy this weak hypothesis. This strengthened OST

states: if Zt is a martingale with bounded increments

(i.e. supt≥0 |Zt+1 − Zt| ≤ K for some K > 0) and

τ is a stopping time satisfying E
[√

τ
]
< ∞, then

E [Zτ ] = 0. The crucial detail is to bound the expected
square root of τ . This result is stated formally in

Theorem IV.2. It remains to choose as large a boundary

as possible such that the associated stopping time of

hitting the boundary satis�es E [
√
τ ] < ∞. Using

classical results of Breiman [39] and Greenwood and

Perkins [40], we show that the optimal choice of c is

γ.

Upper Bound: Our analysis of Algorithm 1, to

prove the upper bound in Theorem II.1, uses a de-

ceptively simple argument where R de�ned in (II.6)

acts as a potential function. Speci�cally, we show that

the change in regret from time t− 1 with gap gt−1 to

time t with gap gt is at most R(t, gt)−R(t− 1, gt−1).

This implies that maxg R(t, g) is an upper bound on

the regret at time t. The analysis has a number of key

features. First, note that the potential function R is

bivariate; it depends on both the time t as well as the

state gt. To deal with this bivariate potential, we use

a tool known as the discrete Itô formula. This formula

allows us to relate the regret to the potential R, while

elegantly handling changes to both time and state. In

fact, the potential R turns out to be an extremely tight

approximation to the actual regret. Previously, there

have been several works that make use of bivariate

potentials (e.g. [43], [17]). However, to the best of our

knowledge, our work is the �rst to use the discrete Itô

formula in the setting of regret minimization.

The function R and the use of discrete Itô do not

come “out of thin air”; they come from consider-

ing a continuous-time analogue of the problem. This

continuous viewpoint brings a wealth of analytical

tools that do not exist (or are more cumbersome) in

the discrete setting. As discussed in the lower bound

section above, in discrete-time it is natural to assume

the gap process evolves as a re�ected random walk.

In order to formulate the continuous-time problem,

we assume that the continuous adversary evolves the

gap between the best and worst expert as a re�ected

Brownian motion (the continuous-time analogue of a

random walk). Using this adversary, the continuous-

time regret becomes a stochastic integral.



The most natural way to analyze an integral is

to use the fundamental theorem of calculus (FTC).

However, the continuous-time regret is de�ned by a

stochastic integral so the FTC cannot be applied
10

.

However there is a stochastic analog of the FTC,

namely the (continuous) Itô formula, which we state

in Theorem V.3. We use it to provide an insightful

decomposition of the continuous-time regret. In par-

ticular, this decomposition suggests that the algorithm

should satisfy an analytic condition known as the

backwards heat equation. A key resulting idea is: if

the algorithm satis�es the backward heat equation,

then there is a natural potential function that upper

bounds the regret of the algorithm. This enables a

systematic approach to obtain an explicit continuous-

time algorithm and a potential function that bounds

the continuous algorithm’s regret. To go back to the

discrete setting, using the same potential function, we

replace applications of Itô’s formula with the discrete

Itô formula. Remarkably, this leads to exactly the same

regret bound as the continuous setting.

D. Application

As mentioned in Section I, the following theorem of

Davis can be proven as a corollary of our techniques.

Intriguingly, the proof involves regret, despite the fact

that regret does not appear in the theorem statement.

Theorem II.2 (Davis [20]). Let (Xt)t≥0 be a standard

random walk. Then E [ |Xτ | ] ≤ γ E [
√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be

improved.

Proof: We begin by proving the �rst assertion.

Suppose that Regret(T ) is the regret process when

Algorithm 1 is used against a random adversary. As

discussed in Subsection II-C and (IV.2), we can write

the regret process as Regret(T ) = ZT + gT /2 where

ZT is a martingale and gT evolves as a re�ected ran-

dom walk.
11

Moreover, if τ is a stopping time satisfying

E [
√
τ ] <∞, then E [Zτ ] = 0 (see Theorem IV.2).

The upper bound in Theorem II.1 asserts that

γ
√
T/2 ≥ Regret(T ) = ZT + gT /2 for any �xed

T ≥ 0. Hence, γ E [
√
τ ] /2 ≥ E [ gτ ] /2. Replacing gτ

with |Xτ | (since both gt and |Xt| are re�ected random

walks), the proof of the �rst assertion is complete.

The fact that no constant smaller than γ is possible

is a direct consequence of the results of Breiman [39]

and Greenwood and Perkins [40] as mentioned in

Subsection II-C (see also Section IV or [20]).

10
The integrator is re�ected Brownian motion, which is almost

surely not of bounded variation.

11
Equality holds because Algorithm 1 sets p(t, 0) = 1/2.

E. An expression for the regret involving the gap
In our two-expert prediction problem, the most

important scenario restricts each cost vector `t to be

either [ 1
0 ] or [ 0

1 ]. That is, at each time step, some

expert incurs cost 1 and the other expert incurs no cost.

This restricted scenario is equivalent to the condition

gt − gt−1 ∈ {±1} ∀t ≥ 1, where gt := |Lt,1 − Lt,2|
is the gap at time t. To prove the optimal lower

bound it su�ces to consider this restricted scenario.

In this version of the paper, we prove the optimal

upper bound assuming the restricted scenario. In the

full version of the paper, we extend the analysis to all

cost vectors by a concavity argument. In the remainder

of the paper, we assume the restricted scenario.

We now present an expression, valid for any algo-

rithm, that emphasizes how the regret depends on the

change in the gap. This expression will be useful in

proving both the upper and lower bounds. Henceforth

we write Regret(t) := Regret(2, t,A,B) where A and

B are usually implicit from the context.

Proposition II.3. Assume the restricted setting in

which gt−gt−1 ∈ {±1} for every t ≥ 1. When gt−1 6=
0, let pt denote the probability mass assigned by the

algorithm to the “worst expert”, i.e., if Lt−1,1 ≥ Lt−1,2

then pt = xt,1 and otherwise pt = xt,2. The quantity

pt may depend arbitrarily on `1, . . . , `t−1. Then

Regret(T ) =

T∑
t=1

pt · (gt − gt−1) · 1[gt−1 6= 0]

+

T∑
t=1

〈xt, `t 〉 · 1[gt−1 = 0].

(II.8)

Furthermore, assume that if gt−1 = 0, then pt = xt,1 =
xt,2 = 1/2. In this case

Regret(T ) =

T∑
t=1

pt · (gt − gt−1). (II.9)

Remark. Observe that (II.9) is a discrete analog of

a Riemann–Stieltjes integral of p with respect to g.

If (gt)t≥0 is a random process, then (II.9) is called a

discrete stochastic integral. In the speci�c case that

(gt)t≥0 is a re�ected random walk (the absolute value

of a standard random walk), then (II.8) is the Doob

decomposition [44, Theorem 10.1] of the regret process(
Regret(t)

)
t≥0

, i.e., the �rst sum is a martingale and

the second sum is an increasing predictable process.

Proof: De�ne ∆R(t) = Regret(t)−Regret(t− 1).

The total cost of the best expert at time t is L∗t :=
min {Lt,1, Lt,2}. The change in regret at time t is the

cost incurred by the algorithm minus the change in the

total cost of the best expert, so ∆R(t) = 〈xt, `t 〉 −
(L∗t − L∗t−1).



Case 1: gt−1 6= 0: In this case, the best expert at

time t− 1 remains a best expert at time t. If the worst

expert incurs cost 1, then the algorithm incurs cost pt
and the best expert incurs cost 0, so ∆R(t) = pt and

gt−gt−1 = 1. Otherwise, the best expert incurs cost 1
and the algorithm incurs cost 1− pt, so ∆R(t) = −pt
and gt−gt−1 = −1. For either choice of cost, we have

∆R(t) = pt · (gt − gt−1).

Case 2: gt−1 = 0: Both experts are best, but one

incurs no cost, so L∗t = L∗t−1 and ∆R(t) = 〈xt, `t 〉.
The above two cases prove (II.8). For the last asser-

tion, we have that 〈xt, `t 〉 = 1/2 = pt · (gt − gt−1)
whenever gt−1 = 0. Hence, we can collapse the two

sums in (II.8) into one to get (II.9).

III. Upper bound

In this section, we prove the upper bound in Theo-

rem II.1 via a sequence of simple steps. We remind the

reader that for simplicity, we will assume that the gap

changes by ±1 at each step, which corresponds to each

loss vector `t being either [ 1
0 ] or [ 0

1 ]. The analysis can

be extended to general loss vectors in [0, 1]2 through

the use of concavity arguments. The details of this

extension can be found in the full version of the paper.

The proof in this section uses the potential function

R which, as explained in Subsection II-C, is de�ned via

continuous-time arguments in Section V. Moreover, the

structure of the proof is heavily inspired by the proof

in the continuous setting. Finally, we remark that the

analysis of this section uses the potential function in

a modular way
12

, and could conceivably be used to

analyze other algorithms (e.g., MWU).

Moving forward, we will need a few observations

about the functions R and p, which were de�ned in

equations (II.6) and (II.7).

Lemma III.1. For any t > 0, R(t, g) is concave and

non-decreasing in g.

The proof of Lemma III.1 is a calculus exercise and

appears in the full version. As a consequence, we can

easily get the maximum value of R(t, g) for any t.

Lemma III.2. For any t > 0, R(t, g) ≤ γ
√
t/2.

Proof: R(t, g) is constant for g ≥ γ
√
t and

Lemma III.1 shows that R(t, g) is non-decreasing in

g. Hence maxg R(t, g) ≤ R(t, γ
√
t) = γ

√
t/2.

In the de�nition of the prediction task, the algorithm

must produce a probability vector xt. Recalling the

de�nition of xt in Algorithm 1, it is not a priori

clear whether xt is indeed a probability vector. We

12
Our analysis may also be viewed as an amortized analysis.

With this viewpoint, the algorithm incurs amortized regret at most

γ
2
(
√
t−
√
t− 1) ≈ γ/4

√
t at each time step t.

now verify that it is, since Lemma III.3 implies that

p(t, g) ∈ [0, 1/2] for all t, g.

Lemma III.3. Fix t ≥ 1. Then

1) p(t, 0) = 1/2;

2) p(t, g) is non-increasing in g; and

3) p(t, g) ≥ 0.

Proof: For the �rst assertion, we have

p(t, 0)

=
1

2
(R(t, 1)−R(t,−1))

=
1

2

(
1

2
+ κ
√
tM0(1/2t) +

1

2
− κ
√
tM0(1/2t)

)
=

1

2
.

For the second equality, we used that 1 ≤ γ ≤ γ
√
t

for all t ≥ 1. The second assertion follows from

concavity of R, which is asserted in Lemma III.1. The

�nal assertion holds because R is non-decreasing in g,

which is also asserted in Lemma III.1.

A. Analysis when gap increments are ±1

In this subsection we prove the upper bound of

Theorem II.1 for a restricted class of adversaries (that

nevertheless capture the core of the problem).

Theorem III.4. Let A be the algorithm described in

Algorithm 1. For any adversary B such that each cost

vector `t is either [ 1
0 ] or [ 0

1 ], we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

Our analysis will rely on an identity known as the

discrete Itô formula, which is the discrete analogue

of Itô’s formula from stochastic analysis (see Theo-

rem V.3). To make this connection (in addition to future

connections) more apparent, we de�ne the discrete

derivatives of a function f to be

fg(t, g) =
f(t, g + 1)− f(t, g − 1)

2
,

ft(t, g) = f(t, g)− f(t− 1, g),

fgg(t, g) =
(
f(t, g + 1) + f(t, g − 1)

)
− 2f(t, g).

It was remarked earlier that p(t, g) is the discrete

derivative of R, and this is because

p(t, g) = Rg(t, g). (III.1)

Lemma III.5 (Discrete Itô formula). Let g0, g1, . . . be

any sequence of real numbers (not necessarily random)

satisfying |gt−gt−1| = 1. Then for any function f and



any �xed time T ≥ 1, we have

f(T,gT )− f(0, g0) =

T∑
t=1

fg(t, gt−1) · (gt − gt−1)

+

T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
.

(III.2)

This lemma is a small generalization of [44, Example

10.9] to accommodate a bivariate function f that

depends on t. The proof is essentially identical and

can be found in the full version.

Now we show how the regret has a formula sim-

ilar to (III.2). Recall that Lemma III.3(1) guarantees

p(t, 0) = 1/2, i.e., xt = [1/2, 1/2]. Hence, (II.9) gives

Regret(T ) =
T∑
t=1

p(t, gt−1) · (gt − gt−1) (III.3)

where g0 = 0 and gt ≥ 0 for all t ≥ 1.

Key technical step: The following is the most non-

obvious step of the proof. We will apply discrete Itô

to (III.3), taking f = R. Since p = Rg = fg , observe

that the main di�erence between (III.2) and (III.3) is

the absence of
1
2fgg(t, gt−1) + ft(t, gt−1) in (III.3). In

the continuous setting, we will see that a key idea is to

try to obtain a solution satisfying ( 1
2∂gg + ∂t)f = 0;

this is the well-known backwards heat equation. In

the discrete setting, by a remarkable stroke of luck,

we have the following analogous property.

Lemma III.6 (Discrete backwards heat inequality).

1
2Rgg(t, g) +Rt(t, g) ≥ 0 for all t ≥ 1 and g ≥ 0.

Proof (of Theorem III.4): Apply Lemma III.5 to

the function R and the sequence g0, g1, . . . of (integer)

gaps produced by the adversary B. Then, for any time

T ≥ 0,

R(T, gT )−R(0, g0)

=

T∑
t=1

Rg(t, gt−1) · (gt − gt−1)

+

T∑
t=1

(1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
≥

T∑
t=1

p(t, gt−1) · (gt − gt−1)

= Regret(T )

Here, the �rst equality is by Lemma III.5, the inequality

is by (III.1) and Lemma III.6, the last equality is (III.3).

Since g0 = 0 and R(0, 0) = 0, applying Lemma III.2

shows that Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2.

The reader at this point may be wondering why

γ is the right constant to appear in the analysis. In

Section V, we will de�ne the function R speci�cally to

obtain γ in the preceding analysis. In the next section,

our matching lower bound will prove that γ is indeed

the right constant.

IV. Lower bound

The main result of this section is the following the-

orem, which implies the lower bound in Theorem II.1.

Theorem IV.1. For any algorithm A and any ε > 0,

there exists an adversary Bε such that

sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (IV.1)

It is common in the literature for regret lower

bounds to be proven by random adversaries (e.g., [11,

Theorem 3.7]). We also consider a random adversary,

but the novelty is the use of a non-trivial stopping time

at which it can be shown that the regret is large.

A random adversary: Suppose an adversary pro-

duces a sequence of cost vectors `1, `2, . . . ∈ {0, 1}2
as follows. For all t ≥ 1,

• If gt−1 > 0 then `t is randomly chosen to be

one of the vectors [ 1
0 ] or [ 0

1 ], uniformly and

independent of `1, . . . , `t−1. Thus gt − gt−1 is

uniform in {±1}.
• If gt−1 = 0 then `t = [ 1

0 ] if xt,1 ≥ 1/2, and

`t = [ 0
1 ] if xt,2 > 1/2. In both cases gt = 1.

As remarked above, the process (gt)t≥0 has the same

distribution as the absolute value of a standard random

walk (which is also known as a re�ected random walk).

We now obtain from (II.8) a lower bound on the

regret of any algorithm against this adversary. The

adversary’s behavior when gt−1 = 0 ensures that

〈xt, `t 〉 ≥ 1/2, showing that

Regret(T ) ≥
T∑
t=1

pt (gt − gt−1) · 1[gt−1 6= 0]︸ ︷︷ ︸
martingale

+
1

2

T∑
t=1

1[gt−1 = 0]︸ ︷︷ ︸
local time

∀T ∈ N.

(Equality holds if the algorithm sets xt = [1/2, 1/2]
whenever gt−1 = 0.) The �rst sum is a martin-

gale indexed by T . (This holds because gt − gt−1

has conditional expectation 0 when gt−1 6= 0, and

1[gt−1 6= 0] = 0 when gt−1 = 0.) The second sum

is called the local time of the random walk. Using

Tanaka’s formula [44, Ex. 10.8], the local time can be

written as

∑T
t=1 1[gt−1 = 0] = gt − Z ′t where Z ′t is



a martingale with uniformly bounded increments and

Z ′0 = 0. Thus, combining the two martingales, we have

Regret(t) ≥ Zt +
gt
2

∀t ∈ Z≥0, (IV.2)

where Zt is a martingale with uniformly bounded

increments and Z0 = 0.

Intuition for a stopping time: Optional stopping

theorems assert that, under some hypotheses, the ex-

pected value of a martingale at a stopping time equals

the value at the start. Using such a theorem, at a

stopping time τ it would hold that E [ Regret(τ) ] ≥
E [ gτ ] /2 (under some hypotheses on τ and Z). Thus it

is natural to design a stopping time τ that maximizes

E [ gτ ] and satis�es the hypotheses. We know from

(II.2) that the optimal anytime regret at time t is

Θ(
√
t), so one reasonable stopping time would be

τ(c) := min
{
t > 0 : gt ≥ c

√
t
}

for some constant c yet to be determined. If τ(c)
and Z satisfy the hypotheses of the optional stopping

theorem, then it will hold that E [ Regret(τ(c)) ] ≥
c
2 E[

√
τ(c) ]. From this, it follows, fairly easily, that

AnytimeNormRegret(2) ≥ c/2; this will be argued

more carefully later.

An optional stopping theorem: The optional

stopping theorems appearing in standard references

require one of the following hypotheses: (i) τ is almost

surely bounded, or (ii) E [ τ ] is bounded and the mar-

tingale has bounded increments, or (iii) the martingale

is almost surely bounded and τ is almost surely �nite.

See, e.g., [41, Theorem 4.8.5], [44, Theorem 10.11], [45,

Theorem II.57.4], or [46, Theorem 10.10]. These will

not su�ce for our purposes. For example, condition

(ii) is the only useful hypothesis for our setting. It

is known [39], [42] that E [ τ(c) ] < ∞, with τ(c) as

above, if and only if c < 1; this yields a weak lower

bound on the regret. Instead, we require the following

theorem, which has a weaker hypothesis (due to the

square root). We are unable to �nd a reference for this

theorem, although it is presumably folklore. A proof is

provided in the full version.

Theorem IV.2. Let Zt be a martingale and K > 0 a

constant such that |Zt − Zt−1| ≤ K almost surely for

all t. Let τ be a stopping time. If E
[√

τ
]
< ∞ then

E [Zτ ] = E [Z0 ].

Optimizing the stopping time: Since the mar-

tingale Zt de�ned above has bounded increments,

Theorem IV.2 may be applied so long as E[
√
τ(c) ] <

∞, in which case the preceding discussion yields

AnytimeNormRegret(2) ≥ c/2. We reiterate that the

condition E[
√
τ(c) ] < ∞ is a stronger assumption

than τ(c) being almost surely �nite. So it remains to

determine

sup{ c ≥ 0 : E[
√
τ(c) ] <∞ }, (IV.3)

where τ(c) is the �rst time at which a standard random

walk crosses the two-sided boundary ±c
√
t. We will

use the following result, in which M is the con�uent

hypergeometric function de�ned as follows. For a, b ∈
R with b /∈ Z≤0,

M(a, b, z) =

∞∑
n=0

(a)nz
n

(b)nn!
, (IV.4)

where (x)n :=
∏n−1
i=0 (x + i) is the Pochhammer

symbol. We note that M0(x) = M(−1/2, 1/2, x) (see

the appendix in the full version).

Theorem IV.3 (Breiman [39], Theorem 2). Let c > 1
and a < 0 be such that c is the smallest positive root of

the function x 7→ M(a, 1/2, x2/2). Then there exists

a constant K such that Pr [ τ(c) > u ] ∼ Kua.
13

Recall the de�nition of γ in (II.4). For intuition, let

us apply Theorem IV.3 with c = γ, which is de�ned so

that it is the (unique) root for a = −1/2 (see Eq. (II.4)

and recall M0(x) = M(−1/2, 1/2, x)). It follows that

E
[√

τ(γ)
]

=

∫ ∞
0

Pr
[√

τ(γ) > s
]

ds

=

∫ ∞
0

Pr
[
τ(γ) > s2

]
ds

∼ K

∫ ∞
0

s−1 ds,

by Theorem IV.3. This integral is in�nite, so The-

orem IV.2 cannot be applied to τ(γ). However, the

integral is on the cusp of being �nite. By slightly

decreasing a below −1/2, and slightly modifying c to

be the new root, we should obtain a �nite integral,

showing that E[
√
τ(c) ] is �nite.

Proof (of Theorem IV.1): Fix any ε > 0 that is

su�ciently small. Consider the random adversary and

the stopping times τ(c) described above. In the full

version, we show that there exists aε ∈ (−1,−1/2)
and cε ≥ γ− ε such that cε is the unique positive root

of z 7→M(aε, 1/2, z
2/2). As in the above calculations,

Theorem IV.3 shows that

E
[√

τ(cε)
]

=

∫ ∞
0

Pr
[
τ(cε) > s2

]
ds

∼ K

∫ ∞
0

s2aε ds < ∞,
(IV.5)

since aε < −1/2. It follows that τ(cε) is almost

surely �nite, and therefore Regret(τ(cε)) and gτ(cε)

13
This means that limu→∞

Pr[ τ(c)>u ]
Kua

= 1.



are almost surely well de�ned. Applying Theorem IV.2

to the martingale Zt appearing in (IV.2), we obtain that

E [ Regret(τ(cε)) ] ≥ 1

2
E
[
gτ(cε)

]
=

1

2
E
[
cε
√
τ(cε)

]
.

By the probabilistic method, there exists a �nite se-

quence of cost vectors `1, . . . , `t (depending on A and

ε) for which the regret of A at time t is at least

cε
√
t/2. The adversary Bε (which knows A) provides

this sequence of cost vectors to algorithm A, thereby

proving (IV.1).

V. A continuous-time analogue of Algorithm 1

This section sketches how the potential function

R de�ned in (II.6) arises naturally as a solution of a

stochastic calculus problem.

A. De�ning the continuous regret problem

Continuous time regret problem: The con-

tinuous regret problem is inspired by (II.9). Notice

that, when the adversary chooses cost vectors in

{
[
1
0

]
,
[
0
1

]
}, the sequence of gaps g0, g1, g2, . . . live

in the support of a re�ected random walk. The goal

in the discrete case is to �nd an algorithm p that

bounds the regret over all possible sample paths of

a re�ected random walk. In continuous time it is

natural to consider a stochastic integral with respect

to re�ected Brownian motion, denoted |Bt|, instead.

Our goal now is to �nd a continuous-time algorithm

whose regret is small for almost all re�ected Brownian

motion paths.

De�nition V.1 (Continuous Regret). Let p : R>0 ×
R≥0 → [0, 1] be a continuous function that satis�es

p(t, 0) = 1/2 for every t > 0. Let Bt be a standard one-

dimensional Brownian motion. Then, the continuous
regret of p with respect to B is the stochastic integral

ContRegret(T, p,B) =

∫ T

0

p(t, |Bt|) d |Bt| . (V.1)

In this de�nition we may think of p as a continuous-

time algorithm and B as a continuous-time adversary.

In this section, we sketch the following result.

Theorem V.2. There exists a continuous-time algo-

rithm p∗ such that, almost surely,

ContRegret(T, p∗, B) ≤ γ
√
T

2
∀T ∈ R≥0. (V.2)

B. Itô’s formula and the backwards heat equation

Since ContRegret(T ) evolves as a stochastic in-

tegral with respect to a semi-martingale
14

(namely

re�ected Brownian motion), Itô’s lemma provides an

14
A semi-martingale is a stochastic process that can written as

the sum of a local martingale and a process of �nite variation.

insightful decomposition. The following statement of

Itô’s lemma is a specialization of [47, Theorem IV.3.3]

for the special case of re�ected Brownian motion.

Notation: Until now, we have used g as the second

parameter to p and R to denote the gap. Henceforth,

to be more consistent with the usual notation in the

literature, we use x instead of g. We use C1,2
to denote

the class of bivariate functions that are continuously

di�erentiable in their �rst argument and twice contin-

uously di�erentiable in their second argument.

Theorem V.3 (Itô’s formula). Let f : R≥0 × R → R
be C1,2

. Then, almost surely,

f(T, |BT |)− f(0, |B0|) =

∫ T

0

∂xf(t, |Bt|) d |Bt|

+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)︸ ︷︷ ︸
=:

∗
∆f(t,|Bt|)

]
dt.

(V.3)

The integrand of the second integral is an important

quantity arising in PDEs and stochastic processes (see,

e.g., [48, pp. 263]). We denote it by

∗
∆f(t, x) :=

∂tf(t, x) + 1
2∂xxf(t, x).

Applying Itô’s formula to the continuous regret:
By pattern matching (V.1) and (V.3), it is natural to

assume that p = ∂xf for a function f that is C1,2

with f(0, 0) = 0, ∂xf ∈ [0, 1], and ∂xf(t, 0) = 1/2;

the latter two conditions are needed for De�nition V.1

to be applicable. Itô’s formula then yields

ContRegret(T, p = ∂xf,B) =

∫ T

0

∂xf(t, |Bt|) d |Bt|

= f(T, |BT |)−
∫ T

0

∗
∆f(t, |Bt|) dt.

(V.4)

At this point a useful idea arises: as a thought

experiment, suppose that

∗
∆f = 0. Then the second

integral vanishes, and we have the appealing expres-

sion ContRegret(T, p,B) = f(T, |BT |). Moreover,

since f is a deterministic function, the right-hand side

depends only on |BT | rather than the entire Brownian

path B|[0,T ]. Thus, the same must be true of the left-

hand side; in other words, the algorithm has path
independent regret. Our supposition that led to these

attractive consequences was only that

∗
∆f = 0, which

turns out to be a well studied condition.

De�nition V.4. Let f : R>0 × R → R be a C1,2

function. If

∗
∆f(t, x) = 0 for all (t, x) ∈ R>0 × R

then we say that f satis�es the backward heat equa-
tion. A synonymous statement is that f is space-time
harmonic.



The following proposition summarizes the preceding

discussion.

Proposition V.5. Let f : R>0 × R → R be a

C1,2
function that satis�es

∗
∆f = 0 everywhere with

f(0, 0) = 0. Let p = ∂xf . Then,∫ T

0

p(t, |Bt|) d |Bt| = f(T, |BT |). (V.5)

Given the PDE

∗
∆f = 0, the remaining task to de-

�ne an algorithm is to prescribe boundary conditions.

One natural boundary condition comes from compar-

ing (V.4) with De�nition V.1: we require p(t, 0) =
∂xf(t, 0) = 1/2 for all t > 0. The second boundary

condition is less obvious but intuitively, one may

consider putting zero mass on the worst expert if the

gap is signi�cantly large. Quantitatively, we add the

boundary condition p(t, α
√
t) = ∂xf(t, α

√
t) = 0

where α > 0 is a parameter to be optimized. This

states that if the gap between the two experts is larger

than α
√
t at time t then the algorithm places no mass

on the worst expert at time t.

In the full version of the paper, we show that the

optimal choice of α is precisely γ (recall (II.4) for the

de�nition of γ). Solving the PDE yields the strategy

p(t, x) =
1

2
·

(
1− erfi(x/

√
2t)

erfi(γ/
√

2)

)

and the potential function

f(t, x) =
x

2
+ κ
√
t ·M0

(
x2

2t

)
where κ is as de�ned in (II.6). Proposition V.5 then

asserts that

∫ T
0
∂xf(t, |Bt|) d|Bt| = f(T, |BT |) almost

surely. It is a straightforward exercise to show that,

for any �xed t > 0, f(t, x) is maximized at x = γ
√
t;

hence f(T, |BT |) ≤ γ
√
T/2. At this point, there is

a minor snag: p = ∂xf may be negative so it may

not de�ne a valid algorithm (see De�nition V.1). This

is resolved by considering the algorithm max{p, 0},
which is non-negative; in fact, max{p, 0} = ∂xR
where R is as de�ned in (II.6). In the full version of the

paper, we show that using max{p, 0} for the algorithm

allows us to prove Theorem V.2.
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