
Algebraic Structures and Algorithms
for Matching and Matroid Problems

Nicholas J. A. Harvey∗

Massachusetts Institute of Technology
nickh@mit.edu

Abstract
We present new algebraic approaches for several well-
known combinatorial problems, including non-bipartite
matching, matroid intersection, and some of their general-
izations. Our work yields new randomized algorithms that
are the most efficient known. For non-bipartite matching,
we obtain a simple, purely algebraic algorithm with running
timeO(nω) wheren is the number of vertices andω is the
matrix multiplication exponent. This resolves the central
open problem of Mucha and Sankowski (2004). For matroid
intersection, our algorithm has running timeO(nrω−1) for
matroids withn elements and rankr that satisfy some nat-
ural conditions. This algorithm is based on new algebraic
results characterizing the size of a maximum intersection in
contracted matroids. Furthermore, the running time of this
algorithm is essentially optimal.

1. Introduction
The non-bipartite matching problem — finding the largest
set of disjoint edges in a graph — is a fundamental problem
that has played a pivotal role in the development of graph
theory, combinatorial optimization, and computer science
[34]. For example, Edmonds’ seminal work on matchings
[9, 10] inspired the definition of the class P, and launched
the field of polyhedral combinatorics. The matching the-
ory book [24] gives an extensive treatment of this subject,
and uses matchings as a touchstone to develop much of the
theory of combinatorial optimization.

The matroid intersection problem — finding the largest
common independent set in two given matroids — is an-
other fundamental optimization problem, originating in the
pioneering work of Edmonds [11, 12]. This work led to sig-
nificant developments concerning integral polyhedra [33],
submodular functions [13] and electrical networks [21]. Al-
gorithmically, matroid intersection is a powerful tool that
has been used in various areas such as approximation al-
gorithms [2, 19], mixed matrix theory [28], and network
coding [20].

∗Supported by a Natural Sciences and Engineering Research Council
of Canada PGS Scholarship, by NSF contract CCF-0515221 and by ONR
grant N00014-05-1-0148.

1.1. Matching algorithms

The literature for non-bipartite matching algorithms is quite
lengthy. The initial work of Edmonds [10] gives an algo-
rithm with running timeO(n2m), wheren andm respec-
tively are the number of vertices and edges. Several addi-
tional improvements culminated in theO(

√
nm) algorithm

of Micali and Vazirani in 1980 [25]. There was little sub-
sequent progress until 2004, when an exciting development
of Mucha and Sankowski [27] gave a randomized algorithm
to construct a maximum matching in timeO(nω) where
ω < 2.38 is the exponent indicating the time to multiply
two n × n matrices [4]. A highly readable exposition of
their algorithm is in Mucha’s thesis [26].

Unfortunately, all of these algorithm mentioned above
are quite complicated. Edmonds’ algorithm requires much
care in manipulating “blossoms”, and the Micali-Vazirani
algorithm was not formally proven correct for ten years
[38]. The Mucha-Sankowski algorithm relies on a non-
trivial structural decomposition of graphs called the “canon-
ical partition”, and uses sophisticated dynamic connectiv-
ity data structures to maintain this decomposition online.
Mucha writes [26,§6]:

[The non-bipartite] algorithm is quite compli-
cated and heavily relies on graph-theoretic results
and techniques. It would be nice to have a strictly
algebraic, and possibly simpler, matching algo-
rithm for general graphs.

Interestingly, for the special case of bipartite graphs, Mucha
and Sankowski give a simple algorithm that amounts to per-
forming Gaussian elimination lazily. Unfortunately, this
technique seems to break down for general graphs, lead-
ing to the conjecture that there is noO(nω) matching algo-
rithm for non-bipartite graphs that uses only lazy computa-
tion techniques [26,§3.4].

In subsequent work, Sankowski [32] developed a par-
allel (RNC5) algorithm for constructing perfect matchings
that uses onlyO(nω) processors, yielding another sequen-
tial algorithm that uses onlyO(nω) time. However, this
algorithm is also complicated: it depends on sophisticated
parallel subroutines for evaluating a polynomial at a matrix
and for computing the characteristic polynomial of a matrix.

1

1.2. Matroid intersection algorithms

Polynomial time algorithms for matroid intersection were
developed in the 1970s by various authors [11, 12, 22]. The
efficiency of these early algorithms was typically measured
relative to an oracle for testing independence. For example,
Edmonds’ algorithm usesO(nr2) oracle queries, wherer is
the rank of the matroid andn is the size of the ground set.
Cunningham [5] gave a more efficient algorithm, motivated
by intersection oflinear matroids (those that can be repre-
sented as ar × n matrix). This algorithm makes no oracle
queries and uses onlyO(nr2 log r) time. Gabow and Xu
[14] obtained an improved bound ofO(nr1.62) through the
use of fast matrix multiplication and quite technical argu-
ments. However, their bound does not seem to be a natural
one: for square matrices the running time isO(n2.62), al-
though one would hope for a running time ofO(n2.38).

1.3. Generalizations

Several variants and generalizations of matchings and ma-
troid intersection have been considered, notably matroid
matching. Matroid matching problems on general graphs
require exponential time in the oracle model, although so-
phisticated polynomial-time algorithms do exist for linear
matroids [24]. On the other hand,bipartite matroid match-
ing problems are tractable: they are polynomial-time re-
ducible to matroid intersection [11, Theorem 81] [13].

Another generalization of matroid intersections and non-
bipartite matchings arebasic path-matchings, introduced by
Cunningham and Geelen [7, 8, 16]. Their work shows inte-
grality of related polyhedra and shows that one can optimize
over these polyhedra using the ellipsoid method [8]. Later
work [6] used algebraic techniques together with a matroid
intersection algorithm to compute a basic path-matching.

1.4. Our results

In this paper, we present new algebraic approaches for sev-
eral of the problems mentioned above.
Non-bipartite matching. We present a purely algebraic,
randomized algorithm for constructing a maximum match-
ing in O(nω) time1. The algorithm is conceptually sim-
ple — it uses lazy updates, and does not require sophis-
ticated data structures or subroutines other than a black-
box algorithm for matrix multiplication/inversion. There-
fore our work resolves the central open question of Mucha
and Sankowski [27], and refutes the conjecture [26] that no
such lazy algorithm exists.

Our algorithm is based on a simple, but subtle, divide-
and-conquer approach. The key insight is: adding an edge
to the matching involves modifying two symmetric entries
of a certain matrix. (See Section 3 for further details.) These
entries may be quite far apart in the matrix, so a lazy updat-

1If ω = 2, the running time is actuallyO(n2 log n). Henceforth, we
ignorepolylog(n) factors in expressions of the formO(nω).

ing scheme that only updates “nearby” matrix entries will
fail. We overcome this difficulty by traversing the matrix in
a novel manner such that symmetric locations are nearby in
our traversal, even if they are far apart in the matrix. Our
new approach has an important consequence: it easily ex-
tends to various generalizations of the non-bipartite match-
ing problem such as path-matchings. It is not clear whether
previous algorithms [25, 27] also admit such extensions.

Matroid intersection. We present a randomized algo-
rithm for the matroid intersection problem that uses only
O(nrω−1) time. This running time is essentially optimal
because computing the rank of an×r matrix reduces to ma-
troid intersection of the matrix with itself, andO(nrω−1) is
the best running time for any rank-computation algorithm
that we know of. Restated, we show that finding a maxi-
mum independent set intwo matroids requires asymptoti-
cally the same time as finding a maximum independent set
in just onematroid.

Our algorithm operates with a certain square matrix of
sizen+ r, and its inverse. (See Section 4 for details.) Since
the inverse hasΩ(n2) entries, it cannot be explicitly com-
puted — our desired running time is linear inn. Thus a
key aspect of our algorithm involves computing and updat-
ing the inverse of a matrix, even though it is sparse. These
techniques may be useful for other similar problems.

Whereas most existing matroid algorithms use augment-
ing path techniques, ours uses an algebraic approach. Sev-
eral previous matroid algorithms also use algebraic tech-
niques [1, 23, 29]. This algebraic approach involves two
assumptions. (1) We assume that the given matroids are lin-
ear. This is a standard assumption for algorithms that are not
oracle-based, since linear matroids are the broadest class of
matroids with efficient representations. (2) We make the
mild technical assumption that the given pair of matroids
are represented as matrices over the same field. Although
there exist matroids for which this assumption cannot be
satisfied (e.g., the Fano and non-Fano matroids), this as-
sumption is valid for the vast majority of matroids arising
in applications. For example, the regular matroids are those
that are representable over all fields; this class includes the
graphic, cographic and partition matroids. Many classes of
matroids are representable over all but finitely many fields;
these include the uniform, matching, and transversal ma-
troids, as well as deltoids and gammoids [33]. Our results
apply to any two matroids from the union of these classes.

Bipartite Matroid Matching. We show a surprising re-
sult: the Mucha-Sankowski bipartite graph matching al-
gorithm [27], when run on an appropriate matrix, solves
the bipartite matroid matching problem inO(nω) time.
Our contribution is to derive the appropriate matrix and to
prove some of its properties. Our result improves on the
O(n2r1.62) = O(n3.62) bound obtained via earlier matroid
intersection algorithms [14], and the usual reduction from

bipartite matroid matching to matroid intersection [13].
Basic Path-Matching. We present a novel algebraic
structure which characterizes solvable instances of the ba-
sic path-matching problem. This extends Geelen’s algebraic
framework for ordinary path-matching problems, which do
not involve matroids [16]. We also define a new notion of
contraction for basic path-matching problems, allowing us
to extend our non-bipartite matching algorithm to aO(nω)
algorithm for constructing basic path-matchings.

2. Notation and Basic Facts
The set of integers{1, . . . , n} is denoted[n]. If J is a set,
J + i denotesJ ∪ {i}. If M is a matrix, a submatrix con-
taining rowsS and columnsT is denotedM [S, T]. A sub-
matrix containing all rows (columns) is denotedM [∗, T]
(M [S, ∗]). A submatrixM [S, T] is sometimes written as
MS,T when this enhances legibility. Theith row (column)
of M is denotedMi,∗ (M∗,i). An entry of M is denoted
Mi,j . The submatrix obtained by deleting rowi and column
j (row-setI and column-setJ) from M is denotedMdel(i,j)

(Mdel(I,J)). A submatrix containing rows{a, . . . , b} and
columns{c, . . . , d} is denotedMa:b, c:d. When a matrix
has been decomposed into blocks such as(W X

Y Z), we will
refer to the blocks using compass directions, e.g.,W is the
“north-west” submatrix.

We will use the following basic facts from linear algebra,
proofs of which are in Appendix A.

Fact 1. Let M be a non-singular matrix with row-set and
column-setC. Then, for any equicardinal setsI, J ⊆ C,
we havedetM [I, J] = det M · det M−1[C \ J,C \ I] ·
(−1)

∑
i∈I i+

∑
j∈J j .

Fact 2. LetM be a square matrix of the formM = (W X
Y Z)

whereZ is square. IfZ is non-singular, the matrixW −
XZ−1Y is known as the Schur complement ofZ in M . The
Schur complement satisfies the following useful property:
detM = det Z · det

(
W − XZ−1Y

)
. Additionally, the

rank of the Schur complement equals the rank ofM minus
the size ofZ.

Fact 3. Let M = (W X
Y Z) have inverseM−1 =

(
Ŵ X̂
Ŷ Ẑ

)
.

ThenW is non-singular iffẐ is, andW−1 = Ŵ−X̂Ẑ−1Ŷ .

Fact 4. Let u and v be vectors andc a non-zero scalar.
The matrixM̃ = M +cuvT is called a rank-1 update ofM .
Assume thatM is non-singular and letα = c−1+vTM−1u.
The inverse ofM̃ exists iffα 6= 0, and equalsM̃−1 =
M−1 − α−1

(
M−1 u

) (
vT M−1

)
, which is itself a rank-1

update ofM−1.

Fact 5. Let M be ann × n skew-symmetric matrix, i.e.,
M = −MT. If M is non-singular thenM−1 is also skew-
symmetric.

Another important fact about matrices concerns algorith-
mic efficiency. For matrices of sizen×n, the following op-
erations can be performed inO(nω) time: multiplication,
determinant computation, rank computation, and inversion
(if the matrix is non-singular).

3. Non-Bipartite Matching
Tutte matrix. Let G = (S, E) be a graph withn =
|S|. For each edge{i, j} ∈ E, associate an indetermi-
natet{i,j}. The Tutte matrixT for G is ann × n matrix
whereTi,j = ±t{i,j} and the signs are chosen such thatT
is skew-symmetric. Tutte [37] showed thatT is formally
non-singular iffG has a perfect matching (see, e.g., God-
sil [18]). However, this does not directly imply an efficient
algorithm to test ifG has a perfect matching: the determi-
nant ofT is a formal polynomial which may have exponen-
tial size, so computing it symbolically is inefficient. Fortu-
nately, Lov́asz [23] showed that the rank ofT is preserved
with high probability after randomly substituting non-zero
values for thet{i,j}’s from a sufficiently large field, say of
sizeΘ(n2). After this numeric substitution, the determinant
of the resulting matrix can be computed inO(nω) time.
A Self-Reducibility Algorithm. This observation yields
the following simple algorithm to construct a perfect match-
ing in O(nω+2) time. For each edge{i, j}, temporarily
delete it and test if the resulting graph still has a perfect
matching. If so, delete the edge permanently; otherwise, re-
store the edge. The test used in this algorithm is performed
by settingt{i,j} = 0 and checking whether the determinant
of the resulting matrix is non-zero.
Rabin and Vazirani’s Improvement. Two definitions
are needed. Theinverse Tutte matrixis N := T−1, and
an edgee = {i, j} is calledallowed if e is contained in a
perfect matching. Rabin-Vazirani [30] showed that, assum-
ing G has a perfect matching,e is allowed iff Ni,j 6= 0.
We observed2 the following simple proof of their lemma.
G[S \ {i, j}] has a perfect matching iffdetTdel({i,j},{i,j})
is non-zero (by Tutte’s theorem). This determinant is

det Tdel({i,j},{i,j}) = ±det T · det N [{i, j} , {i, j}]
= ±det T · (Ni,j)2;

the first equality follows from Fact 1, and the second fol-
lows since Fact 5 shows thatN is skew-symmetric. These
observations prove the lemma.

This lemma yields a more efficient self-reducibility al-
gorithm to construct a perfect matching. First compute
N = T−1, thereby identifying all allowed edges. Next,
add one allowed edge{i, j} to the matching, then recurse
on the subgraphG[S \{i, j}]. This algorithm performsn/2
matrix inversions and therefore usesO(nω+1) time in total.

2We are grateful to Jim Geelen for pointing out that this argument is
precisely equation (2) of Tutte [37].

Rank-1 Updates. The bottleneck of the Rabin-Vazirani
algorithm is recomputingN from scratch in each recursive
step. Mucha and Sankowski showed that this is unneces-
sary; instead,N can be updated using rank-1 updates. To
see this, suppose that edge{i, j} is added to the matching.
The algorithm recurses on the subgraphG[S \ {i, j}], and
must compute the inverse Tutte matrixN ′ for this subprob-
lem. One might naively expect thatN ′ is Ndel({i,j},{i,j}),
but this is not the case. Instead,N ′ can be determined
from Fact 3: takeM = T , W = Tdel({i,j},{i,j}) and

Ẑ = N [{i, j} , {i, j}]. Then

N ′ = (Tdel({i,j},{i,j}))−1 = W−1

= Ŵ − X̂Ẑ−1Ŷ .

As observed above, the matrixN [{i, j} , {i, j}] = Ẑ is
skew-symmetric, and therefore

X̂Ẑ−1Ŷ =
(| |

ui uj

| |

)
· (0 c
−c 0

) ·
(

vT
i

vT
j

)

=
(| |
−c·uj c·ui

| |

)
·
(

vT
i

vT
j

)

= −cujv
T
i + cuiv

T
j . (3.1)

ThusN ′ can be computed fromN by two rank-1 updates,
whose parameters are simple submatrices ofN . This com-
putation requires onlyO(n2) time.

Modifying the Rabin-Vazirani algorithm to use rank-1
updates, one obtains a simple,O(n3) time algorithm for
constructing perfect matchings. Furthermore, this algo-
rithm uses only naive matrix multiplication. The key ques-
tion is: how can fast matrix multiplication be used to im-
prove this algorithm?
Our recursive approach. We now describe an algorithm
that achieves running timeO(nω) via a simple divide-and-
conquer approach. The pseudocode in Algorithm 1 outlines
our algorithm, but for now we postpone the discussion of
how to updateN . The constantα will be specified later and
has value at least3.

A crucial observation is that Algorithm 1 considers each
pair of vertices in at least one base case. The proof is an easy
inductive argument: fix a pair of vertices{i, j}, and note
that at each level of the recursion, at least one unordered pair
of parts{Sa, Sb} has{i, j} ⊆ Sa ∪ Sb. The correctness of
Algorithm 1 follows immediately: our algorithm is simply a
variant of the Rabin-Vazirani algorithm that considers edges
in an unusual order.
Analysis. Let us suppose for now that the updating
scheme requires onlyO(sω) time for a subproblem withs
vertices; this will be demonstrated later. For a subproblem
with s vertices, Algorithm 1 recurses on

(
α
2

)
subproblems,

each with2s
α vertices. After solving each subproblem, the

Algorithm 1: The divide-and-conquer approach to construct a
perfect matching.

FindPerfectMatching(G)
ConstructT and assign random values to the indeterminates
ComputeN = T−1

FindAllowedEdges(S), whereS is the vertex set ofG

FindAllowedEdges(S)
If |S| > 2 then

PartitionS arbitrarily intoα equal-sized partsS1, . . . , Sα

For each unordered pair{Sa, Sb} of parts
FindAllowedEdges(Sa ∪ Sb)
UpdateN (if necessary)

Else
This is a base case:S consists of two verticesi andj
If Ti,j 6= 0 andNi,j 6= 0 (i.e., edge{i, j} is allowed) then

Add {i, j} to the matching and updateN

algorithm performs an update. The total time required sat-
isfies the recurrence

h(s) =
(
α
2

) · h(
s

α/2

)
+ O

((
α
2

) · sω
)
. (3.2)

By standard arguments, the solution of this recurrence
is h(n) = O(nω) if α is a constant chosen such that
logα/2

(
α
2

)
< ω. Sincelogα/2

(
α
2

)
< 2 + 1

log α−1 , there
exists an appropriate choice ofα, assuming thatω > 2.
Assuming thatω = 2.38, the choiceα = 13 is appropriate.

We now describe a slight variant of the algorithm which
is preferable for implementations, and also admits an tighter
analysis. The key observation is that Algorithm 1 may re-
curse into the same subproblem multiple times, and this is
completely unnecessary. This issue can be avoided via dy-
namic programming: simply maintain a bit vector indicat-
ing which subproblems have been solved. (Note that the
queries and updates to the bit vector do not depend on the
input.) Let us analyze this scheme withα = 4. At level i of
the recursion, the size of a subproblem isn2−i and the num-

ber of subproblems is
(
2i+1

2

) ≤ 22i+1. The total time to ap-
ply updates at leveli isO

(
(n2−i)ω·22i

)
= O(nω2−(ω−2)i).

Summing over all levels yields a bound ofO(nω) if ω > 2
andO(n2 log n) if ω = 2. In contrast, the recurrence of
Eq. (3.2) leads to a bound ofO(n2+ε) for anyε > 0, in the
case thatω = 2.
Naive Updates. We now describe the scheme for updat-
ing the matrixN in Algorithm 1. To begin, imagine a naive
scheme which uses rank-1 updates to updateN in the base
cases, as in Eq. (3.1), and does not updateN after each re-
cursive call. Each rank-1 update requiresO(n2) time, and
therefore the resulting algorithm uses timeO(n3) in total.

Ultimately we will define a more efficient updating
scheme. Before doing so, let us modify the naive scheme
by defining some additional memory areas which will store

Algorithm 2: The naive scheme to updateN during a base case
of Algorithm 1.

SetU [∗, {i, j}] = N [∗, {i, j}]
SetV [{i, j} , ∗] = N [{i, j} , ∗]
SetCi,j = −1/Nj,i andCj,i = −1/Ni,j

SetN = N + Ci,j U∗,i Vj,∗ + Cj,i U∗,j Vi,∗
Appendi andj to πc, and appendj andi to πr

the parameters of the updates. Consider a single rank-1 up-
date performed by the naive scheme (c.f. Eq. (3.1)) when
edge{i, j} is added to the matching. The parameters of the
update are a scalarc = −1/Nj,i, a column-vectoru = N∗,i
and a row-vectorvT = Nj,∗. The algorithm will store the
parameters of all updates in three additionaln× n matrices
U , V andC. Algorithm 2 illustrates this procedure. The
algorithm also maintains two listsπc andπr which spec-
ify, for eachk, which column ofU and row ofV store the
parameters of thekth rank-1 update.

The updates performed by Algorithm 2 have a property
that will be useful later: when vertexi is matched,N∗,i and
Ni,∗ are set to zero. To see this, note thatNk,i is set to

Nk,i − 1
Nj,i

Nk,iNj,i − 1
Ni,j

Nk,jNi,i,

which is zero sinceNi,i = 0 by skew-symmetry.
Efficient Updates. We now describe the efficient scheme
which only updates the portions of the matrix which will
be needed soon. The recursion of Algorithm 1 gives a con-
venient way to decide which portions should be updated.
Roughly speaking, whenever a recursive subproblem fin-
ishes executing, it fully updates the submatrix ofN corre-
sponding to its parent subproblem. As will be explained
shortly, this update requires only a constant number of ma-
trix multiplications/inversions involving matrices of size at
mosts, which is the number of vertices in the current sub-
problem. This justifies our earlier assumption that the up-
dating scheme requiresO(sω) time after each recursive call.

To describe the efficient updating scheme more formally,
we need some terminology. At any point of the algorithm,
we say that a submatrix (ofN , U , etc.) isclean if its en-
tries are identical to those that the naive scheme would have
computed at this point of the algorithm. The efficient up-
dating scheme maintains the following invariant.

Invariant: When each recursive subproblem begins or com-
pletes, the parent’s submatrices ofN , U and V are
clean. The matrixC is always clean.

When a base case performs an update, our efficient
scheme behaves similarly to Algorithm 2. The key differ-
ence is that it need not update large portions of the matrices.
Instead, it only updates the2 × 2 submatrices correspond-
ing to this base case:U [{i, j} , {i, j}], V [{i, j} , {i, j}], etc.

This requires onlyO(1) time and is sufficient to maintain
the invariant for the moment. The remainder of the update
work will be performed later (by the recursive ancestors).

After each child subproblem completes, we must per-
form additional updates in order to maintain the invariant.
For notational convenience, we will assume that the parent
subproblem is in fact the root of the recursion. The matrices
N , U , andV can be decomposed as:

N =
(

NNW NNE
NSW NSE

)
U =

(
UNW UNE

USW USE

)
V =

(
V NW VNE
V SW V SE

)

where the north-west submatrices correspond to the child
subproblem that has just completed. The matrixC is de-
composed analogously. The submatrices shown in bold are
clean; this follows from our invariant.

We now explain how to update the dirty submatrices.
First, considerUSW. Ideally, one would just copy intoUSW

the columns fromNSW corresponding to new updates gen-
erated during the child subproblem. The difficulty is that
these new updates have dependencies: columns ofNSW in-
volved in thejth update should have been modified by theith

update (ifi < j), but this work was postponed. The follow-
ing lemma gives the key to resolving these dependencies.

Lemma 3.1. Let X andY ben × n matrices whereY is
strictly upper triangular. Define a sequence of matrices by
X(0) = X andX(i) = X(i−1)+X

(i−1)
∗,i ·Yi,∗ for 1≤ i≤ n.

LetX ~ Y denoteX(n). ThenX ~ Y = X · (I − Y)−1.

We use this lemma as follows. LetX = NSW and let
Y = CNW · VNW. Next, permute columns ofX and rows
of Y usingπc andπr so thatX∗,i andYi,∗ correspond to
the ith new update generated during the child subproblem.
The rows ofY that don’t correspond to new updates are set
to zero. Note thatY is strictly upper triangular; this fol-
lows from our earlier observation thatN∗,i is set to zero
when columni participates in an update (i.e., when vertex
i is matched). ThereforeX andY satisfy3 the hypotheses
of Lemma 3.1. The matrixX ~ Y is, by definition, the re-
sult of sequentially applying all new updates toNSW. So,
to makeNSW andUSW clean, we do the following. First,
setNSW = X ~ Y . Next, the columns fromNSW cor-
responding to new updates are copied intoUSW and set to
zero.

A symmetric argument shows how to makeNNE and
VNE clean. It remains to apply the new updates toNSE.
This is straightforward since the parameters of these up-
dates have now been fully computed. LetŨ , C̃ andṼ de-
note the submatrices ofUSW, CNW andVNE correspond-
ing to the new updates. We makeNSE clean by setting
NSE = NSE + Ũ C̃Ṽ . All submatrices of the parent sub-
problem are now clean, and therefore the invariant has been

3Actually NSW is only square ifα = 4, but X andY can be made
square by padding them with zeros.

restored. Notice that this update procedure requires only
a constant number of matrix multiplications/inversions in-
volving matrices of sizes, wheres is the number of vertices
in the parent subproblem. ThusO(sω) time suffices.
Extensions. The algorithm that we have presented above
is a Monte Carlo algorithm for finding a perfect matching.
It can be extended to a Las Vegas algorithm for finding a
maximum cardinality matching using existing techniques
[3, 26, 30]. To find a maximum cardinality matching, sim-
ply find a full-rank principal submatrix of the Tutte matrix,
then apply our perfect matching algorithm. To make the
algorithm Las Vegas, one can efficiently construct an op-
timum dual solution, i.e., the Gallai-Edmonds decomposi-
tion, using Cheriyan’s algorithm [3].

4. Matroid Intersection
4.1. Preliminaries

We assume that the reader is familiar with the basic defini-
tions and properties of matroids; introductions can be found
in standard references [33]. We write a matroid as a tuple
M = (S, I,B, r) whereS is the ground set,I ⊆ 2S is the
collection of independent sets,B ⊆ I is the collection of
bases, andr is the rank function. Together withS, any one
of I, B, andr is sufficient to specify the matroid, so we do
not necessarily mention all of them. To emphasize connec-
tion to a specific matroid, we sometimes use the notation
IM, BM andrM. The rank of the matroidM is defined to
be r(S). For J ⊆ S, M/J denotes the matroid obtained
from M by contractingJ . Recall that its rank function is
rM/J (A) := rM(J ∪A)− rM(J).

Let M1 = (S, I1, r1) andM2 = (S, I2, r2) be two ma-
troids with rankr and letn = |S|. A setJ ⊆ S is called
an intersectionif J ∈ I1 ∩ I2. A maximum intersection
is one with maximum size. For convenience, we will as-
sume thatM1 andM2 have a common base. A subset of
a maximum intersection is called anextensibleset. If J is
extensible,i 6∈ J , andJ + i is also extensible then element
i is calledallowed(relative toJ). Let λ(J) denote the size
of a maximum intersection ofM1/J andM2/J .

Suppose that eachMi is a linear matroid representable
over a common fieldF. Let Q1 be anr × t matrix whose
columns representM1 over F and letQ2 be at × r ma-
trix whose rows representM2 overF. For notational con-
venience, we will letQJ

1 denoteQ1[∗, J] andQJ
2 denote

Q2[J, ∗]. Let T be a diagonal matrix whereTi,i is an in-
determinateti. For convenience, letT (J) denoteTdel(J,J).
For each extensible intersectionJ , we define the matrix

Z(J) :=

QJ
1 QJ̄

1

QJ
2

QJ̄
2 T (J)

 . (4.1)

Theorem 4.1. For anyJ ⊆ S, we haverankZ(J) = n +
r1(J) + r2(J)− |J |+ λ(J).

For the special caseJ = ∅, this result was stated by
Geelen [17] and follows easily from the connection be-
tween matroid intersection and the Cauchy-Binet formula,
as noted by Tomizawa and Iri [36]. Building on our Theo-
rem 4.1, we obtain the following result which is crucial to
our algorithm.

Theorem 4.2. Suppose thatλ(∅) = r, i.e., M1 and M2

have a common base. ThenZ(J) is non-singular iffJ is an
extensible intersection.

Interestingly, this theorem is false without the assump-
tion thatλ(∅) = r. (There is an example with|S| = 3.)
Theorem 4.2 can be proven using the following results and
induction.

Fact 6. An independent setJ is extensible iffλ(∅) =
λ(J) + |J |.
Fact 7. For any setJ ⊆ S, we haveλ(J) ≤ r −
maxi∈{1,2} ri(J).

Fact 8. The functionλ is non-increasing, i.e.,λ(I) ≥ λ(J)
for all setsI ⊆ J .

Lemma 4.3. The functionψ(J) := r1(J)+ r2(J)−|J |+
λ(J) is non-increasing.

The preceding theorems lead to the following lemma
which characterizes allowed elements. Here, we identify
the elements ofS \ J with the rows and columns of the
submatrix ofT (J) in Z(J).

Lemma 4.4. Suppose thatJ ⊆ S is an extensible inter-
section and thati ∈ S \ J . The elementi is allowed iff
(Z(J)−1)i,i 6= t−1

i .

Proof. By Theorem 4.2, our hypotheses imply that
Z(J) is non-singular. By linearity of the determinant,
detZ(J + i) = det Z(J) − ti · detZ(J)del(i,i). By
Fact 1,(Z(J)−1)i,i = det Z(J)del(i,i)/ detZ(J), so we
havedetZ(J + i) = det Z(J) · (1− ti · (Z(J)−1)i,i). Thus
detZ(J + i) 6= 0 ⇐⇒ Z(J)−1

i,i 6= t−1
i . By Theorem 4.2,

this holds iff elementi is allowed. ¥
The structure ofZ will play a key role in our algo-

rithm for matroid intersection below. For simplicity, let
Z = Z(∅). Let Y denote the Schur complement ofT in
Z, i.e.,Y = −Q1 · T−1 ·Q2. One may verify that

Z−1 =
(

Y −1 −Y −1·Q1·T−1

−T−1·Q2·Y −1 T−1+T−1·Q2·Y −1·Q1·T−1

)
. (4.2)

4.2. Matroid intersection algorithm

In this section we describe our matroid intersection algo-
rithm, which achieves running timeO(nrω−1). We start by
constructing the matrixZ, which is non-singular by our as-
sumption thatλ(∅) = r. As in Algorithm 1, the first step

is to randomly substitute values for the indeterminates inZ
from the fieldF, or a sufficiently large extension. By stan-
dard arguments,Z remains non-singular whp.

Our algorithm maintains an extensible intersection, ini-
tially empty, and searches for allowed elements using
Lemma 4.4. This seemingly requires computing the entire
matrixZ−1, which would require a prohibitiveΩ(n2) time.
Initially we work under the assumption thatZ−1 has been
completely computed, and later we will show that this as-
sumption can be removed. We also assume that bothn and
r are powers of two.

Suppose that an allowed elementi ∈ S has been found
and we now wish to constructZ({i})−1. The matrixZ({i})
is identical toZ except thatti has been set to0. This can
be expressed as the rank-1 updateZ({i}) = Z − tieie

T
i .

Hereei is the ith elementary vector, that is,ei is 1 in the
ith component and zero elsewhere. Using Fact 4,Z({i})−1

may be computed by the following equation:

Z−1 − (−t−1
i + (Z−1)i,i)−1 (Z−1)∗,i (Z−1)i,∗. (4.3)

This is a rank-1 update whose vector parameters are sub-
matrices ofZ−1. Therefore it seems that updates can be
applied in a similar manner to our non-bipartite matching
algorithm. This is indeed possible, although achieving the
running timeO(nrω−1) involves some intricacy. To harmo-
nize the notation with Section 3, letN denote the south-east
submatrix(Z−1)S,S . As before, the update parameters will
be stored in auxiliary matricesU , C andV .

Our matroid intersection algorithm is also recursive, but
the recursion is much simpler than the non-bipartite match-
ing algorithm. The root of the recursion considers the entire
ground setS and the entire submatrixN . The ground set
is split in two: letS1 be the firstn/2 elements andS2 the
remainder. We recurse first on the subproblemS1, and then
onS2.

Although the recursion of this algorithm is simple, it
needs to maintain somewhat complicated invariants in or-
der to obtain the desired level of efficiency. As before, we
will say that a submatrix iscleanif all existing updates have
been applied to it. The invariants are:

Invariant 1: When the recursion enters a subproblem with
elementsA, the submatrixN [A,A] is clean if|A| ≤ r.
If |A| > r then only ther × r blocks on the diagonal
of N [A,A] are clean.

Invariant 2: For any subproblem, just before its second
child subproblem begins processing, theUSW andVNE

submatrices are clean.

A base case of the recursion tree considers a single ele-
menti, and checks ifNi,i 6= t−1

i . (Invariant 1 ensures that
this entry is clean.) If so, elementi is added to the intersec-
tion, and we conceptually perform the update of Eq. (4.3).

As in Section 3, we conceptually store the update parame-
ters inU , C andV , but actually only performO(1) work:

Ui,i := Ni,i Vi,i := Ni,i Ci,i := −1/(−t−1
i + Ni,i)

Ni,i := Ni,i − (Ni,i)2/(−t−1
i + Ni,i)

The remainder of the entries are updated later.
Consider now a subproblem at leveli of the recursion

tree. The number of elements in this subproblem isn2−i.
Say that the entries of its children areS1 andS2. Once its
first child subproblem has completed, we must restore in-
variant (2) by updatingUSW andVNE. This step is more
involved than in Section 3 because of our relaxed invari-
ants. We say that an update isold if it was producedbefore
entering subproblemS1. The difficulty is that old updates
might not have been applied toNSW. The easy case is when
n2−i ≤ r. In this case, invariant (1) implies that the old up-
dates have been applied. It remains to apply the pending
updates that were generated within the first child subprob-
lem. This is done using Lemma 3.1, as in Section 3. The
time required is onlyO((n2−i)ω).

The more difficult case is whenn2−i > r. In this case,
there may be old updates which have not yet been applied to
NSW. In fact, no updates have been applied toNSW what-
soever. However, the portions ofU andV which contain the
updates relevant toNSW are clean; this follows from apply-
ing invariant (2) to the parent of the current subproblem.
The only portion ofNSW that is of interest is the submatrix
corresponding to columns that were added to the intersec-
tion. Let us denote this submatrix bỹN . Its size is at most
n2−i × r, since any intersection has size at mostr. The
number of old updates which must be applied toÑ is also
at mostr. Therefore the time required to apply the old up-
dates is bounded by the time to multiply ann2−i×r matrix
by anr × r matrix, which isO(n2−irω−1) time.

Next, we must makeNSW clean. That is, we must re-
solve the interdependencies of updates generated within the
first child subproblem. Using Lemma 3.1, this requires
O(n2−irω−1) time. A similar argument applies to updating
NNE andVNE. Finally, we must updateNSE. To restore the
invariants, we only need update itsr × r diagonal blocks.
This requires time onlyO(n2−irω−1) by the obvious ap-
proach.

To analyze the time required by this algorithm, recall that
there are2i subproblems at leveli. For levelsi < log(n/r),
the total time required is

∑log(n/r)
i=1 2i · O(n2−irω−1) =

O(nrω−1), ignoring alog r factor. For levelsi ≥ log(n/r),
the time is

log n∑

i=log(n/r)

2i ·O((n2−i)ω) =
log r∑

i=0

O(n2(ω−1)i) = O(nrω−1),

so the total time required isO(nrω−1).

Figure 1: The matrixZ(M) used for the basic path-matching problem.

Z(M) =

Q∂1M
1 Q∂1M

1

Q∂2M
2

Q∂2M
2 D2

D1 T [∂1M, ∂2M] T [∂1M,C2 ∪ S′]
T [C1 ∪ S′, ∂2M] T [C1 ∪ S′, C2 ∪ S′]

(4.4)

The preceding discussion assumes thatN was initially
fully computed. However, it is clear that the only parts of
N that are needed are those in ther×r diagonal blocks and
those parts that are involved in updates. It is straightforward
to extend the algorithm so that the necessary parts ofN are
computed on demand. At the beginning of the algorithm,
we compute only ther× r diagonal blocks ofN . As shown
by Eq. (4.2), this amounts to computing ther × r diagonal
blocks ofQT

2Y
−1Q1 plus some negligible additional work,

and henceO(nrω−1) time suffices. Next, consider perform-
ing an update wheren2−i > r. Then we must compute the
initial submatrixÑ (before any updates are applied). Recall
thatÑ has size at mostn2−i × r. Then, referring again to
Eq. (4.2), we see that̃N can be computed inO(n2−irω−1)
time. Thus the preceding analysis applies without change.
Extensions. The algorithm presented above is a Monte
Carlo algorithm for finding a common base. To find a maxi-
mum cardinality intersection instead, start by finding a full-
rank submatrix of the matrixZ, then apply our common
base algorithm. It is possible to find such a submatrix in
time O(nrω−1), although we omit the details. The algo-
rithm can be made Las Vegas by constructing an optimum
dual solution. Simply construct the auxiliary graph used
by Lawler’s algorithm [33], then find the vertices reachable
from the sources; these vertices form an optimal dual solu-
tion whp. It is possible to construct the auxiliary graph in
timeO(nrω−1), although we omit the details.

5. Generalizations
A nice feature of our previous algorithms is that they extend
easily to several generalizations of matching and matroid
intersection. We consider two such generalizations here.

5.1. Path-Matchings

An instance of the a basic path-matching is a tupleG =
(R1, R2, S, E,M1,M2) where(R1∪R2∪S, E) is a graph
and eachMi is a matroid(Ri, Ii, ri). The vertex setsR1,
R2 andS are disjoint and furthermoreR1 andR2 are stable
sets (no edge has both endpoints in eitherR1 or R2). As-
sume that|R1| = |R2|, and thatM1 andM2 have the same
rank r. A path-matchingis a collection of node-disjoint
paths with one endpoint inR1 and the other inR2, together
with a matching on theS-vertices not contained in any of

the paths. IfM ⊆ E is a path-matching, let∂iM ⊆ Ri

denote the set of vertices inRi that are covered byM , and
let ∂SM ⊆ S denote the coveredS-vertices. Aperfect
path-matchingis a path-matchingM such that∂iM = Ri

and∂SM = S. A basic path-matching(bpm) is a path-
matching such that∂iM ∈ BMi

and that∂SM = S.
A set M ⊆ E is called anextensible setfor G if there

exists a bpmM ′ ⊇ M . Let M be an extensible set and
note that∂iM ∈ IMi . We will now define a basic path-
matching problemG(M), which we call thecontractionof
G by M . Let Pi be the set of paths inM with one endpoint
in Ri and the other inS. Informally, we contract (in the
graph) each path inPi to a single vertex, and we contract
(in the matroidMi) the elements∂iM . Formally, the set
Ci ⊆ S consists of the endpoints inS of the paths inPi.
Define∂iM = Ri \ ∂iM , and note that∂1M and∂2M
are not necessarily equicardinal. DefineR′i := ∂iM ∪ Ci

and S′ := S \ ∂SM . DefineE′ ⊆ E to be the set of
edges with both endpoints inS′ or with one endpoint inR′i
and the other inS′ ∪ R′j wherei 6= j. The matroidM′

i is
(Mi/∂iM)⊕F(Ci), whereF(Ci) denotes the free matroid
on Ci and⊕ denotes direct sum. The contraction ofG by
M is G(M) := (R′1, R

′
2, S

′, E′,M′
1,M

′
2).

Fact 9. If M ′ ⊇ M is a bpm forG thenM ′\M is a bpm for
G(M). Conversely, ifM ′ is a bpm ofG(M) thenM ∪M ′

is a bpm ofG.

We now define an algebraic structure which extending
for matroid intersection. First, there is a matrix of inde-
terminatesT which is similar to the Tutte matrix and de-
scribes the graph underlyingG. The rows ofT are indexed
by R1 ∪ S and the columns are indexed byR2 ∪ S. The
entries are defined asTi,j = ±t{i,j}, where the signs are
chosen such thatT [S, S] is skew-symmetric.

Lemma 5.1 (Geelen [16]).T is non-singular iffG has a
perfect path-matching.

Let Di be a diagonal matrix of size|∂iM | whose non-
zero entries contain distinct indeterminates. DefineZ(M)
to be the matrix in Eq. (4.4).

Theorem 5.2. Let M be a set of edges inG such that
∂1M ∈ IM1 and ∂2M ∈ IM2 . ThenG(M) has a bpm

iff Z(M) is non-singular. Equivalently,M is an extensible
set iffZ(M) is non-singular.

An edgee = {i, j} in G(M) is calledallowed (rela-
tive to M) if M + e is also extensible. An extension of
Lemma 4.4 characterizes whether edges are allowed. Using
this, the algorithm of Section 3 can be extended to compute
a basic path-matching in timeO(nω). Details are postponed
to the full version of the paper.

5.2. Bipartite Matroid Matchings

An instance of the bipartite matroid matching problem is a
tupleG = (R1, R2, E,M1,M2) whereE ⊆ R1 ×R2 and
Mi = (Ri, Ii) is a matroid. Anindependent matchingin G
is a matchingM ⊆ E such that∂1M ∈ I1 and∂2M ∈ I2.
The objective is to find a maximum cardinality independent
matching. Bipartite matroid matching is a special case of
basic path-matching whereS = ∅. Also, matroid intersec-
tion is a special case of bipartite matroid matching where
all vertices have degree1. Theorem 5.2 extends to show
that the maximum cardinality of an independent matching
in G(M) is rankZ(M)− 2n, for anyM ⊆ E.

Additionally, the algorithm for basic path-matchings im-
mediately solves the bipartite matroid matching problem
in O(nω) time. However, for bipartite matroid matching
problems, the matrixZ(M) contains no skew-symmetric
parts. Therefore the algorithm can be simplified, and one
obtains an algorithm that amounts to executing the Mucha-
Sankowski bipartite matching algorithm on the lower-right
submatrix ofZ−1. Thus we have the following surpris-
ing result: when the Mucha-Sankowski algorithm exe-
cutes onT and T−1, it computes a maximum bipartite
matching. However, when it executes onT and Q̃ :=
Q2(Q1TQ2)−1Q1 (which is the lower-right submatrix of
Z−1) it computes a maximum independent matching.

6. Open Questions
Graphical Matroid Intersection. One can obtain a
polynomial-time algorithm for matroid intersection that
works only with the matrixY , as defined in Section 4.
How efficient can such an algorithm be? Consider the spe-
cific case of graphical matroids — the standard represen-
tation is a matrix with two non-zero entries per column.
In this framework, contracting an element requires only
O(1) changes toY . Using Sankowski’s dynamic matrix
inverse operations [31], one obtains aO(n2.575) algorithm
for graphical matroid intersection, which is slightly worse
than theO(n2.5 log n) algorithm of Gabow-Xu [14]. Does
aO(nω) algorithm exist?
Skew-Symmetric Matrices. The recursion presented in
Section 3 is a general technique for performing eliminations
in skew-symmetric matrices inO(nω) time. Can it be used
to obtain efficient algorithms for other operations on skew-
symmetric matrices?

Acknowledgements
The author thanks Michel Goemans, Satoru Iwata, and
David Karger for helpful discussions on this topic. Addi-
tionally, the author thanks the anonymous referees for sug-
gesting numerous improvements to the text of the paper.

References
[1] A. I. Barvinok. New algorithms for lineark-matroid intersection and

matroid k-parity problems. Mathematical Programming, 69:449–
470, 1995.

[2] P. Chalasani and R. Motwani. Approximating capacitated routing
and delivery problems.SIAM Journal on Computing, 26(6):2133–
2149, 1999.

[3] J. Cheriyan. Randomized̃O(M(|V |)) algorithms for problems in
matching theory. SIAM Journal on Computing, 26(6):1635–1669,
1997.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions.Journal of Symbolic Computation, 9(3):251–
280, 1990.

[5] W. H. Cunningham. Improved bounds for matroid partition and in-
tersection algorithms.SIAM Journal on Computing, 15(4):948–957,
Nov. 1986.

[6] W. H. Cunningham and J. F. Geelen. Vertex-disjoint directed paths
and even circuits. Manuscript.

[7] W. H. Cunningham and J. F. Geelen. The optimal path-matching
problem. InProceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 78–85, 1996.

[8] W. H. Cunningham and J. F. Geelen. The optimal path-matching
problem.Combinatorica, 17(3):315–337, 1997.

[9] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69B:125–
130, 1965.

[10] J. Edmonds. Paths, trees, and flowers.Canadian Journal of Mathe-
matics, 17:449–467, 1965.

[11] J. Edmonds. Submodular functions, matroids, and certain polyhedra.
In R. Guy, H. Hanani, N. Sauer, and J. Schönheim, editors,Com-
binatorial Structures and Their Applications, pages 69–87. Gordon
and Breach, 1970. Republished in M. Jünger, G. Reinelt, G. Ri-
naldi, editors,Combinatorial Optimization – Eureka, You Shrink!,
Lecture Notes in Computer Science 2570, pages 11–26. Springer-
Verlag, 2003.

[12] J. Edmonds. Matroid intersection. In P. L. Hammer, E. L. Johnson,
and B. H. Korte, editors,Discrete Optimization I, volume 4 ofAnnals
of Discrete Mathematics, pages 39–49. North-Holland, 1979.

[13] S. Fujishige.Submodular Functions and Optimization, volume 58 of
Annals of Discrete Mathematics. Elsevier, second edition, 2005.

[14] H. N. Gabow and Y. Xu. Efficient theoretic and practical algorithms
for linear matroid intersection problems.Journal of Computer and
System Sciences, 53(1):129–147, 1996.

[15] F. R. Gantmakher.The Theory of Matrices, volume 1. Chelsea, New
York, 1960. Translation by K.A. Kirsch.

[16] J. F. Geelen.Matroids, Matchings, and Unimodular Matrices. PhD
thesis, University of Waterloo, Canada, 1995.

[17] J. F. Geelen. Matching theory. Lecture notes from the Euler Institute
for Discrete Mathematics and its Applications, 2001.

[18] C. D. Godsil.Algebraic Combinatorics. Chapman & Hall, 1993.
[19] M. X. Goemans. Bounded degree minimum spanning trees. InPro-

ceedings of the 21st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2006.

[20] N. J. A. Harvey, D. R. Karger, and K. Murota. Deterministic network
coding by matrix completion. InProceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 05), pages
489–498, 2005.

[21] M. Iri. Applications of matroid theory. In A. Bachem, M. Grötschel,
and B. Korte, editors,Mathematical Programming: The State of the
Art, pages 158–201. 1983.

[22] E. L. Lawler. Matroid intersection algorithms.Mathematical Pro-
gramming, 9:31–56, 1975.

[23] L. Lovász. On determinants, matchings and random algorithms. In
L. Budach, editor,Fundamentals of Computation Theory, FCT ’79,
pages 565–574. Akademie-Verlag, Berlin, 1979.

[24] L. Lovász and M. D. Plummer.Matching Theory. Akad́emiai Kiad́o
– North Holland, Budapest, 1986.

[25] S. Micali and V. V. Vazirani. AnO(
√

V E) algorithm for finding
maximum matching in general graphs. InProceedings of the 21st An-
nual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 17–27, 1980.

[26] M. Mucha. Finding Maximum Matchings via Gaussian Elimination.
PhD thesis, Warsaw University, 2005.

[27] M. Mucha and P. Sankowski. Maximum matchings via Gaussian
elimination. InProceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 248–255, 2004.

[28] K. Murota. Matrices and Matroids for Systems Analysis. Springer-
Verlag, 2000.

[29] H. Narayanan, H. Saran, and V. V. Vazirani. Randomized parallel al-
gorithms for matroid union and intersection, with applications to ar-
boresences and edge-disjoint spanning trees.SIAM Journal on Com-
puting, 23(2):387–397, 1994.

[30] M. O. Rabin and V. V. Vazirani. Maximum matchings in general
graphs through randomization.Journal of Algorithms, 10(4):557–
567, 1989.

[31] P. Sankowski. Dynamic transitive closure via dynamic matrix in-
verse. InProceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 509–517, 2004.

[32] P. Sankowski. Processor efficient parallel matching. InProceedings
of the 17th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), pages 165–170, 2005.

[33] A. Schrijver.Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag, 2003.

[34] A. Schrijver. On the history of combinatorial optimization (till 1960).
In K. Aardal, G. L. Nemhauser, and R. Weismantel, editors,Discrete
Optimization, volume 12 ofHandbooks in Operations Research and
Management Science, pages 1–68. North Holland, 2005.

[35] G. Strang.Linear Algebra and its Applications. Thomson Learning,
1988.

[36] N. Tomizawa and M. Iri. An Algorithm for Determining the Rank
of a Triple Matrix ProductAXB with Application to the Problem of
Discerning the Existence of the Unique Solution in a Network.Elec-
tronics and Communications in Japan (Scripta Electronica Japonica
II) , 57(11):50–57, Nov. 1974.

[37] W. T. Tutte. The factorization of linear graphs.Journal of the London
Mathematical Society, 22:107–111, 1947.

[38] V. V. Vazirani. A theory of alternating paths and blossoms for prov-
ing correctness of theO(

√
V E) general graph matching algorithm.

In Proceedings of the 1st Integer Programming and Combinatorial
Optimization Conference (IPCO), pages 509–530, 1990.

A. Additional Proofs
Proof (of Fact 1). This is Jacobi’s theorem. The following
proof is folklore; see also Gantmakher [15,§1.4]. LetM be

of the formM = (W X
Y Z) and letM−1 =

(
Ŵ X̂
Ŷ Ẑ

)
. Note

that (
W X
Y Z

)
·
(

Ŵ 0
Ŷ I

)
=

(
I X
0 Z

)
.

Taking the determinant of both sides shows thatdet M ·
det Ŵ = det Z. This proves the result whenM [I, J] is

the south-east submatrixZ. The general result follows via
row/column permutations. ¥
Proof (of Fact 2). See Murota [28]. Note that:

(
W−XZ−1Y 0

Z−1Y I

)
=

(
I −X
0 I

) · (I 0
0 Z−1

) · (W X
Y Z) . (A.1)

Taking the determinant of both sides proves the fact.¥
Proof (of Fact 3). The condition for non-singularity ofW
follows from Fact 1. To prove the equation forW−1, we
reverse the roles ofM andM−1, i.e., we considerŴ−1

instead. Take inverses in Eq. (A.1):
(

(W−XZ−1Y)−1 0

Z−1Y (W−XZ−1Y)−1 I

)
=

(
Ŵ X̂
Ŷ Ẑ

)
· (I 0

0 Z) · (I X
0 I)

=
(

Ŵ ŴX+X̂Z

Ŷ Ŷ X+ẐZ

)
.

The equality of the north-west submatrices shows that
Ŵ−1 = W −XZ−1Y , as desired. ¥
Proof (of Fact 4). First we prove the condition for exis-

tence ofM̃−1. Consider the matrixA =
(
−c−1 vT

u M

)
. Use

Fact 2 first on the south-east submatrixM , and then on the
north-west submatrix−c−1, obtaining:

detM · det
(− c−1 − vTM−1u

)

= det A = (−c−1) · det
(
M − u(−c)vT)

.

This shows thatM̃ is non-singular iffα 6= 0. To verify the
equation forM̃−1, note that

(
M + cuvT) · (M−1 − α−1M−1uvTM−1

)
= I. ¥

Proof (of Fact 5). Suppose thatM−1 exists. Then

(M−1)i,j =
(
(M−1)T)j,i =

(
(MT)−1)j,i

=
(
(−M)−1)j,i = −(M−1)j,i. ¥

Proof (of Lemma 3.1). First, note thatX(j)
∗,i = X

(k)
∗,i if

i ≤ j ≤ k sinceY is strictly upper triangular. Define
A =

(
I−Y 0

X I

)
, and consider performing Gaussian elimi-

nation onA. Let S(i) denote the south-west submatrix of
A just before theith elimination. An easy inductive argu-
ment shows thatS(i)

∗, i:n = X
(i)
∗, i:n. The (lower half of the)

column vector involved in theith elimination is therefore
S

(i)
∗, i = X

(n)
∗, i . Now consider the LU-decomposition ofA:

(
I − Y 0

X I

)
=

(
I 0
B I

)
·
(

I − Y 0
0 I

)
.

It is well-known thatB∗,i is precisely the (lower half of
the) column involved in theith elimination (see, e.g., Strang
[35]). ThusB = X(n) = X ⊗ Y . The lemma follows by
observing thatX = B · (I − Y). ¥

