
A second course in randomized algorithms

(some notes that are not intended for publication)

Nick Harvey
University of British Columbia

March 12, 2023

Contents

20 A Warmup: Set Cover 5

20.1 Definition and Background 5

20.2 Randomized Rounding 7

21 Concentration Bounds, with details 9

21.1 Chernoff bound, in detail 9

21.2 Proofs for Chernoff Bound 10

21.3 Proof of the Hoeffding Bound 14

22 More Applications of Concentration 18

22.1 Balls and Bins: The Heaviest Bin 18

22.2 Congestion Minimization 19

22.3 Error-correcting codes 22

23 Dimensionality Reduction 27

23.1 Intuition 27

23.2 The Johnson-Lindenstrauss Theorem 28

23.3 Fast Johnson-Lindenstrauss 34

23.4 Subspace Embeddings 39

24 Applications of Johnson-Lindenstrauss 44

24.1 Streaming algorithms for `2 44

24.2 Euclidean nearest neighbor 46

24.3 Fast Least-Squares Regression 50

24.4 Approximate Matrix Multiplication 52

25 Polynomial Methods 54

25.1 Polynomial Identity Testing 54

25.2 Bipartite Matching 57

2

26 Martingales 61

26.1 Introduction 61

26.2 Definitions 62

26.2.1 Background on expectations 63

26.2.2 An equivalence for martingales 64

26.2.3 Relaxing to inequalities 65

26.3 Azuma’s Inequality 66

26.4 Applications of Azuma’s Inequality 66

26.4.1 Balls and bins, Bloom filters 66

26.4.2 Vertex coloring 68

26.5 Proof of Azuma’s inequality 70

27 Gradient Descent 72

27.1 Unconstrained gradient descent 72

27.2 Projected gradient descent 73

27.3 Stochastic gradient descent 75

27.3.1 Application: training ML models 77

27.3.2 Application: geometric median 78

27.4 Scaling reductions 79

28 The Lovász Local Lemma 81

28.1 Statement of the Symmetric LLL 81

28.2 Application: k-SAT 82

28.3 Symmetric LLL: a proof sketch 83

28.4 The General LLL 84

28.5 An Algorithmic Local Lemma 85

I Back matter 90

Acknowledgements 91

B Mathematical Background 92

B.1 Miscellaneous Facts 92

B.2 Geometry and norms 92

B.3 Facts from Convex Analysis 93

B.4 Probability 97

3 c©Nicholas Harvey 2021. All rights reserved.

References 101

4 c©Nicholas Harvey 2021. All rights reserved.

Chapter 20

A Warmup: Set Cover

20.1 Definition and Background

Suppose we have a family of sets

S1, . . . , Sm where
m⋃
j=1

Sj = [n].

The set [n] is called the ground set ; recall that [n] is standard notation for {1, . . . , n}. Clearly each
set in the family satisfies Sj ⊆ [n].

We would like to choose as few of those sets as possible, while preserving the property that their union
equals [n]. In mathematical notation, the Set Cover problem is

min

 |C| : C ⊆ [m] and
⋃
j∈C

Sj = [n]

 .

Let OPT to refer to this minimum value.

An algorithm for this problem is called an α-approximation if it always outputs a cover C satisfying
|C| ≤ α ·OPT. Clearly α ≥ 1. Here α could be a constant or it could depend on other parameters, like
n or m.

Some known facts about the Set Cover problem.

• It is NP-hard, as was shown by Karp in 1972. Thus, it is unlikely that any polynomial time
algorithm can guarantee to produce an exact solution.

• The natural greedy algorithm is a lnn-approximation algorithm.

• For every constant c < 1, it is very unlikely that there is a (c lnn)-approximation algorithm. (If
such an algorithm existed, this would have similar consequences to P=NP.) Thus, the greedy
algorithm is the best possible.

Instead of discussing the greedy algorithm, we will discuss this problem with a viewpoint of mathematical
optimization.

5

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization

Integer program. The first step is to write the problem as an integer program (IP). For each j ∈ [m],
we create a Boolean variable xj that indicates whether we select the set Sj . Using these variables, we
can write the problem as

min
m∑
j=1

xj

s.t.
∑

j : i∈Sj

xj ≥ 1 ∀i ∈ [n]

xj ∈ {0, 1} ∀j ∈ [m]

The objective function
∑m

j=1 xj counts the number of chosen sets. The ith inequality constraint ensures
that at least one of the chosen sets contains element i. Thus, this integer program captures the Set
Cover problem exactly. It follows that its minimum value is also OPT, and it is also NP-hard to solve
exactly.

Linear program. The next idea is to relax the integer program to a linear program (LP), by
allowing the variables xj to lie in the interval [0, 1] rather than the discrete set {0, 1}. The resulting LP
can be written

min

m∑
j=1

xj

s.t.
∑

j : i∈Sj

xj ≥ 1 ∀i ∈ [n]

0 ≤ xj ≤ 1 ∀j ∈ [m]

We will use LPOPT to denote the minimum value of this LP.

Question 20.1.1. Does the value of the LP always equal the value of the IP? That is, does LPOPT
always equal OPT?

Answer.

No.Ifitweretrue,thenwe’dhaveprovenP=NP,becauseLPscanbesolvedinpolynomialtime.That
isnotanairtightargument,butwe’llseeanexamplebelowwheretheydiffer.

Question 20.1.2. Do we always have LPOPT ≤ OPT or LPOPT ≥ OPT?

Answer.

WealwayshaveLPOPT≤OPT.Toseethis,notethateveryfeasiblesolutionxtotheIPisalso
afeasiblesolutiontotheLP.Thus,theLPisminimizingoveralargersetoffeasiblesolutions,and
thereforeitsvaluecanonlybesmaller.

Example 20.1.3. Consider the following example with n = m = 3.

S1 = {1, 2} S2 = {2, 3} S3 = {1, 3} .

It is clear that we must choose at least two sets in order to cover all three elements of the ground set.
However, if we set x1 = x2 = x3 = 0.5, then one can verify that this is a feasible solution to the LP
with objective value 1.5.

Problem to Ponder 20.1.4. In this example, what is LPOPT, the optimal value of the LP?

6 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Integer_programming

The term integrality gap is used to refer to the ratio of the optimum values of an IP and its corre-
sponding LP. Example 20.1.3 shows that our LP for Set Cover has an integrality gap greater than 1.
Nevertheless, the LP is still useful. We will show two results.

1. The integrality gap of this LP is at most ≈ lnn.

2. Given any feasible solution x to the LP, there is a randomized algorithm that, with constant
probability, can produce a valid set cover C whose size is at most ≈ ln(n) ·

∑
j xj .

Question 20.1.5. Do you see why the second assertion implies the first?

Answer.

ConsideranoptimumsolutiontotheLP.IthasobjectivevalueatmostLPOPT.Applyingtherandom-
izedalgorithm,weobtainasetcoversatisfying|C|/ln(n)LPOPT.SincethebestSetCoversolutionis
nolargerthanC,itfollowsthatOPT/ln(n)LPOPT,whichgivesthedesiredboundontheintegrality
gap.

20.2 Randomized Rounding

In this section we design an algorithm that will prove the second assertion above. This is called a
rounding algorithm, because it converts a fractional solution into an integral solution.

Algorithm 20.1 Rounding the Set Cover LP. Assume that the input x is a feasible solution to the LP.

1: function SetCoverRound(x)
2: Let C ← ∅ . The indices of the chosen sets
3: Let L← ln(4n) . The rounding has L phases
4: for t = 1, . . . , L
5: for j = 1, . . . ,m
6: Add j to C independently with probability xj
7: return C
8: end function

Lemma 20.2.1. The output C fails to cover all elements in [n] (i.e.,
⋃
j∈C Sj 6= [n]) with probability

at most 1/4.

Claim 20.2.2. Consider the tth phase of the algorithm. Each element i ∈ [n] fails to be covered by
the sets chosen in this phase with probability at most 1/e.

Proof. Element i is not covered if every set containing i fails to be chosen. The probability of this is

Pr [(j not chosen) ∀j s.t. i ∈ Sj] =
∏

j : i∈Sj

Pr [j not chosen] (by independence)

=
∏

j : i∈Sj

(1− xj)

<
∏

j : i∈Sj

exp(−xj) (by Fact A.2.5)

= exp
(
−
∑

j : i∈Sj

xj

)
.

7 c©Nicholas Harvey 2021. All rights reserved.

This is at most 1/e since x is feasible for the LP.

Proof of Lemma 20.2.1. First let us analyze the probability that a particular element is not covered by
C. For any i ∈ [n],

Pr [element i not covered] =
L∏
t=1

Pr [element i not covered in phase t]

≤
L∏
t=1

(1/e) (by Claim 20.2.2)

= exp(−L) =
1

4n
(since L = ln(4n)).

By a union bound (Fact A.3.8), the probability that any element fails to be covered by C is

Pr [any element not covered by C] ≤
n∑
i=1

Pr [element i not covered by C] ≤
n∑
i=1

1

4n
=

1

4
.

Lemma 20.2.3. The output C has |C| > 4L ·
∑

j xj with probability at most 1/4.

Proof. In each phase, set j is added to C with probability xj , so the expected number of sets added
is
∑

j xj . The expected number of edges added in all iterations is at most L times larger. That is,
E [|C|] ≤ L ·

∑
j xj . It follows that

Pr
[
|C| ≥ 4L ·

∑
jxj

]
≤ E [|C|]

4L ·
∑

j xj
(by Markov’s inequality, Fact A.3.22)

≤
L ·
∑

j xj

4L ·
∑

j xj
=

1

4
.

We conclude with the following theorem.

Theorem 20.2.4. The output C covers all elements and has size at most 4L ·
∑

j xj with probability
at least 1/2.

References: (Shmoys and Shmoys, 2010, Section 1.7).

Proof. By Lemma 20.2.1, C fails to cover all elements with probability at most 1/4. By Lemma 20.2.3,
C has size exceeding 4L ·

∑
j xj with probability at most 1/4. By a union bound, the probability that

either of these occurs is at most 1/2.

Corollary 20.2.5. There is a randomized, polynomial-time algorithm that gives a 4 ln(4n)-approximation
to the Set Cover problem.

Proof. Compute an optimum solution x to the linear program; it satisfies
∑

j xj = LPOPT. This can
be done in polynomial time, for example by interior point methods. By Theorem 20.2.4, the rounding
algorithm above has probability 1/2 of producing a Set Cover solution C with

|C| ≤ 4L ·
∑
j

xj = 4L · LPOPT ≤ 4L ·OPT.

Problem to Ponder 20.2.6. By adjusting the parameters, show that the integrality gap is at most
(1 + 2ε) ln(n/ε) for any ε > 0.

8 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Interior-point_method

Chapter 21

Concentration Bounds, with details

21.1 Chernoff bound, in detail

The Chernoff bound was presented in a simplified form in Theorem 9.2.2. Let us now present it in a
more elaborate form.

Let X1, . . . , Xn be independent random variables such that Xi always lies in the interval [0, 1]. Define
X =

∑n
i=1Xi. The expectation E [X] need not be exactly known, but we assume that µ̌ ≤ E [X] ≤ µ̂.

If it is exactly known, we may define µ̌ = µ̂ = E [X].

Theorem 21.1.1. For all δ > 0,

Right tail: Pr [X ≥ (1 + δ)µ̂]
(a)

≤
(

eδ

(1+δ)1+δ

)µ̂ (b)

≤

e−δ

2µ̂/3 (if δ ≤ 1) “Gaussian tail”

e−(1+δ) ln(1+δ)µ̂/4 (if δ ≥ 1) “Poisson tail”

e−δµ̂/3 (if δ ≥ 1) “Exponential tail”

Left tail: Pr [X ≤ (1− δ)µ̌]
(c)

≤
(

e−δ

(1−δ)1−δ

)µ̌ (d)

≤ e−δ
2µ̌/2

“Gaussian tail”.

Inequalities (c) and (d) are only valid for δ < 1, but Pr [X ≤ (1− δ)µ̌] = 0 if δ > 1.

References: (McDiarmid, 1998, Theorem 2.3), (Lehman et al., 2018, Theorem 20.5.1), (Motwani and Raghavan, 1995, Section 4.1),

(Mitzenmacher and Upfal, 2005, equations (4.2) and (4.5)), (Klenke, 2008, Exercise 5.2.1), Wikipedia.

The tails have a qualitative difference in their dependence on δ.

• The “Gaussian tails” depend on δ2 . This resembles a Gaussian distribution (see Appendix B.4.3),
whose tails look like exp(−δ2/2) (see Fact B.4.8).

• The “Poisson tail” depends on δ ln δ . This resembles a Poisson distribution, whose mass function
function looks like1 1/δ! ≈ exp(−δ ln δ).

• The “Exponential tail” depends on δ . This resembles the exponential distribution, whose tail
looks like e−δ. This is weaker, but more convenient, than the “Poisson tail”.

1See, e.g., (Vershynin, 2018, Theorem 1.3.4) or these lecture notes.

9

http://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
http://www.stat.yale.edu/~pollard/Courses/241.fall97/Poisson.pdf

21.2 Proofs for Chernoff Bound

21.2.1 Proof of inequality (a)

The Chernoff bounds would not be true without the assumption that X1, . . . , Xn are independent. What
special properties do independent random variables have? One basic property is that

E [A ·B] = E [A] · E [B] (21.2.1)

for any independent random variables A and B.

References: (Lehman et al., 2018, Theorem 19.5.6), (Anderson et al., 2017, Fact 8.10), (Feller, 1968, Theorem IX.2.3), (Cormen

et al., 2001, Exercise C.3-5), (Motwani and Raghavan, 1995, Proposition C.6), (Mitzenmacher and Upfal, 2005, Theorem 3.3),

(Grimmett and Stirzaker, 2001, Lemma 3.3.9), (Durrett, 2019, Theorem 2.1.13), (Klenke, 2008, Theorem 5.4).

But the Chernoff bound has nothing to do with products of random variables, it is about sums of random
variables. So one trick we could try is to convert sums into products using the exponential function.
Fix some parameter θ > 0 whose value we will choose later. We will look at the random variables

exp(θXi) ∀i ∈ [n]

and exp(θX) = exp
(
θ

n∑
i=1

Xi

)
=

n∏
i=1

exp(θXi)

Since X1, . . . , Xn are independent, it follows2 that eθX1 , . . . , eθXn are also independent. Therefore, using
(21.2.1) repeatedly,

E
[
eθX

]
=

n∏
i=1

E
[
eθXi

]
. (21.2.2)

So far this all seems promising. We want to prove that X is small, which is equivalent to proving that
eθX is small. Using (21.2.2), we can do this by showing that each E

[
eθXi

]
is small. Perhaps we can

somehow show E
[
eθXi

]
is small by comparing it to E [Xi]?

If we were forgetting the rules of probability, we might be tempted to say that E
[
eθXi

]
equals eθE[Xi],

but that is false. We might remember one useful probability trick called Jensen’s inequality (Fact B.4.2)
that says f(E [A]) ≤ E [f(A)] for any random variable A and any convex function f . Applying this
with f(x) = eθx, we see that

eθE[Xi] ≤ E
[
eθXi

]
. (21.2.3)

So we get a lower bound on E
[
eθXi

]
in terms of E [Xi], but we actually wanted an upper bound.

Claim 21.2.2 gives the desired upper bound; it shows that the inequality in (21.2.3) can almost be
reversed. The proof is easy once we have the following convexity fact.

Claim 21.2.1. For all θ ∈ R and all x ∈ [0, 1],

exp(θx) ≤ 1 + (eθ − 1)x ≤ exp
(
(eθ − 1)x

)
.

The inequalities are illustrated by this plot.

2See (Lehman et al., 2018, Lemma 19.2.2), (Cormen et al., 2001, Equation (C.24)), (Grimmett and Stirzaker, 2001,
Theorem 3.2.3), (Klenke, 2008, Remark 2.15(iii)).

10 c©Nicholas Harvey 2021. All rights reserved.

Proof of Claim 21.2.1. Consider the first inequality eθx ≤ 1 + (eθ − 1)x for all x ∈ [0, 1]. This follows
from Fact B.3.6 by setting c = eθ. The second inequality 1 + (eθ − 1)x ≤ exp((eθ − 1)x) follows from
the familiar Fact A.2.5.

Claim 21.2.2. Let θ ∈ R be arbitrary. Then E
[
eθXi

]
≤ exp

(
(eθ − 1) E [Xi]

)
.

Proof. The main idea is as follows. Although we cannot “pull the expectation inside the exponential”,
we can use Claim 21.2.1 to approximate the exponential by a linear function, then “pull the expectation
inside” via linearity of expectation, then finally switch back to an exponential function.

The formal argument is

E
[
eθXi

]
≤ E

[
1 + (eθ − 1)Xi

]
= 1 + (eθ − 1) E [Xi] ≤ exp((eθ − 1) E [Xi]),

where both inequalities follow from Claim 21.2.1.

Now we are ready to prove the inequality (a) of the Chernoff bound.

Pr [X ≥ (1 + δ)µ̂] = Pr
[

exp(θX) ≥ exp
(
θ(1 + δ)µ̂

)]
(by monotonicity)

≤ E [exp(θX)]

exp(θ(1 + δ)µ̂)
(by Markov’s inequality)

=

∏n
i=1 E

[
eθXi

]
exp(θ(1 + δ)µ̂)

(by (21.2.2))

≤
∏n
i=1 exp((eθ − 1) E [Xi])

exp(θ(1 + δ)µ̂)
(by Claim 21.2.2).

Gathering everything inside one exponential we get

Pr [X ≥ (1 + δ)µ̂] ≤ exp
(

(eθ − 1)
∑
i

E [Xi]− θ(1 + δ)µ̂
)
.

Finally, substituting θ = ln(1 + δ) and using
∑

i E [Xi] = E [X] ≤ µ̂ proves inequality (a).

References: Another exposition of inequality (a) can be found in (Lehman et al., 2018, Section 20.5.6).

11 c©Nicholas Harvey 2021. All rights reserved.

21.2.2 Proof of inequality (b), when δ ∈ [0, 1]

Claim 21.2.3. Then (1 + x) ln(1 + x)− x ≥ ln(2)
2 · x2 for all x ∈ [0, 1].

Proof. Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1]. By simple calculus,

d

dx

[
(1 + x) ln(1 + x)− x

]
= ln(1 + x) and

d

dx

ln(2)

2
x2 = ln(2)x.

These derivatives are illustrated in the following figure.

They agree when x = 0 (both equal zero) and also agree when x = 1 (both equal ln 2). Thus we have
ln(1 + x) ≥ ln(2)x for all x ∈ [0, 1], since the LHS is concave and the RHS is linear.

Inequality (b) now follows straightforwardly because

eδ

(1 + δ)1+δ
= exp

(
−
(
(1 + δ) ln(1 + δ)− δ

))
≤ exp

(
− ln 2

2
δ2
)

(by Claim 21.2.3)

≤ e−δ
2/3,

since ln(2) > 0.69 > 2/3.

21.2.3 Proof of inequality (b), δ ≥ 1

Claim 21.2.4. Define

f(x) = (1 + x) ln(1 + x)− x
g(x) = (1 + x) ln(1 + x)/4

h(x) = x/3

Then f(x) > g(x) > h(x) for x ≥ 1.

12 c©Nicholas Harvey 2021. All rights reserved.

This claim is illustrated by the following plot.

Proof. First we observe that the claimed inequality holds at the point x = 1. We have

f(1) = 2 ln(2)− 1 > 0.38

g(1) = ln(2)/4 ≈ 0.346

h(1) = 1/3 < 0.34.

We will show that their derivatives satisfy

d

dx
f(x)

(1)

≥ d

dx
g(x)

(2)

≥ d

dx
h(x) ∀x ≥ 1,

from which the claim follows by integration. These derivatives have the following expressions.

d

dx
f(x) = ln(1 + x)

d

dx
g(x) = (1 + ln(1 + x))/4 and

d

dx
h(x) = 1/3.

Inequality (2) is straightforward. For x ≥ 1, we have (1 + ln(1 + x))/4 ≥ (1 + ln(2))/4 ≈ 0.423, which
is greater than 1/3.

For inequality (1), first observe that y ≥ (1 + y)/4 for y ≥ 1/3. Substituting y ← ln(1 + x) gives
ln(1 + x) ≥ (1 + ln(1 + x))/4 for x ≥ e1/3 − 1 ≈ 0.395. This implies (1).

We can now show inequality (b) of Theorem 21.1.1 in the case δ ≥ 1. Using the notation of Claim 21.2.4,

eδ

(1 + δ)1+δ
= exp

(
−
(
(1 + δ) ln(1 + δ)− δ

))
= exp

(
− f(δ)

)
< exp

(
− g(δ)

)
< exp

(
− h(δ)

)
.

Substitituting the definition of g and h, we obtain(eδ

(1 + δ)1+δ

)µ̂
< exp

(
− (1 + δ) ln(1 + δ)µ̂/4

)
< exp

(
− δµ̂/3

)
.

13 c©Nicholas Harvey 2021. All rights reserved.

21.2.4 Proof of inequality (c)

The argument is very similar to the proof of inequality (a). We will choose θ to be negative.

Pr [X ≤ (1− δ)µ̌] = Pr
[

exp(θX) ≥ exp
(
θ(1− δ)µ̌

)]
(by monotonicity and θ < 0)

≤ E [exp(θX)]

exp(θ(1− δ)µ̌)
(by Markov’s inequality)

≤
∏n
i=1 exp((eθ − 1) E [Xi])

exp(θ(1− δ)µ̌)
(by Claim 21.2.2)

= exp
(

(eθ − 1)
n∑
i=1

E [Xi]− θ(1− δ)µ̌
)

≤ exp
(

(eθ − 1)µ̌− θ(1− δ)µ̌
)
.

This last inequality holds because θ < 0 so eθ − 1 < 0, and because µ̌ ≤
∑n

i=1 E [Xi]. Plugging in
θ = ln(1− δ), which is negative, we obtain

Pr [X ≤ (1− δ)µ̌] =
(e−δ

(1− δ)1−δ

)µ̌
,

which is inequality (c).

21.2.5 Proof of inequality (d)

The statement and the proof are similar to Claim 21.2.3.

Claim 21.2.5. Then (1− x) ln(1− x) + x ≥ 1
2 · x

2 for all x ∈ [0, 1).

Proof. Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1). By simple calculus,

d

dx

[
(1− x) ln(1− x) + x

]
= − ln(1− x) and

d

dx
x2/2 = x.

The linear approximation of − ln(1− x) at x = 0 is

x · ddx
(
− ln(1− x)

)∣∣∣
x=0

= x ·
(

1
1−x
)∣∣∣
x=0

= x.

Furthermore, − ln(1 − x) is convex on [0, 1) because its second derivative is 1/(1 − x)2 ≥ 0. Thus
− ln(1− x) ≥ x on [0, 1).

Inequality (d) now follows straightforwardly because, using Claim 21.2.5,

e−δ

(1− δ)1−δ = exp
(
−
(
(1− δ) ln(1− δ) + δ

))
≤ exp

(
− δ2/2

)
.

21.3 Proof of the Hoeffding Bound

The Hoeffding Bound was introduced in Section 9.3. We will prove the following slightly weaker result.

Theorem 21.3.1. Let X1, . . . , Xn be independent random variables such that Xi always lies in the
interval [0, 1]. Define X =

∑n
i=1Xi. Then

Pr [|X − E [X]| ≥ t] ≤ 2 exp(−t2/2n) ∀t ≥ 0.

14 c©Nicholas Harvey 2021. All rights reserved.

Simplifications. First of all, we will “center” the random variables, which cleans up the inequality
by eliminating the expectation. Define X̂i = Xi − E [Xi] and X̂ =

∑n
i=1 X̂i. Note that3 X̂i ∈ [−1, 1].

Our main argument is to prove that

Pr
[
X̂ ≥ t

]
≤ exp(−t2/2n). (21.3.1)

The same argument also applies to −X̂, so we get that

Pr
[
−X̂ ≥ t

]
= Pr

[
X̂ ≤ −t

]
≤ exp(−t2/2n).

Combining them with a union bound, we get

Pr [|X − E [X]| ≥ t] = Pr
[
|X̂| ≥ t

]
≤ Pr

[
X̂ ≥ t

]
+ Pr

[
−X̂ ≥ t

]
≤ 2 exp(−t2/2n).

This proves the theorem (with the weaker exponent).

Proof of (21.3.1). As in the proof of the Chernoff Bound (see (21.2.1)), we will use the fact that
E [A ·B] = E [A] · E [B] for any independent random variables A and B.

Key Idea #1: As in the proof of the Chernoff Bound, we will convert sums into products using the
exponential function. Fix some parameter λ > 0 whose value we will choose later. Define

Yi = exp(λX̂i)

Y = exp(λX̂) = exp
(
λ

n∑
i=1

X̂i

)
=

n∏
i=1

exp(λX̂i) =
n∏
i=1

Yi.

It is easy to check that, since {X1, . . . , Xn} is mutually independent, so is
{
X̂1, . . . , X̂n

}
and {Y1, . . . , Yn}.

Therefore, as in (21.2.2),

E [Y] =
n∏
i=1

E [Yi] . (21.3.2)

So far this all seems quite good. We want to prove that X̂ is small, which is equivalent to proving Y is
small. Using (21.3.2), we can do this by showing that the E [Yi] terms are small. Doing so involves an
extremely useful tool.

Key Idea #2: The second main idea is a clever trick to bound terms of the form E [exp(λA)], where
A is a mean-zero random variable. We discuss this idea in more detail in the next subsection. We will
use4 Lemma 21.3.2 to show

E [Yi] = E
[

exp(λX̂i)
]
≤ exp(λ2/2). (21.3.3)

Thus, combining this with (21.3.2),

E [Y] ≤
n∏
i=1

exp(λ2/2) = exp(λ2n/2). (21.3.4)

3This step is where the argument is not careful enough to obtain the optimal exponent: X̂i is actually supported on
an interval of length 1, although our argument only assumes that it is supported on an interval of length 2.

4If we were more careful here and instead used Lemma 21.3.4, we could improve the constant in the exponent in
(21.3.3) from 1/2 to 1/8. This would improve the constant in the exponent in (21.3.1) from 1/2 to 2.

15 c©Nicholas Harvey 2021. All rights reserved.

Now we are ready to prove Hoeffding’s inequality:

Pr
[
X̂ ≥ t

]
= Pr

[
exp(λX̂) ≥ exp

(
λt
)]

(by monotonicity of ex)

≤
E
[

exp(λX̂)
]

exp(λt)
(by Markov’s inequality)

= E [Y] · exp(−λt)
≤ exp(λ2n/2− λt) (by (21.3.4))

= exp(−t2/2n),

by optimizing to get λ = t/n.

21.3.1 Hoeffding’s Lemma

The second main idea of Hoeffding’s inequality is the following claim.

Lemma 21.3.2 (Hoeffding’s Lemma, symmetric version). Let A be a random variable such that
|A| ≤ 1 with probability 1 and E [A] = 0. Then for any λ > 0, we have E [exp(λA)] ≤ exp(λ2/2).

Intuitively, the expectation should be maximized by the random variable A that is uniform on {−1,+1}.
In this case,

E [exp(λA)] =
1

2
eλ − 1

2
e−λ ≤ eλ

2/2.

This inequality is a nice bound on the hyperbolic cosine function (Claim 21.3.3). The full proof of
Lemma 21.3.2 basically reduces to the case of A ∈ {−1, 1} using convexity of ex.

Proof. Define p = (1 + A)/2 and q = (1 − A)/2. Observe that p, q ≥ 0, p + q = 1, and p − q = A. By
convexity,

exp(λA) = exp
(
λ(p− q)

)
= exp

(
λp+ (−λ)q

)
≤ p · exp(λ) + q · exp(−λ) =

eλ + e−λ

2
+
A

2
(eλ − e−λ).

Thus,

E [exp(λA)] ≤ E

[
eλ + e−λ

2
+
A

2
(eλ − e−λ)

]
=

eλ + e−λ

2
,

since E [A] = 0. This last quantity is bounded by the following technical claim.

Claim 21.3.3 (Approximation of Cosh). For any real x, we have (ex + e−x)/2 ≤ exp(x2/2).

References: (Alon and Spencer, 2000, Lemma A.1.5).

Proof. First observe that the product of all the even numbers at most 2n does not exceed the product
of all numbers at most 2n. In symbols,

2n(n!) =

n∏
i=1

(2i) ≤
2n∏
i=1

i = (2n)!

Now to bound (ex + e−x)/2, we write it as a Taylor series and observe that the odd terms cancel.

ex + e−x

2
=
∑
n≥0

xn

n!
+
∑
n≥0

(−x)n

n!
=
∑
n≥0

x2n

(2n)!
≤
∑
n≥0

x2n

2n(n!)
=
∑
n≥0

(x2/2)n

n!
= exp(x2/2).

16 c©Nicholas Harvey 2021. All rights reserved.

A common scenario is that A is mean-zero, but lies in an “asymmetric” interval [a, b], where a < 0 < b. A
tighter version of Lemma 21.3.2 can be derived for this scenario, although its proof is more complicated.

Lemma 21.3.4 (Hoeffding’s Lemma, asymmetric version). Let A be a random variable such that A ∈
[a, b] with probability 1 and E [A] = 0. Then for any λ > 0, we have E [exp(λA)] ≤ exp

(
λ2(b− a)2/8

)
.

References: (McDiarmid, 1998, Lemma 2.6), (Cesa-Bianchi and Lugosi, 2006, Lemma A.1), (Shalev-Shwartz and Ben-David, 2014,

Lemma B.7), (Alon and Spencer, 2000, Theorem A.1.17), Wikipedia.

The proof uses ideas similar to the proof of Lemma 21.3.2, except we cannot use Claim 21.3.3 and must
instead use an ad-hoc calculus argument.

21.3.2 Generalizations

Theorem 21.3.5 (Hoeffding’s General Inequality). Let X1, . . . , Xn be independent random variables
where Xi ∈ [ai, bi]. Let X =

∑n
i=1Xi. Then

Left tail: Pr

[
n∑
i=1

Xi ≤ E [X]− s

]
≤ exp

(
− 2

s2∑n
i=1(bi − ai)2

)
Right tail: Pr

[
n∑
i=1

Xi ≥ E [X] + s

]
≤ exp

(
− 2

s2∑n
i=1(bi − ai)2

)
Combined tails: Pr

[∣∣∣∣∣
n∑
i=1

Xi − E [X]

∣∣∣∣∣ ≥ s
]
≤ 2 exp

(
− 2

s2∑n
i=1(bi − ai)2

)
.

In particular, for any desired q ∈ (0, 1), setting s =
√

ln(2/q)
∑n

i=1(bi − ai)2/2 gives

Pr [|
∑

iXi − E [X]| ≥ s] ≤ q.

References: (McDiarmid, 1998, Theorem 2.5), (Vershynin, 2018, Theorem 2.2.6), (Boucheron et al., 2012, Theorem 2.8), (Roch,

2020, Theorem 2.40), (Dubhashi and Panconesi, 2009, Problem 1.9), (Grimmett and Stirzaker, 2001, Theorem 12.2.3), Wikipedia.

21.4 Exercises

Exercise 21.1 Massart’s Lemma. Let P ⊂ Rd be a set of points satisfying ‖p‖ ≤ 1 for all
p ∈ P . Let m = |P |. Let ξ1, . . . , ξd ∈ {−1,+1} be uniform and independent random signs.

Part I. Prove that, for all s ≥ 0,

Pr

[
max
p∈P

d∑
i=1

piξi ≥ s

]
≤ m · exp(−s2/2).

Part II. Prove that

E

[
max
p∈P

d∑
i=1

piξi

]
≤ 2
√

lnm+O(1).

References: (Shalev-Shwartz and Ben-David, 2014, Lemma 26.8).

17 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Hoeffding%27s_lemma
http://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Chapter 22

More Applications of Concentration

22.1 Balls and Bins: The Heaviest Bin

Let us return to the topic of balls and bins, which was first introduced in Chapter 7. Consider throwing
n balls into n bins, uniformly and independently. Let Bi be the number of balls in bin i. In Section 7.6
we used an ad hoc argument to analyze the load on the heaviest bin, namely maxiBi. Now we will give
an alternative analysis using the Chernoff bound.

Theorem 22.1.1. Assume n ≥ 3. Define k = 16 lnn/ ln lnn. With probability at least 1 − 1/n, the
heaviest bin has at most k balls. That is,

Pr

[
max
i
Bi ≤ k

]
≥ 1− 1/n.

This theorem is optimal up to constant factors. It is known that maxiBi ≥ lnn/ ln lnn with probability
at least 1− 1/n. See, e.g., (Mitzenmacher and Upfal, 2005, Lemma 5.12).

Proof. The first step is to give tail bounds on B1. We decompose B1 into indicator random variables as

B1 = X1 +X2 + · · ·+Xn,

where Xj is 1 if the jth ball lands in the first bin. For each j ∈ [n] we have E [Xj] = 1/n, so
E [B1] =

∑
j E [Xj] = 1. What is the probability that this first bin has more than k balls?

We will analyze this event using inequality (b) of the Chernoff bound. Specifically, letting X = B1 and
δ = k − 1, we obtain

Pr [B1 ≥ k] = Pr [B1 ≥ kE [B1]] (since E [B1] = 1)

≤ exp
(
− E [B1] · k ln(k)/4

)
(by the Chernoff bound)

= exp
(
− k ln(k)/4

)
(since E [B1] = 1).

These inequalities require that δ ≥ 1, i.e., k ≥ 2.

18

To proceed any further, we must understand k ln k. A quick calculation gives

k · ln k = 16
lnn

ln lnn
· ln
(16 lnn

ln lnn

)
> 16

lnn

ln lnn
· ln
(lnn√

lnn

)
(since

√
x > lnx for all x > 0)

= 16
lnn

ln lnn
· ln
(√

lnn
)

= 8
lnn

ln lnn
· ln lnn = 8 lnn.

Plugging that in,

Pr [B1 ≥ k] ≤ exp
(
− k ln(k)/4

)
≤ exp

(
− 2 lnn

)
= n−2. (22.1.1)

So bin 1 is unlikely to have more than α balls.

Here we have analyzed bin 1, but the bins are all equivalent so the same analysis actually holds for all
bins. The remainder of the argument is just the union bound.

Pr [any bin has ≥ k balls] = Pr [B1 ≥ k ∨ B2 ≥ k ∨ · · · ∨ Bn ≥ k]

≤
n∑
i=1

Pr [Bi ≥ k] (Fact A.3.8)

≤
n∑
i=1

1

n2
(by (22.1.1))

=
1

n
.

Thus, with probability at least 1− 1/n, all bins have at most k balls.

22.2 Congestion Minimization

One of the classically important areas in algorithm design and combinatorial optimization is network
flows. A central problem in that area is the maximum flow problem. We now look at a generalization
of this problem.

An instance of the problem consists of a directed graph G = (V,A) and a sequence (s1, t1), . . . , (sk, tk)
of pairs of vertices. Let n = |V |. (It is not crucial that the graph be directed; the problem is equally
interesting in undirected graphs. However in network flow problems it is often more convenient to look
at directed graphs. Feel free to think about whatever variant you find easier.)

A natural question to ask is: do there exist paths Pi from si to ti for every i such that these paths share
no arcs? This is called the edge-disjoint paths problem. Quite remarkably, it is NP-hard even in the
case k = 2, assuming the graph is directed. For undirected graphs, it is polynomial time solvable if k is
a fixed constant, but NP-hard if k is a sufficiently large function of n.

We will look at a variant of this problem called the congestion minimization problem. The idea is
to allow each arc to be used in multiple paths, but not too many. The number of paths using a given
arc is the “congestion” of that arc. We say that a solution has congestion C if it is a collection of paths
Pi from si to ti, where each arc is contained in at most C of the paths. The problem is to find the

19 c©Nicholas Harvey 2021. All rights reserved.

minimum value of C such that there is a solution of congestion C. This problem is still NP-hard, since
determining if C = 1 is the edge-disjoint paths problem.

We will look at the congestion minimization problem from the point of view of approximation algorithms.
Let OPT be the minimum congestion of any solution. We would like to give an algorithm which can
produce a solution with congestion at most α · OPT for some α ≥ 1. This factor α is the called the
approximation factor of the algorithm.

Theorem 22.2.1. There is an algorithm for the congestion minimization problem with approximation
factor O(log n/ log logn).

To design such an algorithm we will use linear programming. We write down an integer program (IP)
which captures the problem exactly, relax that to a linear program (LP), then design a method for
“rounding” solutions of the LP into solutions for the IP.

The Integer Program. Writing an IP formulation of an optimization problem is usually quite
simple. That is indeed true for the congestion minimization problem. However, we will use an IP
which you might find rather odd: our IP will have exponentially many variables. This will simplify our
explanation of the rounding.

Let Pi be the set of all paths in G from si to ti. (Note that |Pi| may be exponential in n.) For every
path P ∈ Pi, we create a variable xiP . This variable will take values only in {0, 1}, and setting it to 1
corresponds to including the path P in our solution.

The integer program is as follows

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

xiP ∈ {0, 1} ∀i = 1, . . . , k and P ∈ Pi

The last constraint says that we must decide for every path whether or not to include it in the solution.
The first constraint says that the solution must choose exactly one path between each pair si and ti.
The second constraint ensures that the number of paths using each arc is at most C. The optimization
objective is to find the minimum value of C such that a solution exists.

Every solution to the IP corresponds to a solution for the congestion minimization problem with con-
gestion C, and vice-versa. Thus the optimum value of the IP is OPT , which we previously defined to
be the minimum congestion of any solution to the original problem.

This IP is NP-hard to solve, so we relax it into a linear program, by replacing the integrality constraints
with non-negativity constraints. It turns out to be convenient also to add the constraint C ≥ 1. The
resulting linear program is:

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

C ≥ 1
xiP ≥ 0 ∀i = 1, . . . , k and P ∈ Pi

Remarkably, this LP can be solved in time polynomial in n (the number of nodes of G), even though its

20 c©Nicholas Harvey 2021. All rights reserved.

number of variables could be exponential in n. The details are best left for a course on optimization1.
Our algorithm will solve this LP and obtain a solution where the number of non-zero xiP variables is
only polynomial in n. Let C∗ be the optimum value of the LP.

Claim 22.2.2. C∗ ≤ OPT .

Proof. The LP was obtained from the IP by removing constraints. Therefore any feasible solution for
the IP is also feasible for the LP. In particular, the optimal solution for the IP is feasible for the LP. So
the LP has a solution with objective value equal to OPT .

The Rounding. Our algorithm will solve the LP and most likely obtain a “fractional” solution — a
solution with some non-integral variables, which is therefore not feasible for the IP. The next step of
the algorithm is to “round” that fractional solution into a solution which is is feasible for the IP. In
doing so, the congestion might increase, but we will ensure that it does not increase too much.

The technique we will use is called randomized rounding. For each each i = 1, . . . , k, we randomly
choose exactly one path Pi by setting Pi = P with probability xiP . (The LP’s constraints ensure that
these are indeed probabilities: they are non-negative and sum up to 1.) The algorithm outputs the
chosen paths P1, . . . , Pk.

Analysis. All that remains is to analyze the congestion of these paths. Let Y a
i be the indicator

random variable that is 1 if a ∈ Pi and 0 otherwise. Let Y a =
∑

i Y
a
i be the congestion on arc a. The

expected value of Y a is easy to analyze:

E [Y a] =
∑
i

E [Y a
i] =

∑
i

∑
P∈Pi with a∈P

xiP ≤ C∗,

where the inequality comes from the LP’s second constraint. (Recall we assume that the fractional
solution is optimal for the LP, and therefore C = C∗.)

The Chernoff bound says, if X is a sum of independent random variables each of which take values in
[0, 1], and µ is an upper bound on E [X], then

Pr [X ≥ (1 + δ)µ] ≤ exp
(
− µ ·

(
(1 + δ) ln(1 + δ)− δ

))
∀δ > 0.

We apply this to Y a, taking µ = C∗ and α = 1 + δ = 6 log n/ log log n. Following our balls-and-bins
argument from last time,

Pr [Y a ≥ αC∗] ≤ exp
(
− C∗

(
α lnα− (α− 1)

))
≤ exp

(
− α lnα+ α− 1

)
≤ exp

(
− (6/2) lnn

)
= 1/n3.

We now use a union bound to analyze the probability of any arc having congestion greater than αC∗.

Pr [any a has Y a ≥ αC∗] ≤
∑
a∈A

Pr [Y a ≥ αC∗] ≤
∑
a∈A

1/n3 ≤ 1/n,

1There are two ways to do this. The first way is to solve the dual LP using the ellipsoid method. This can be done in
poly(n) time even though it can have exponentially many constraints. The second way is to find a “compact formulation”
of the LP which uses fewer variables, much like the usual LP that you may have seen for the ordinary maximum flow
problem.

21 c©Nicholas Harvey 2021. All rights reserved.

since the graph has at most n2 arcs. So, with probability at least 1 − 1/n, the algorithm produces a
solution for which every arc has congestion at most αC∗, which is at most α ·OPT by Claim 22.2.2. So
our algorithm has approximation factor α = O(log n/ log log n).

Further Remarks. The rounding algorithm that we presented is actually optimal: there are graphs
for which OPT/C∗ = Ω(log n/ log log n). Consequently, every rounding algorithm which converts a frac-
tional solution of LP to an integral solution of IP must necessarily incur an increase of Ω(log n/ log logn)
in the congestion.

That statement does not rule out the possibility that there is a better algorithm which behaves com-
pletely differently (i.e., one which does not use IP or LP at all). But sadly it turns out that there is no
better algorithm (for the case of directed graphs). It is known that every efficient algorithm must have
approximation factor α = Ω(log n/ log log n), assuming a reasonable complexity theoretic conjecture
(NP 6⊆ BPTIME(nO(log logn))). So the algorithm that we presented is optimal, up to constant factors.

22.3 Error-correcting codes

Suppose a person (the sender) wants to transmit a message to another person (the receiver). This
message might somehow be corrupted during transmission. The goal is for the receiver to determine
the original message, even if these corruptions occur.

There are various ways to model corruptions, such as stochastic noise (or Shannon model), stochastic
erasures, stochastic deletions, adversarial erasures, etc.

We will consider the adversarial noise model (or Hamming model), in which it is assumed that at
most t symbols of the message are be corrupted. The values and locations of those corruptions can be
arbitrary.

The sender and receiver will first agree upon a code, which we define to be a set of binary strings of
length n. These strings are called codewords. In symbols, the Hamming cube is {0, 1}n, and a code
is a set

Code: C ⊆ {0, 1}n .
Since the codewords are binary strings, C is sometimes called a binary code. The set C can be ordered,
for example by viewing the codewords as binary numbers. Thus we may write C = {C1, . . . , CM} for
some value M . Note that |C| ≤ 2n, so

2n ≥ M (22.3.1)

The communication scheme is as follows. Suppose that there are M different messages that the sender
could send. We can think of a message simply as being an integer m ∈ [M]. (For example, the messages
might be arbitrary binary strings of length lgM .) Each message m can be identified with a codeword
in a canonical way; for example, message m corresponds to codeword Cm.

Transmitting m directly would take dlgMe bits. Instead, the sender transmits Cm, which takes n bits.
This requires more bits to be transmitted:

n ≥ dlgMe (22.3.2)

because of (22.3.1). This value n is called the block length of the code. The efficiency of the code is
measured by how tight the inequality (22.3.2) is. Quantatively, the rate of C is defined to be

R =
lg|C|
n

=
lgM

n
.

22 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Binary_symmetric_channel
https://en.wikipedia.org/wiki/Binary_erasure_channel
https://en.wikipedia.org/wiki/Binary_erasure_channel
https://en.wikipedia.org/wiki/Deletion_channel
https://en.wikipedia.org/wiki/Erasure_code

The main question: if the codeword is corrupted during transmission, can the receiver still determine
the original message m?

22.3.1 Decoding

Let ⊕ denote Binary Xor. The Hamming distance between x, y ∈ {0, 1}n is

∆(x, y) =
n∑
i=1

(xi ⊕ yi) =
n∑
i=1

|xi − yi| = ‖x− y‖1 . (22.3.3)

Observe that ∆ satisfies the triangle inequality

∆(x, z) ≤ ∆(x, y) + ∆(y, z) (22.3.4)

because ‖·‖1 is a norm. (This also follows by applying Fact A.2.4 component-wise.)

The minimum distance (or simply distance) of C is

d = min
x 6=y∈C

∆(x, y).

The relative distance is d/n.

Claim 22.3.1 (Unique decoding). Let x ∈ C be arbitrary. Produce y from x by flipping at most
⌊
d−1

2

⌋
bits. Then, given y, one can determine x.

Proof. By construction of y, the Hamming distance ∆(x, y) satisfies

∆(x, y) ≤
⌊
d− 1

2

⌋
.

However, for any other codeword z ∈ C, where z 6= x, we have

∆(z, y) ≥ ∆(x, z)−∆(x, y) (by the triangle inequality (22.3.4))

≥ d−
⌊
d− 1

2

⌋
≥ d/2 + 1/2 >

⌊
d− 1

2

⌋
.

We have shown that y’s Hamming distance to x is smaller than to any other z.

22.3.2 A random code construction

Theorem 22.3.2. For any ε > 0, there exists a binary code of relative distance 1/2− ε and rate Ω(ε2).

References: MIT course notes.

Remark 22.3.3.

• You might wonder why we aim for relative distance nearly 1/2 instead of relative distance nearly
1. This is because binary codes with relative distance nearly 1 have rate going to zero with n.
Specifically, if δ > 1/2 + ε then M ≤ 1/ε so the rate is R ≤ lg(1/ε)/n, which vanishes as n→∞.
See (Guruswami et al., 2019, Theorem 4.4.1).

23 c©Nicholas Harvey 2021. All rights reserved.

http://courses.csail.mit.edu/6.440/spring08/scribe/lec9.pdf

• The Gilbert-Varshamov greedy code construction also achieves relative distance 1/2− ε and rate
Ω(ε2). See (Guruswami et al., 2019, Theorem 4.2.1 and Proposition 3.3.5).

• For codes with relative distance 1/2− ε, the rate of Ω(ε2) is nearly optimal. The so-called Linear
Programming bound implies a O(ε2 log(1/ε)) upper bound on the rate. See (Guruswami et al.,
2019, Section 8.2). For the special case of “balanced codes”, the O(ε2 log(1/ε)) bound follows from
an algebraic argument due to Alon.

Claim 22.3.4. Let y, z be independent and uniformly random points in {0, 1}n. Then

Pr [∆(y, z)/n < 1/2− ε] ≤ exp(−ε2n).

Proof. The Hamming distance ∆(y, z) can be decomposed into indicators as

∆(y, z) =

n∑
i=1

Xi

where Xi = yi⊕ zi. Note that Xi is an unbiased Bernoulli RV — it is 0 or 1 with probability 1/2. (This
actually follows from Corollary A.3.25.) The expected distance is µ = E [∆(y, z)] = n/2. Then, by the
Chernoff bound,

Pr [∆(y, z)/n < 1/2− ε] = Pr [∆(y, z) < (1− 2ε)µ]

< exp
(
− (2ε)2µ/2

)
= exp(−ε2n).

Proof of Theorem 22.3.2. Let M = exp(ε2n/2) and pick C1, ..., CM in {0, 1}n independently and uni-
formly at random. The previous claim show that, for any pair of these points, they are unlikely to have
small Hamming distance. This is extended to all pairs of points by the union bound.

Pr [∃i, j s.t. ∆(Ci, Cj)/n < 1/2− ε] ≤
(
M

2

)
· exp(−ε2n) (union bound)

<
M2

2
· exp(−ε2n) (by Claim 22.3.4)

=
1

2
·
(

exp(ε2n/2)︸ ︷︷ ︸
=M

)2 · exp(−ε2n)

= 1/2.

We define the code C = {C1, . . . , CM}. It definitely has rate

lgM

n
=

ε2n/2

ln(2)n
= Ω(ε2).

Furthermore, with probability at least 1/2, we have ∆(Ci, Cj)/n ≥ 1/2− ε for all i 6= j, which implies
that C has relative distance at least 1/2− ε.
Since this construction has probability at least 1/2 of producing a code with the desired rate and
distance, it follows that such a code must exist. This style of argument is an example of the probabilistic
method.

24 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Gilbert%E2%80%93Varshamov_bound
http://courses.csail.mit.edu/6.440/spring08/scribe/lec9.pdf
https://en.wikipedia.org/wiki/Probabilistic_method
https://en.wikipedia.org/wiki/Probabilistic_method

Research Questions. There are several open questions relating to this topic. See (Guruswami et al.,
2019, Section 8.3).

• Is the Ω(ε2) rate optimal?

• Can one explicitly describe a code achieving rate Ω(ε2)?

• Is there a code with rate Ω(ε2) that can be efficiently decoded?

Recent research. Very recently, startling progress has been made on the second and third questions.
A breakthrough of Ta-Shma in STOC 2017 has shown that there are explicit codes with distance 1/2−ε
and rate Ω(ε2+α) where α → 0 as ε→ 0. Moreover, in STOC 2021, Jeronimo et al. showed that these
codes can be decoded in nearly-linear time.

Exercises

Exercise 22.1. For this exercise, define the Hamming ball, for any x ∈ {0, 1} and d ≥ 0, to be

B(x, d) = { y ∈ {0, 1}n : ∆(x, y) ≤ d } .

Here ∆(x, y) is the Hamming distance, defined in (22.3.3). Use the Chernoff bound to prove an upper
bound on the volume |B(x, d)|.

Exercise 22.2. The Hoeffding bound shows that a sum of n independent indicator RVs deviates
from its expectation by

√
n with constant probability. This question (roughly) shows that the norm of

a random vector deviates from its expectation by O(1) with constant probability!

Let X be uniformly distributed on {0, 1}n.

Part I. Prove that E
[
‖X‖22

]
= n/2.

Part II. Note that E [‖X‖2] 6=
√

E
[
‖X‖22

]
in general. Prove that E [‖X‖2] ≤

√
E
[
‖X‖22

]
=
√
n/2.

Part III. Prove that, for all t ≥ 0,

Pr
[
‖X‖2 ≥

√
n/2 + t

]
≤ exp(−4t2).

Exercise 22.3 Sparse strategies for zero-sum games.

Background. In a zero-sum game2 with payoff matrix A ∈ Rm×n, there are two players that we will
name Alice and Bob. Alice has to choose one action in [m] while, simultaneously, Bob has to pick one
action in [n]. Both Alice and Bob know that if Alice picks action i ∈ [m] and Bob picks j ∈ [n], then
Alice will have to pay Ai,j dollars to Bob. In such a game, Alice wants a strategy that minimizes how

2For more details about zero-sum games, check out this video or Wikipedia.

25 c©Nicholas Harvey 2021. All rights reserved.

https://www.cs.tau.ac.il/~amnon/Papers/T.STOC17.pdf
https://dl.acm.org/doi/10.1145/3406325.3451126
https://www.youtube.com/watch?v=4gPbBv0cBys
https://en.wikipedia.org/wiki/Zero-sum_game

much money she has to pay Bob, while Bob wants a strategy that maximizes how much money he
receives from Alice.

From everyday experience (e.g., rock paper scissors), we know that it often make sense to use a ran-
domized strategy. Let

∆n =
{
p ∈ [0, 1]n :

∑n
j=1pj = 1

}
be the set of all probability distributions over these n choices. Suppose that Alice chooses r ∈ ∆m then
takes action i ∈ [m] with probability ri. Similarly, Bob chooses p ∈ ∆n then takes action j ∈ [n] with
probability pj . With these randomized strategies, one can easily verify that the expected amount of
money Alice pays Bob is rTAp.

The central result of zero-sum games, due to von Neumann, proves that there are randomized strategies
that are simultaneously optimal for both Alice and Bob! Formally, there exist p∗ ∈ ∆n and r∗ ∈ ∆m

such that
min
r∈∆

max
p∈∆

r
T
Ap = max

p∈∆
min
r∈∆

r
T
Ap = (r∗)

T
Ap∗. (22.3.5)

Although one can efficiently compute these optimal strategies using linear programming, they may give
positive probability to almost all actions, so they are dense.

In this exercise, we will see that there are nearly-optimal strategies that are sparse. More concretely,
let us assume that Ai,j ∈ [0, 1] for all i, j. Fix some parameter ε > 0. We will show Bob has a strategy
giving positive probability to O(log(m)/ε2) actions. By symmetry, the same is true for Alice.

Henceforth, fix p ∈ ∆n. Let X1, . . . , Xk be i.i.d. random variables satisfying

Pr [Xs = j] = pj ∀j ∈ [n].

This is called a categorical distribution.

Part I. Show that for any i ∈ [m] we have

Pr

 n∑
j=1

Ai,jpj −
1

k

k∑
s=1

Ai,Xs > ε

 ≤ e−2ε2k.

Part II. Define q ∈ [0, 1]n by qj = kj/k, where kj = |{ s ∈ [k] : Xs = j }|. Show that

Pr

 n∑
j=1

Ai,jpj −
n∑
j=1

Ai,jqj > ε for some i ∈ [m]

 ≤ me−2ε2k.

Part III. Show that if k =
⌈

ln(m+1)
2ε2

⌉
, then there is q ∈ ∆n with at most k non-zero entries such that

n∑
j=1

Ai,jpj −
n∑
j=1

Ai,jqj ≤ ε ∀i ∈ [m].

Part IV. Let µ∗ be the optimal value given by (22.3.5). Conclude that there is a randomized strategy

q ∈ ∆n for Bob that puts positive probability on at most O(logm
ε2

) actions and satisfies minr∈∆m r
T
Aq ≥

µ∗ − ε. That is, in expectation the optimal strategy for Bob gains at most ε more money than the
strategy given by q.

26 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Rock_paper_scissors
https://en.wikipedia.org/wiki/Categorical_distribution

Chapter 23

Dimensionality Reduction

Dimensionality reduction is the process of mapping a high dimensional dataset to a lower dimen-
sional space, while preserving much of the important structure. In statistics and machine learning, this
often refers to the process of finding a few directions in which a high dimensional random vector has
maximum variance. Principal component analysis is a standard technique for that purpose.

In this chapter we consider a different sort of dimensionality reduction. Given a set of high-dimensional
points, the goal is to find lower-dimensional points whose pairwise distances approximately match the
original points. We present a technique, known as the random projection method or Johnson-
Lindenstrauss method, for solving this problem.

In the previous chapters, our main tool has been the Chernoff bound. Here we will not directly use the
Chernoff bound, but the main proof uses very similar ideas.

23.1 Intuition

Let us begin with some three-dimensional examples. We will measure lengths using the Euclidean norm.

Our notation for the length of a vector v is ‖v‖ =
√∑

i v
2
i .

In our first example, the dimension can be reduced while exactly preserving pairwise distances.

Example 23.1.1. Consider the points

x1 =

 0.3237
−2.1870
−0.3354

 x2 =

 0.1327
−3.5215
−0.7627

 x3 =

−1.6022
−2.2986
−1.4660

They have pairwise distances

‖x1 − x2‖ ≈ 1.4142 ‖x1 − x3‖ ≈ 2.2361 ‖x2 − x3‖ ≈ 2.2361

We now define a linear map

L =

(
−0.7056 −0.4820 −0.5193
0.5146 −0.8525 0.0920

)
Then define two-dimensional points yi by yi = Lxi. This yields the points

y1 =

(
1
2

)
y2 =

(
2
3

)
y3 =

(
3
1

)
.

27

They have pairwise distances

‖y1 − y2‖ ≈ ‖x1 − x2‖ ≈ 1.4142 ‖y1 − y3‖ ≈ ‖x1 − x3‖ ≈ 2.2361 ‖y2 − y3‖ ≈ ‖x2 − x3‖ ≈ 2.2361.

This is not so impressive because the points x live in a two-dimensional subspace, so we have simply
performed an orthogonal change of coordinates to obtain their two-dimensional representation.

In our second example, it is not possible to reduce the dimension while exactly preserving pairwise
distances.

Example 23.1.2. Define the points

x1 =

1
0
0

 x2 =

0
1
0

 x3 =

0
0
1

 x4 =

1
1
1

 .

They have pairwise distances

‖xi − xj‖ =
√

2 ∀i, j.

Thus, they form a regular 3-simplex (or tetrahedron) in R3. It can be shown that there is no represen-
tation for the 3-simplex in R1 or R2. So there is no way to reduce the dimension of these points while
exactly preserving the pairwise distances.

Nevertheless, in the next section we will show that we can reduce the dimension of any high-dimensional
point set if we are allowed to approximate the pairwise distance.

23.2 The Johnson-Lindenstrauss Theorem

Suppose we have n points x1, . . . , xn ∈ Rd. We would like to find n points y1, . . . , yn ∈ Rt, where t� d,
such that the lengths and pairwise distances of the y vectors are approximately the same as for the x
vectors. We will show that this can be accomplished while taking t to be surprisingly small.

Each vector yi will be obtained from xi by a linear map. Let R be a random t× d Gaussian matrix.
This means that each entry of R is an independent standard Gaussian random variable. Gaussians are
defined in Appendix B.4.3.

Theorem 23.2.1 (Johnson-Lindenstrauss 1984). Let x1, . . . , xn ∈ Rd be arbitrary. Pick any ε = (0, 1).
There exists t = O(log(n)/ε2) such that, if R is a t × d Gaussian matrix, and yi = Rxi/

√
t then, with

probability at least 1− 1/n,

(1− ε) ‖xj‖ ≤ ‖yj‖ ≤ (1 + ε) ‖xj‖ ∀j
(1− ε)

∥∥xj − xj′∥∥ ≤
∥∥yj − yj′∥∥ ≤ (1 + ε)

∥∥xj − xj′∥∥ ∀j, j′. (23.2.1)

References: (Shalev-Shwartz and Ben-David, 2014, Section 23.2), (Dubhashi and Panconesi, 2009, Section 2.5), (Vershynin, 2018,

Theorem 5.3.1), (Boucheron et al., 2012, Theorem 2.13), (Roch, 2020, Section 2.4.6), (Blum et al., 2018, Section 2.7), (Wainwright,

2019, Example 2.12).

Observations.

• The linear map R is oblivious: it does not depend on the points x1, . . . , xn at all.

28 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Simplex

• A standard Gaussian is also called a N(0, 1) random variable, meaning that has zero mean and
variable 1. Instead of defining yi = Rxi/

√
t, we could equivalently let the entries of R have

distribution N(0, 1/t) and define yi = Rxi. (This follows from Fact B.4.6 with d = 1 and σ1 =
1/
√
t.)

Whereas principal component analysis is only useful when the original data points {x1, . . . , xn} are
nearly low dimensional, this theorem requires absolutely no assumption on the original data. Also, note
that the final data points {y1, . . . , yn} have no dependence on d. The original data could live in an
arbitrarily high dimension. (Although one can always assume d ≤ n since x1, . . . , xn lie in their linear
span, which is a Euclidean space of dimension at most n.)

23.2.1 Overview of proof

To prove the theorem, let us define the random linear map that is used to construct the points yj . The
parameter t will be chosen appropriately below. Let R is a t×d matrix whose entries are independently
drawn from N(0, 1), i.e., Gaussians with mean 0 and variance 1. The point yj in Theorem 23.2.1 is
simply by multiplication with R and then rescaling

yj ←
R · xj√

t
.

In pseudocode, we can write the algorithm as follows.

Algorithm 23.1 The Johnson-Lindenstrauss algorithm. Each input vector xi is in Rd.
1: function JL(vector x1, . . . , xn, int d, float ε)
2: Let t← O(ln(n)/ε2)
3: Let R be a random Gaussian matrix of size t× d
4: for i = 1, . . . , n
5: Let yi ← R · xi/

√
t

6: return y1, . . . , yn
7: end function

Our proof of Theorem 23.2.1 will show that this algorithm produces vectors y1, . . . , yn satisfying (23.2.1)
with probability at least 1 − 1/n. (There is a caveat: the definition of t involves a constant that we
have not specified.)

The key to proving Theorem 23.2.1 is to prove the following lemma.

Lemma 23.2.2 (Distributional JL). Let R be a t× d Gaussian matrix. Let δ ∈ (0, 1] be arbitrary. Let
t = 8 ln(2/δ)/ε2. Then for all vectors v ∈ Rd with ‖v‖ = 1,

Pr

[
‖Rv‖√

t
6∈ (1− ε, 1 + ε)

]
≤ δ. (23.2.2)

Proof of Theorem 23.2.1. Set δ = 1/n3. Consider the set of vectors

W = { xi : i = 1, . . . , n } ∪ { xi − xj : i 6= j } .

There are at most n2 vectors in W .

29 c©Nicholas Harvey 2021. All rights reserved.

For any non-zero w ∈ W , we may apply the DJL lemma to v = w/ ‖w‖. The event that w’s norm is
not adequately preserved is

Ew =

{
‖Rw‖√

t
6∈ [1− ε, 1 + ε] · ‖w‖

}
=

{
‖Rv‖√

t
6∈ [1− ε, 1 + ε]

}
,

because ‖Rw‖ = ‖Rv · ‖w‖‖ = ‖w‖ · ‖Rv‖. The condition (23.2.1) holds if and only if no event Ew
occurs. Thus

Pr [condition (23.2.1) fails to hold] = Pr

[⋃
w∈W

Ew

]
≤

∑
w∈W

Pr [Ew] (the union bound)

≤ |W | · δ (by Lemma 23.2.2)

≤ 1/n.

23.2.2 Random Dot Products

The idea of taking a random dot product is crucial to our discussion. Consider an arbitrary vector
v ∈ Rd. Let g ∈ Rd be a random vector where E [gi] = 0 for each i. We are interested in the analyzing
the dot product gTv. This quantity may not seem so interesting at first glance because, by linearity of
expectation,

E
[
gTv

]
=

d∑
i=1

E [gi] vi = 0. (23.2.3)

So let us also introduce the notion of variance, which is defined in Definition B.4.3. We require the
following fact.

Fact B.4.5. Let g1, . . . , gd be independent random variables with finite variance. Let σ1, . . . , σd ∈ R
be arbitrary. Then Var

[∑d
i=1 σigi

]
=
∑d

i=1 σ
2
i Var [gi].

We will additionally assume that Var [gi] = 1 for each i. Then we have

E
[

(gTv)2
]

= Var
[
gTv

]
(by (23.2.3) and (B.4.2))

= Var

[
d∑
i=1

vigi

]
=

d∑
i=1

v2
i Var [gi] (by Fact B.4.5)

= ‖v‖2 .

This shows that (gTv)2 is an unbiased estimator for ‖v‖2. Thus, we can estimate ‖v‖2 by estimating
E
[

(gTv)2
]
. If the estimate is sufficiently good, we can then take the square root and estimate ‖v‖.

Which random vector? So far, the discussion is valid for any independent RVs gi with mean 0 and
variance 1. For example, we could take gi to be uniform on {−1, 1}.
Our subsequent analysis will be made easier by choosing gi to have the Gaussian distribution N(0, 1).
This is due to a key property: the sum of Gaussians is also Gaussian.

30 c©Nicholas Harvey 2021. All rights reserved.

Fact B.4.6. Let g1, . . . , gd be independent random variables where gi has distribution N(0, 1). Then,
for any scalars σ1, . . . , σd, the sum

∑d
i=1 σigi has distribution N(0,

∑d
i=1 σ

2
i) = N(0, ‖σ‖22).

Consequently, our random dot product gTv has the distribution

Distribution of gTv: N(0,

d∑
i=1

v2
i) = N(0, ‖v‖2). (23.2.4)

Improved estimates by averaging. A common idea in randomized algorithms is to average multiple
independent estimates in order to get a higher quality estimate. (See, e.g., Section 12.2.2.) Perhaps we
can get a high-quality estimate of ‖v‖2 by picking several random vectors g, then averaging the values
of (gTv)2?

This idea is exactly what the Johnson-Lindenstrauss lemma does. Our matrix R is a t × d Gaussian
matrix. Let ri refer to the ith row of R. Then r1, . . . , rt are independent Gaussian vectors, so each
component of Rv is a random dot product:

(Rv)i = rTi v ∀i ∈ [t].

The squared norm of Rv/
√
t is then∥∥∥∥Rv√t

∥∥∥∥2

=

t∑
i=1

(Rv)2
i

t
=

t∑
i=1

(rTi v)2

t
, (23.2.5)

which is the average of t independent random dot products.

23.2.3 Proof of Lemma 23.2.2

Let us rewrite (23.2.2) as follows.

Pr

[
‖Rv‖√

t
6∈ (1− ε, 1 + ε)

]
= Pr

[
‖Rv‖2 6∈

(
(1− ε)2, (1 + ε)2

)
· t
]

(squaring both sides)

= Pr

[
t∑
i=1

(rTi v)2 6∈
(
(1− ε)2, (1 + ε)2

)
· t

]
(by (23.2.5))

≤ Pr

[
t∑
i=1

(rTi v)2 6∈ (1− ε, 1 + ε) · t

]

Here we have used the simple bounds

(1− ε)2 ≤ 1− ε and (1 + ε)2 ≥ 1 + ε.

We have shown in (23.2.4) that rTi v has the distribution N(0, ‖v‖2), which is N(0, 1) since we assume
that v is a unit vector. It now turns out that

∑t
i=1(rTi v)2 has a well-known distribution too. It is the

sum of the squares of t independent standard normal random variables, which is called the chi-squared
distribution with parameter t.

Question 23.2.3. What is E
[
‖Rv‖2

]
?

31 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution

Answer.

Wehave

E[‖Rv‖2]=
t∑
i=1

E[(r
T
iv)

2]=
t∑
i=1

Var[rTiv]=t,

sincerT
ivisN(0,1).

To summarize, our desired inequality is

Pr

t∑
i=1

(rTi v)2

︸ ︷︷ ︸
X

6∈ (1− ε, 1 + ε) · t︸︷︷︸
E[X]

 ≤ δ (23.2.6)

where X is a chi-squared RV with parameter t. Fortunately, tail bounds for these RVs are known.

Lemma 23.2.4 (Tail bound for chi-squared). Let X have the chi-squared distribution with parameter
t. Then

Pr [|X − t| ≥ εt] ≤ 2 exp(−ε2t/8) ∀ε ∈ (0, 1).

References: (Shalev-Shwartz and Ben-David, 2014, Lemma B.12), (Wainwright, 2019, Example 2.11 and Example 2.28).

This lemma easily allows us to prove (23.2.6), which proves (23.2.2).

Pr [X 6∈ (1− ε, 1 + ε) · t] = Pr [|X − t| ≥ εt] ≤ 2 exp(−ε2t/8) = δ, (23.2.7)

since t = 8 ln(2/δ)/ε2.

23.2.4 Example of a chi-squared tail bound

To illustrate one strategy for proving Lemma 23.2.4, let us prove the following bound on the right tail.
This even yields the better constant in the exponent of 1/2 rather than 1/8.

Claim 23.2.5. Let X have the chi-squared distribution with parameter t. Then Pr
[
X ≥ t(1 + ε)2

]
≤

exp(−tε2/2).

Proof. Our proof will follow the Chernoff bound strategy. For any α ∈ R and θ ≥ 0, we have

Pr [X ≥ α] = Pr
[
eθX ≥ eθα

]
≤ e−θα E

[
eθX

]
. (23.2.8)

The quantity E
[
eθX

]
is called the moment generating function, and for many standard distributions

it has a known closed form. We now cheat by referring to Wikipedia, where we find that the moment
generating function for the chi squared distribution is E

[
eθX

]
= (1− 2θ)−t/2 (for θ < 1/2), so

Pr [X > α] ≤ e−θα(1− 2θ)−t/2 (if θ ∈ [0, 1/2)).

32 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Moment-generating_function
http://en.wikipedia.org/wiki/Chi-squared_distribution

The next step is to plug in an appropriate choice of θ. We set θ = (1− t/α)/2, giving

Pr [X ≥ α] ≤ e(t−α)/2(t/α)−t/2

= exp
(t

2

(
1− (1 + ε)2

)
− t

2
ln
(1

(1 + ε)2

))
(setting α = t(1 + ε)2)

= exp
(
− t
(
ε+ ε2/2− ln(1 + ε)

))
≤ exp

(
− t
(
ε+ ε2/2− ε

))
(using ln(1 + x) ≤ x; see Exercise B.2)

≤ exp(−tε2/2).

Question 23.2.6. Improve the bound log(1 + ε) ≤ ε to log(1 + ε) ≤ ε− ε2/4 for ε ∈ [0, 1].

Answer.

ItfollowsfromFactB.3.5byreplacingz←x/2andintegration.

23.2.5 Broader context

In this section we have switched from the world of discrete probability to continuous probability. This
is to make our lives easier. The same theorem would be true if we picked the coordinates of ri to be
uniform in {+1,−1} rather than Gaussian. But the analysis of the {+1,−1} case is trickier, and most
proofs analyze that case by showing that its failure probability is not much worse than in the Gaussian
case. So the Gaussian case is really the central problem.

Second of all, you might be wondering where the name random projection method comes from.
Earlier versions of the Johnson-Lindenstrauss theorem used a slightly different linear map. Specifically,
they used the map Rv where RTR is a projection onto a uniformly random subspace of dimension
t. (Recall that an orthogonal projection matrix is any symmetric, positive semidefinite matrix whose
eigenvalues are either 0 or 1.) One advantage of that setup is its symmetry: one can argue that the
failure probability in Lemma 23.2.2 would be the same if one instead chose a fixed subspace of dimension
t and a random unit vector v. The latter problem can be analyzed by choosing the subspace to be the
most convenient one of all: the span of the first t vectors in the standard basis.

So how is our map R/
√
t different? It is almost a projection, but not quite. If we chose R to be a

matrix of independent Gaussians, it turns out that the range of RTR/t is indeed a uniformly random
subspace, but its eigenvalues are not necessarily in {0, 1}. If we had insisted that the random vectors ri
that we choose were orthonormal, then we would have obtained a projection matrix. We could explicitly
orthonormalize them by the Gram-Schmidt method, but fortunately that turns out to be unnecessary:
the Johnson-Lindenstrauss theorem is true, even if we ignore orthonormality of the ri’s.

Our linear map R/
√
t turns out to be a bit more convenient in some algorithmic applications, because

we avoid the awkward Gram-Schmidt step.

Optimality. Recently there has been much progress on understanding the optimality of these results.
The DJL lemma is actually optimal, up to constant factors.

Theorem 23.2.7 (Jayram-Woodruff 2013, Kane-Meka-Nelson 2011). Any f satisfying the DJL lemma
must satisfy t = Ω(log(1/δ)/ε2).

But, this does not necessarily imply that Theorem 23.2.1 is optimal; perhaps the theorem can be proven
without using the DJL lemma. Alon proved the following lower bound. (See Theorem 9.3 of this paper.)

33 c©Nicholas Harvey 2021. All rights reserved.

http://www.math.tau.ac.il/~nogaa/PDFS/extremal1.pdf

Theorem 23.2.8 (Alon). Let x1, . . . , xn+1 ∈ Rn be the vertices of a simplex, i.e., ‖xi − xj‖ = 1 for all

i 6= j. If y1, . . . , yn+1 ∈ Rt satisfy (23.2.1), then t = Ω(log(n)
ε2 log(1/ε)

).

This shows that Theorem 23.2.1 is almost optimal, up to the factor log(1/ε) in the denominator.
Actually, for this particular set of points (the vertices of a simplex), Theorem 23.2.1 is not optimal and
Alon’s bound is the right one. However, there is a different point set showing that Theorem 23.2.1 is in
fact optimal.

Theorem 23.2.9 (Larsen-Nelson FOCS 2017). There exist points x1, . . . , xn ∈ Rd such that the
following is true. Consider any map L : Rd → Rt, let yj = L(xj), and suppose that (23.2.1) is satisfied.
Then t = Ω(log(n)/ε2).

Other norms and metrics. The Johnson-Lindenstrauss lemma very strongly depends on properties
of the Euclidean norm. For other norms, this remarkable dimensionality reduction is not necessarily
possible. For example, for the `1 norm ‖x‖1 :=

∑
i |xi|, it is known that any map into Rd that preserves

pairwise `1-distances between n points up to a factor c ≥ 1 must have d = Ω(n1/c2). If c = 1 + ε, then
there are upper bounds of d = O(n log n/ε2) and d = O(n/ε2).

References: Talagrand Proc. AMS 1990, Brinkman-Charikar FOCS 2003, Lee-Naor 2004, Newman-Rabinovich SODA 12.

For more on this subject, see the survey of Indyk and Matousek or the tutorial of Indyk.

23.3 Fast Johnson-Lindenstrauss

In the previous section we saw the Johnson-Lindenstrauss theorem on dimensionality reduction. Suppose
we have n points in Rd and we map them to Rt, where t = O(log(n)/ε2), simply by applying a t × d
matrix of Gaussians (scaled appropriately). Then all lengths and pairwise distances are preserved up
to a factor 1 + ε, with high probability. This is a very useful tool in algorithm design.

Let’s consider the efficiency of such a mapping. Directly applying matrix-vector multiplication, the time
to map a single point from Rd to Rt is O(td). There has been much work on trying to make this faster.

One direction of research considered using a slightly sparse matrix instead of a dense matrix of Gaussians.
The state of the art (Kane-Nelson JACM 2014) allows the matrix to have only an ε fraction of non-zero
entries, so the time to map a single point becomes O(εtd). Their result is optimal to with a factor of
O(log(1/ε)).

Today we discuss a different line of research. Instead of using sparse matrices, we will use structured
matrices, for which multiplication can be done faster than the naive algorithm. (As a trivial example,
consider the matrix of all ones. It is dense, but multiplying by it is very easy.) Such matrices are called
“Fast Johnson-Lindenstrauss Transforms”, and they have been used extensively in the algorithms,
compressed sensing, machine learning and numerical linear algebra communities.

The first result of this type is stated below. Is is of the Distributional JL type, in that it preserves the
length of any fixed vector with good probability.

Theorem 23.3.1 (Ailon-Chazelle STOC 2006). There is a t× d random matrix that satisfies the DJL
lemma and for which matrix-vector multiplication takes time O(d log d+ t3).

To understand if this runtime is good, consider the scenario where we are applying dimensionality
reduction to n data points. The Ailon-Chazelle result is only interesting for certain parameters n, d and
t. First, suppose n is very small, say d = n, so t ≈ log n = log d. Then the original JL theorem takes
time roughly O(td) = O(d log d) per vector, which is the same as Ailon-Chazelle. Second, suppose n is

34 c©Nicholas Harvey 2021. All rights reserved.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.2484
http://people.csail.mit.edu/indyk/tuts.pdf

very large, say n = 2
√
d, so t ≈ log n = d1/2. Then the original JL theorem takes time O(td) = O(d3/2)

per vector and Ailon-Chazelle also takes time O(d log d + t3) = O(d3/2). The Ailon-Chazelle result is

interesting in the intermediate range, where d� n� 2d
1/2

We will prove the following theorem, which is a slightly simplified form of the Ailon-Chazelle result.

Theorem 23.3.2. There is a random matrix R of size t × d with t = O(log(d/δ)2 log(1/δ)/ε2) such
that, for each x ∈ Rd,

‖Rx‖ ∈ [1− ε, 1 + ε] · ‖x‖
holds with probability at least 1− δ. Matrix-vector multiplication with R takes time O(d log d+ t).

23.3.1 A Simple Start: Super-Sparse Sampling

Let’s start with simple idea: given a vector x, we will sample it using a very sparse sampling matrix.
This matrix is denoted S and it has size t× d. Each row of S has a single non-zero entry of value

√
d/t

in a uniformly random location.

For any vector x ∈ Rd, we have

E
[

(Sx)2
i

]
=

d∑
j=1

Pr
[
ith row’s nonzero entry is in location j

]
︸ ︷︷ ︸

=1/d

·(
√
d/t)2 · x2

j = (1/t) · ‖x‖22

=⇒ E
[
‖Sx‖2

]
= E

[
t∑
i=1

(Sx)2
i

]
= ‖x‖22 (23.3.1)

So this works well in expectation, even if we have t = 1. Unfortunately the variance can be terrible.

Example 23.3.3 (Sparse case). Suppose x has just one non-zero coordinate, say x = e1. The expected
number of non-zero coordinates in Sx is t/d. So Sx is very likely to be 0 unless t = Ω(d). So there is
very little dimensionality reduction.

Example 23.3.4 (Dense case). Suppose x = [1, 1, · · · , 1]/
√
d, which has ‖x‖2 = 1. Then Sx =

√
1/tx,

so ‖Sx‖ =
√

1/t ·
√
t = 1. Thus the norm of x is preserved exactly, regardless of the value of t.

Let us try to extract some general principles from these examples.

• Sparse case. If one coordinate is much larger than the others in absolute value (as in Exam-
ple 23.3.3) then this approach seems unlikely to work.

• Dense case. If all coordinates have similar absolute value (as in Example 23.3.4, then the approach
seems promising. In this case, we also say that x is “uncorrelated with the standard basis”.

To make these principles mathematically precise, we turn to the language of norms. Let us recall the
following standard inequality.

Fact B.2.1. For all x ∈ Rd,

‖x‖p ≤ ‖x‖r ≤ d1/r−1/p · ‖x‖p ∀1 ≤ r ≤ p ≤ ∞.

In particular, the most useful cases are

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞
1√
d
‖x‖1 ≤ ‖x‖2 ≤

√
d · ‖x‖∞ .

35 c©Nicholas Harvey 2021. All rights reserved.

Let us now consider the norms in the preceding examples.

• Sparse case. In Example 23.3.3, we have ‖x‖2 = ‖x‖∞ = 1.

• Dense case. In Example 23.3.3, we have ‖x‖2 = 1 but ‖x‖∞ = 1/
√
d.

Inspired by the examples, we use the ratio ‖x‖∞ / ‖x‖2 as a measure of sparsity of the vector x.

x is sparse:
‖x‖∞
‖x‖2

' 1

x is dense:
‖x‖∞
‖x‖2

/
1√
d
.

By Fact B.2.1, these are the most extreme values of this ratio.

The following claim formally proves that super-sparse sampling works when x is dense. Define

λ =

√
2 ln(4d/δ)

d
. (23.3.2)

Claim 23.3.5. Let y be a fixed vector in Rd with ‖y‖2 = 1 and ‖y‖∞ ≤ λ. Let S be a t×d super-sparse
sampling matrix with t = 2 ln(4d/δ)2 ln(4/δ)/ε2. Then

Pr
[
‖Sy‖22 6∈ (1− ε, 1 + ε)

]
≤ δ/2.

Proof. See Exercise 23.3.

23.3.2 Idea: Rotating the basis

Stating the problematic scenario in these terms leads to a useful idea. We said that super-sparse sampling
will require large t when ‖x‖∞ / ‖x‖2 ≈ 1. Now we recall an important property of the Euclidean norm:
it is invariant under rotations and reflections. Formally, ‖Mx‖2 = ‖x‖2 for any orthogonal matrix M .
Another way to say this is that ‖·‖2 is invariant under an orthogonal change of basis, and indeed ‖·‖2
can be defined without reference to any basis (using an inner product). On the other hand, the infinity
norm ‖·‖∞ is heavily dependent on the choice of basis. For example,

u = (1, 0, 0, . . . , 0) ∈ Rd has ‖u‖2 = ‖u‖∞ = 1

v = (1, 1, . . . , 1)/
√
d ∈ Rd has ‖v‖2 = 1 and ‖v‖∞ = 1/

√
d

even though v is a rotation of u. Intuitively, the quantity ‖x‖∞ / ‖x‖2 is telling us how well the vector
x “aligns” with the standard basis.

In order for our super-sparse sampling to work we need x to be dense, which means that x is not aligned
with the standard basis. However we have no control over x because our theorem needs to work for
all x. The key idea is to control our basis instead. Why not choose a random basis that is unlikely to
align with the given vector x? Indeed, that is basically what is accomplished by the dense matrix of
Gaussians in the previous section.

The only issue with the dense matrix of Gaussians is that matrix-vector multiplications are too slow.
So let’s think if there is a quicker way to randomly rotate the basis. Whenever I think of vectors that
“disagree” with the standard basis, the first object that comes to mind is a Hadamard matrix.

36 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Orthogonal_matrix

Definition 23.3.6. A Hadamard matrix is a d × d real matrix H that is orthogonal (meaning

HTH = I) and has all entries in
{
±1/
√
d
}

.

It is not a priori clear that Hadamard matrices exist, and indeed it is not fully known for what values
of d they exist1. In the case d = 2, we have the Hadamard matrix

H2 =

(
1 1
1 −1

)
/
√

2,

which amounts to a 45-degree rotation of the standard basis. In fact, we can build on this recursively
to obtain a Hadamard matrix whenever d is a power of two.

Hd =

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
/
√

2. (23.3.3)

This is called a Walsh-Hadamard matrix, and it has many nice properties.

First of all Hd is symmetric, so HT
d = Hd. To see that Hd is indeed a Hadamard matrix, we must make

two observations. First, induction shows that every entry of Hd is ±(1/
√

2)log2 d = ±1/
√
d. Second, we

have

HT
d Hd = HdHd =

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
·
(
Hd/2 Hd/2

Hd/2 −Hd/2

)
/2 =

(
2Hd/2Hd/2 0

0 2Hd/2Hd/2

)
/2 = I,

so Hd is orthogonal.

Another nice property of Hd is that matrix-vector multiplication can be performed in O(d log d) time.
This follows from an easy divide-and-conquer algorithm.

23.3.3 Randomized Hadamard Matrix

Using Hd to change our basis will not guarantee that x is dense. It is obvious that, for any fixed
orthogonal matrix M , there exist vectors x for which ‖Mx‖∞ / ‖Mx‖2 = 1: simply let x be any row of
M . This is why the randomization is necessary.

Instead, we must pick a random change of basis M and argue that

each x ∈ Rd satisfies
(‖Mx‖∞
‖Mx‖2

≈ 1√
d

with high probability
)
. (23.3.4)

So far our Hadamard matrix H = Hd has no randomness. How can we “randomize” it? Well, in the
recursive definition (23.3.3) we quite arbitrarily put the minus sign in the lower-right quadrant. The
construction works just as well if we put the minus sign in any quadrant, so this suggests that we should
be able to randomize the construction using random signs.

We will introduce random signs in a slightly more convenient way. Let D be a diagonal matrix whose
ith diagonal entry is a random sign ξi ∈ {−1, 1}, and these are independent. Our random Hadamard
matrix is the product M = HD. This is indeed a Hadamard matrix: its entries are still ±1/

√
d, and

M is orthogonal because MTM = DHTHD = D2 = I.

The following claim shows that, with this randomized Hadamard matrix M , every vector x satisfies
(23.3.4).

1One open question is that a d× d Hadamard matrix exists whenever d is a multiple of 4.

37 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Hadamard_transform
http://en.wikipedia.org/wiki/Fast_Walsh%E2%80%93Hadamard_transform
https://en.wikipedia.org/wiki/Hadamard_matrix#Hadamard_conjecture

Claim 23.3.7. Let x ∈ Rd be non-zero. Let y = HDx, where HD is the random Hadamard matrix.
Then

PrD

 ‖y‖∞‖y‖2 ≥
√

2 ln(4d/δ)

d︸ ︷︷ ︸
λ

 ≤ δ/2.

Proof. It suffices to consider the case ‖x‖2 = 1, because ‖HDx‖∞ / ‖HDx‖2 is invariant under rescaling
x. Note that ‖HDx‖2 = ‖x‖2 = 1 as HD is orthogonal, so it suffices to show that all coordinates of
HDx are likely small. We will follow our usual approach of showing that each coordinate is very likely
to be small, then union bounding over all coordinates.

Consider y1, the first coordinate of y = HDx. It is obtained by multiplying each coordinate of x by a
random sign, then taking the dot-product with the first row of H. So

y1 =
∑
j

ξjH1,jxj , (23.3.5)

Note that the terms of this sum are independent random variables. It is tempting to apply the Cher-
noff bound to analyze y1, but the Chernoff bound that we have used so far is only valid for sums
of non-negative random variables. Instead, we will use the generalized form of the Hoeffding bound,
Theorem 21.3.5.

We apply that theorem with Xj = ξjH1,jxj . Since ξj ∈ {−1,+1}, we have Xj = ±H1,jxj . So Xj lies in
the interval [aj , bj] where −aj = bj = |H1,jxj |. Note that E [Xj] = 0 and

d∑
j=1

(bj − aj)2 = 4
d∑
j=1

H2
1,jx

2
j = 4

d∑
j=1

(1/d)x2
j = 4 ‖x‖22 /d = 4/d.

Defining q = δ/2d, the quantity s in Theorem 21.3.5 becomes s =
√

2 ln(4d/δ)/d, which equals the
value of λ defined in (23.3.2). Consequently, (23.3.5) and Theorem 21.3.5 yield

Pr [|y1| ≥ λ] = Pr

 ∣∣∣∑jXj − E
[∑

jXj

]
︸ ︷︷ ︸

=0

∣∣∣ ≥ s
 ≤ δ/2d.

A union bound over all coordinates of y shows that

Pr [‖y‖∞ ≥ λ] ≤
d∑
j=1

Pr [|yj | ≥ λ] ≤ d · (δ/2d) = δ/2.

23.3.4 Putting it all together

Earlier we said that super-sparse sampling should work as long as x is dense holds. We have just shown
x is likely to be dense after applying the randomized Hadamard matrix; more precisely, (23.3.4) holds
with M = HD. The final step is to apply the super-sparse sampling matrix S to Mx. To summarize,
the overall linear map is R = SHD where S is a super-sparse sampling matrix of size t×d, H is a d×d
Hadamard matrix, and D is a diagonal matrix of random signs.

38 c©Nicholas Harvey 2021. All rights reserved.

Proof of Theorem 23.3.2. Fix any vector x with ‖x‖2 = 1. Construct the random matrix R = SHD as
explained above and let y = HDx. Define the events

E1 = { ‖y‖∞ ≥ λ }
E2 = { ‖Sy‖2 6∈ (1− ε, 1 + ε) }

We have the following bounds.

Pr [E1] ≤ δ/2 (by Claim 23.3.7)

Pr
[
E2 | E1

]
≤ δ/2 (by Claim 23.3.5).

Thus, by Exercise A.4, we obtain

Pr [‖Rx‖ 6∈ (1− ε, 1 + ε)] = Pr [E2] ≤ Pr [E1] + Pr
[
E2 | E1

]
≤ δ.

Finally, let us check that matrix-vector multiplication with R = SHD is efficient.

• Multiplication by D is trivial and takes O(d) time.

• Multiplication by H requires O(d log d) time as explained above.

• Multiplication by S is trivial and takes O(t) time.

So the total time is O(d log d+ t).

23.4 Subspace Embeddings

The Johnson-Lindenstrauss Theorem shows how to reduce the dimension while preserving distances
between a finite set of points. Now we will consider how to reduce the dimension for the infinitely many
points in a subspace.

Let U be a subspace of Rd with dimension k. We would like to find a matrix R of size t× d such that
t ≈ k and

‖Rx‖
‖x‖

∈ [1− ε, 1 + ε] ∀x ∈ U, x 6= 0. (23.4.1)

Question 23.4.1. Is this trivial?

Answer.

Yes.Lett=kandlettherowsofRbeanorthonormalbasisofU.Thissatisfies(23.4.1)withε=0.

What makes the problem non-trivial is that we want R to be oblivious to U , just like Johnson-
Lindestrauss is oblivious to the points whose distance are preserved.

Theorem 23.4.2. For any integer k and any ε ∈ (0, 1), let t = O(k log(1/ε)/ε2). Let R be a t × d
matrix where the entries are independent with distribution N(0, 1/t). Then, for any subspace U of
dimension k, we have

Pr

[
‖Rx‖
‖x‖

∈ [1− ε, 1 + ε] ∀x ∈ U, x 6= 0

]
≥ 1− 2e−k.

To prove the JL Theorem, we proved the DJL Lemma for individual vectors x, then extended that to a
finite collection of vectors by taking a union bound. Now Theorem 23.4.2 requires that we approximate
the norm for all vectors in U simultaneously. Since U is infinitely large, a naive union bound will not
suffice.

39 c©Nicholas Harvey 2021. All rights reserved.

A simplifying reduction. Instead of considering an arbitrary subspace U , it suffices to consider the
case that U = span {e1, . . . , ek}. The reason stems from the following fact.

Fact 23.4.3. Let R be a t × d random Gaussian matrix and let A be any d × d orthogonal matrix.
Then RA has the same distribution as R.

References: See (Vershynin, 2018, Proposition 3.3.2).

Imagine letting the first k columns of A be an orthonormal basis of U , then extending that to an
orthonormal basis of Rd. Then (23.4.1) is equivalent to

‖RAx‖
‖x‖

∈ [1− ε, 1 + ε] ∀x ∈ span {e1, . . . , ek} . (23.4.2)

Since RA and R have the same distribution (by Fact 23.4.3), our goal is equivalent to showing

Pr

[
‖Rx‖
‖x‖

∈ [1− ε, 1 + ε] ∀x ∈ Rk, x 6= 0

]
≥ 1− e−k (23.4.3)

where R has now shrunk from size t× d to t× k, since we only cared about span {e1, . . . , ek}.

23.4.1 First approach: Appling a standard theorem

The event in (23.4.3) uses important quantities from linear algebra. For any t× k matrix R, define

Maximum singular value: s1(R) = max
x∈Rk, x 6=0

‖Rx‖
‖x‖

Minimum singular value: sk(R) = min
x∈Rk, x 6=0

‖Rx‖
‖x‖

.

References: Wikipedia.

Using these definitions, (23.4.3) is equivalent to showing that

Pr [1− ε ≤ sk(R) ∧ s1(R) ≤ 1 + ε] ≥ 1− 2e−k. (23.4.4)

The singular values of Gaussian matrices are very well-studied, and the following bound is known.

Theorem 23.4.4. If R has size t× k where the entries are independent N(0, 1/t) then, for all z > 0,

Pr

[
1−
√
k + z√
t
≤ sk(R) ∧ s1(R) ≤ 1 +

√
k + z√
t

]
≥ 1− 2 exp(−z2/2).

References: See Theorem 2.13 in Davidson-Szarek, (Wainwright, 2019, Example 6.2 and Exercise 5.14), (Vershynin, 2018, Theorem

4.6.1).

Taking t = k/ε2 and z =
√
k this proves (23.4.4) (up to constant factors) which proves Theorem 23.4.2.

23.4.2 Second approach: A direct argument

Next we observe that the function x 7→ ‖Rx‖ / ‖x‖ is a continuous function on non-zero x. Thus if
‖Rx‖ / ‖x‖ ∈ [1 − ε, 1 + ε] holds for some x, then it approximately holds for all nearby x. Also, since
‖Rx‖ / ‖x‖ only depends on the direction of x, not its norm, it suffices to consider vectors with ‖x‖ = 1.

40 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Singular_value
https://www.math.uwaterloo.ca/~krdavids/Preprints/DavSzHB.pdf

Define the Euclidean sphere

S =
{
x ∈ Rk : ‖x‖ = 1

}
.

Since we only need to consider points y ∈ S, it seems conceivable that we could find finitely many points
P = {p1, . . . , p`} such that every point in S is “nearby” to some pi.

Definition 23.4.5. An ε-net of a set S is a set P ⊆ S satisfying minp∈P ‖p− x‖ ≤ ε for all x ∈ S.

References: (Vershynin, 2018, Definition 4.2.1), (Wainwright, 2019, Definition 5.1), Wikipedia.

The following fact is known.

Fact 23.4.6 (ε-net of sphere). The sphere S in Rk has an ε-net of size (3/ε)k.

References: (Vershynin, 2018, Corollary 4.2.13), (Wainwright, 2019, Example 5.8).

Let P be an ε-net of size (3/ε)k = exp
(
k ln(3/ε)

)
. Then we apply the Johnson-Lindenstrauss lemma

with error parameter ε to the points in P . Note that ‖p‖ = 1 for all p ∈ P , since P ⊆ S. By (23.2.7)
and a union bound, we have

‖Rp‖ ∈ [1− ε, 1 + ε] ∀p ∈ P (23.4.5)

with probability at least

1− |P | · exp(−ε2t/8) ≥ 1− exp
(
k ln(3/ε)− ε2t/8

)
.

This probability is at least 1− e−k if t = 16k ln(3/ε)/ε2.

Now we show that, if the norm is (approximately) preserved on the ε-net, then it is preserved on the
entire sphere.

Claim 23.4.7. Suppose that (23.4.5) holds. Then ‖Rx‖ ≤ 1 +O(ε) for all x ∈ S.

References: (Vershynin, 2018, Lemma 4.4.1).

Proof. Consider any x∗ ∈ arg maxx∈S ‖Rx‖. The existence of x∗ comes from the Weierstrass extreme
value theorem, since x 7→ ‖Rx‖ is continuous and S is a closed, bounded set.

Since P is an ε-net, there exists p∗ ∈ P such that ‖x∗ − p∗‖ ≤ ε. By (23.4.5), we have ‖Rp∗‖ ∈ [1−ε, 1+ε].
We now bound ‖Rx∗‖ by relating it to ‖Rp∗‖.

‖Rx∗‖ ≤ ‖Rp∗‖+ ‖R(x∗ − p∗)‖ (by the triangle inequality)

≤ (1 + ε) + ‖R(x∗ − p∗)‖ (by (23.4.5))

= (1 + ε) +

∥∥∥∥R (x∗ − p∗)
‖x∗ − p∗‖

∥∥∥∥ · ‖x∗ − p∗‖ (normalizing the vector)

≤ (1 + ε) + ‖Rx∗‖ · ε (since x∗ is a maximizer).

Rearranging, we get ‖Rx∗‖ ≤ 1+ε
1−ε . Since 1

1−ε ≤ 1 + 2ε (see Fact B.3.5), the result follows.

A similar argument yields the following claim, which proves Theorem 23.4.2.

Claim 23.4.8. Suppose that (23.4.5) holds. Then ‖Rx‖ ≥ 1−O(ε) for all x ∈ S.

23.4.3 Subspace Embeddings with Fast JL

In the preceding discussion we have assumed that R is a Gaussian matrix, which simplified matters
due to the rotational invariance (Fact 23.4.3), but unfortunately multiplication by R is slow. We now
discuss how to replace R with a Fast JL matrix.

41 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/%CE%95-net_%28metric_spaces%29
https://en.wikipedia.org/wiki/Extreme_value_theorem#Generalization_to_metric_and_topological_spaces
https://en.wikipedia.org/wiki/Extreme_value_theorem#Generalization_to_metric_and_topological_spaces

The desired conclusion of Theorem 23.4.2 is that

Pr

[
‖Rx‖
‖x‖

∈ [1− ε, 1 + ε] ∀x ∈ U, x 6= 0

]
≥ 1− 2e−k.

Now let A be a d × k matrix whose columns are an orthonormal basis of U . Recall that P is an ε-net
for S, the sphere in Rk. Since A is an isometry (a distance-preserving bijective map) between Rk and
U ,

• A · S = { Ax : x ∈ S } is the sphere in U .

• A · P = { Ap : p ∈ P } is an ε-net for A · S.

Now apply Theorem 23.3.2 with δ = e−k/|P | ≥ (ε/3e)k and t = O(log(d/δ)2 log(1/δ)/ε2). It follows
that

Pr [‖Rx‖ ∈ [1− ε, 1 + ε] ∀x ∈ A · P] ≥ 1− 2e−k.

An argument similar to Claim 23.4.7 implies that

Pr [‖Rx‖ ∈ [1−O(ε), 1 +O(ε)] ∀x ∈ U]

= Pr [‖Rx‖ ∈ [1−O(ε), 1 +O(ε)] ∀x ∈ A · S] ≥ 1− 2e−k.

This proves Theorem 23.4.2 with the weaker dimension of t = O
(
(k log(d)/ε)3

)
, but with a matrix R

supporting multiplication in time O(d log d+ t).

Discussion. See Section 2.1 of this survey, Section 8.7 of this survey or Section 6 of this survey.

42 c©Nicholas Harvey 2021. All rights reserved.

https://arxiv.org/abs/1411.4357
https://arxiv.org/abs/2002.01387v3
https://faculty.cc.gatech.edu/~vempala/papers/acta_survey.pdf

23.5 Exercises

Exercise 23.1. Let R be a JL matrix of size t × d, where the entries are independent N(0, 1/t).
Prove that E

[
RTR

]
= I. This is similar to the notion of being in isotropic position.

Exercise 23.2. Let x1, . . . , xn be given vectors in Rd, and let ε ∈ (0, 1) be arbitrary. For some
t = O(log(n)/ε2), define R to be a t× d matrix whose entries are independent N(0, 1/t).

Part I. Suppose that ‖xi‖ ≤ 1 for all i ∈ [n]. Prove that, with probability at least 1− 1/n,

|xTi xj − xiRTRxj | ≤ ε ∀i, j.

Part II. Now assume no constraint on the norm of x1, . . . , xn. Prove that, with probability at least
1− 1/n,

|xTi xj − xiRTRxj | ≤ ε ‖xi‖ ‖xj‖ ∀i, j.

Exercise 23.3. Prove Claim 23.3.5.

Hints:

• ‖Sy‖22 =
∑

i(Sy)2
i , and these summands are independent.

• The expectation was already analyzed above.

• The Generalized Hoeffding bound (Theorem 21.3.5) is recommended.

Exercise 23.4. Let R be a random Fast JL matrix. Is R rotationally invariant?

Exercise 23.5 n
4 -net for the Hamming Cube. Recall that Section 23.4 defined an ε-net with

respect to the Euclidean norm for the sphere. In this exercise we will construct a n
4 -net with respect to

the Hamming distance for the Hamming cube {0, 1}n. (Recall that Hamming distance was defined in
(22.3.3).)

For this exercise, define the Hamming ball, for any x ∈ {0, 1} and d ≥ 0, to be

B(x, d) = { y ∈ {0, 1}n : ∆(x, y) ≤ d } .

Part I. Fix some z ∈ {0, 1}n and d > 0. Let x1, · · · , xM be points sampled independently and uniformly
from {0, 1}n. Suppose that Pr [z ∈ B(xi, d)] ≥ p for some p ∈ [0, 1]. Show that

Pr

 z 6∈ ⋃
i∈[M]

B(xi, d)

 ≤ e−pM .

Part II. Fix z ∈ {0, 1}n and let x be a point uniformly sampled from {0, 1}n. Show that

Pr
[
z ∈ B(x, n4)

]
≥ 2−n/2.

Hint: You will need some bounds on binomial coefficients.

Part III. Show that there is a n
4 -net for {0, 1}n of size O(n · 2n/2).

43 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Isotropic_position

Chapter 24

Applications of Johnson-Lindenstrauss

In this chapter we will see several applications of the Johnson-Lindenstrauss lemma. These examples
illustrate two key reasons why Johnson-Lindenstrauss is so useful.

• First, it’s oblivious to the points being transformed. We can pick the matrix ahead of time, and
nevertheless it is likely to work well on whatever points it is applied.

• If there is an algorithm that involves the Euclidean norm, and whose performance is exponential
in the dimension, dimensionality reduction will improve its performance to polynomial in the
dimension!

24.1 Streaming algorithms for `2

Recall the streaming model from Chapter 13. We will change the notation slightly. The algorithm
receives a sequence of items (a1, a2, . . . , an), where each ai ∈ [d]. The frequency vector x ∈ Zd is

xj = |{ i : ai = j }| = number of occurrences of j in the stream.

The objective is to estimate some properties of x while using O(log(dn)) space. Properties of interest
include ‖x‖p, or the number of non-zero entries, etc.

Today we will give a simple algorithm to estimate ‖x‖2. As an example of a scenario where this would
be useful, consider a database table ((a1, b1), . . . , (an, bn)). A self-join with the predicate a = a would
output all triples (a, b, b′) where (a, b) and (a, b′) belong to the table. What is the size of this self-join?
It is simply ‖x‖2, where x is the frequency vector for the a values in the table. So a streaming algorithm
for estimating ‖x‖ could be quite useful in database query optimization.

The Algorithm. The idea is very simple: instead of storing x explicitly, we will store a dimensionality
reduced form of x. Let R be a random Gaussian matrix of size t × d, divided by

√
t. (In other words,

each entry is drawn from the distribution N(0, 1/t). This is a rescaling of the linear map R defined
in Section 23.2.) Instead of explictly maintaining the vector x, the algorithm maintains the vector
y = R · x.

44

Algorithm 24.1 Estimating the `2 norm of the frequency vector.

1: function EstimateL2(int n)
2: Set t = O(1/ε2)
3: Let R be a t× d matrix with independent entries drawn from N(0, 1/t)
4: Let y be the zero vector in Rt
5: for i = 1, . . . ,m do
6: Receive item ai from the stream
7: Add column ai of R to y
8: end for
9: return ‖y‖

10: end function

At time step i, the algorithm receives the index j = ai. This implicitly causes xj to increase by 1. Since
y = R · x, the corresponding change in y is to add the jth column of R to y.

To analyze this algorithm, we use the Johnson-Lindenstrauss lemma. In Eq. (23.2.7), we proved that

Pr [(1− ε)‖x‖ ≤ ‖y‖ ≤ (1 + ε)‖x‖] ≥ 1− exp(−ε2t/8).

Thus, setting t = Θ(1/ε2), we conclude that ‖y‖ gives a (1 + ε) approximation of ‖x‖ with constant
probability. Alternatively, if we want y to give an accurate estimate at each of the n time steps, we can
take t = Θ(log(n)/ε2).

How much space does this algorithm take? The algorithm stores two objects: the vector y and
the matrix R. The vector y uses t = O(1/ε2) words of space, which is consistent with our goal of using
very little space.

Unfortunately, the matrix R uses td words of space. Storing R explicitly is worse than storing the
frequency vector x. (There is also the issue of how many bits of accuracy are needed when generating
the Gaussian random variables, but we will ignore that.) However, it seems that there may be some
benefits to storing R instead of x, because R contains purely random numbers. The values of R do not
depend on values appearing in the stream.

• At first glance, it may seem that R needn’t be stored at all: every time an entry of R is accessed,
a new independent random variable could be generated. But this does not work: each time an
item j appears in the stream, we must add the jth column of R to y, and it must be the same
column each time.

• Does it help to use the Fast JL transform R = SHD introduced in Section 23.3? Storing this
matrix R requires only O(d + t) words of space, which is an improvement over the ordinary JL
matrix, but still too much.

• In a practical implementation, R will be generated by a pseudorandom generator initialized by
some seed. This has the advantage that we can regenerate columns of R at will by resetting the
seed. This is likely to work well in practice, but may not have provable guarantees.

• There is another approach that has been studied by theorists, and has provable guarantees but
is probably too complicated to use in practice. Theorists have developed provably good pseudo-
random generators, but only for algorithms that use a small amount of space. Since streaming

45 c©Nicholas Harvey 2021. All rights reserved.

algorithms do indeed use little space, this approach can indeed be used to regenerate the matrix
R as necessary.

References: See this paper of Nisan.

• Another approach with theoretical guarantees is to generate R using special low-independence
hash functions. A basic form of these ideas was discussed in Chapter 14. We may return to this
in future chapters. See (Blum et al., 2018, Section 6.2.3) or Chapter 6 of these notes.

24.2 Euclidean nearest neighbor

The nearest neighbor problem is a classic problem involving high-dimensional data. Given points
P = {p1, ..., pn} ∈ Rd, the goal is to build a (static) data structure so that, given a query point q ∈ Rd,
we can quickly find i minimizing ‖q − pi‖. We focus on the Euclidean norm ‖·‖ = ‖·‖2, but this problem
is interesting for many norms.

Trivial solutions. This problem can trivially be solved in polynomial time. We could do no processing
of P , then for each query find the closest point by exhaustive search. This requires time O(nd) for
each query. An alternative approach is to use a k-d tree, which is a well-known data structure for
representing geometric points. Unfortunately this could take O(dn1−1/d) time for each query, which
is only a substantial improvement over exhaustive search when the dimension d is a constant. This
phenomenon, the failure of low dimensional methods when applied in high dimensions, is known as the
“curse of dimensionality”.

Overcoming the curse. We will show that the curse can be overcome through the use of randomiza-
tion and approximation. The ε-approximate nearest neighbor problem (ε-NN) is defined as follows.
Given a query point q ∈ Rd, define

OPT = min
p∈P
‖p− q‖

we must find a point p̂ ∈ P such that

‖p̂− q‖ ≤
(
1 +O(ε)

)
·OPT. (24.2.1)

Our goal is to preprocess P and produce a data structure of size poly(n). Given a query point q, we
wish to spend time say O(d log(n)/ε2) finding a point p ∈ P satisfying (24.2.1). Imagine a setting where
n ≈ 1010 is the number of web pages, d ≈ 103 is the number of features describing those pages, and
ε = 10−1 is the desired approximation. Our approach can answer a query in time d log(n)/ε2 ≈ 106,
whereas the trivial approach requires time nd ≈ 1013.

The high-level idea of our solution is very simple. First, design an exhaustive search algorithm that
requires space roughly 2O(d) to solve ε-NN for d-dimensional data. Then, apply dimensionality reduction
to reduce the data set to dimension t ≈ log n. Running the exhaustive search algorithm on the t-
dimensional data only requires space 2O(t) = nO(1).

24.2.1 Point Location in Equal Balls

The first step is to reduce our problem to a simpler one, in which a query only needs to determine
whether the closest point is at distance less than or greater than roughly r. This simpler problem is
called the ε-Point Location in Equal Balls problem (ε-PLEB). It is defined as follows.

46 c©Nicholas Harvey 2021. All rights reserved.

https://link.springer.com/article/10.1007/BF01305237
https://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/Notes/lecnotes.pdf
https://en.wikipedia.org/wiki/K-d_tree
http://en.wikipedia.org/wiki/Curse_of_dimensionality

The input data is a collection of n points P = {p1, . . . , pn} ⊂ Rd. The notation B(p, r), defined
in (B.2.2), denotes the Euclidean ball of radius r around p. We will call B(p, r) a small ball, and
B(p, (1 + ε)r) a big ball.

Given a query point q ∈ Rd, the requirements are as follows:

• Case 1: (1 + ε)r < OPT.
In this case, q is not in any big ball, i.e., @pi with q ∈ B(pi, (1 + ε)r). We must output No.

• Case 2: r < OPT ≤ (1 + ε)r.
In this case, q is in a big ball but not any small ball. We can either output No, or output Yes
together with a point pj with q ∈ B(pj , (1 + ε)r).

• Case 3: OPT ≤ r.
In this case, q is in a small ball (i.e., ∃pi ∈ P with q ∈ B(pi, r)). We must output Yes and a point
pj with q ∈ B(pj , (1 + ε)r).

Although there is some uncertainty about what happens in Case 2, we can draw some conclusions from
the output.

• If the output is Yes, then we are always provided with a point pj such that q ∈ B(pj , (1 + ε)r).

• If the output is No, then either Case 1 or Case 2 could apply. In either case,

there is no p ∈ P s.t. q ∈ B(p, r). (24.2.2)

24.2.2 Reduction of ε-NN to ε-PLEB

We now explain how to solve the ε-NN problem using a solution to the ε-PLEB problem. First scale
the point set P so that the minimum interpoint distance is at least 1, then let ∆ be the maximum
interpoint distance. So 1 ≤ ‖p− p′‖ ≤ ∆ for all p, p′ ∈ P .

Initialization. To initialize the data structure, we create an instance of ε-PLEB(r) for every radius
r in

R =
{

(1 + ε)0, (1 + ε)1, (1 + ε)2, . . . ,∆
}
. (24.2.3)

Question 24.2.1. How many different radii are there?

Answer.

Thereare

log1+ε(∆)=
ln(∆)

ln(1+ε)
≤O(log(∆)/ε),

byExerciseB.2.

Queries. Fix a query point q ∈ Rd. Let us consider what the different outputs of ε-PLEB(r) might
be for the radii in R.

47 c©Nicholas Harvey 2021. All rights reserved.

Example 1:

Radius (1 + ε)0 (1 + ε)1 (1 + ε)2 (1 + ε)3 (1 + ε)4 · · · ∆

Output No No No Yes Yes · · · Yes

Case 1 1 2 3 3 · · · 3

Example 2:

Radius (1 + ε)0 (1 + ε)1 (1 + ε)2 (1 + ε)3 (1 + ε)4 · · · ∆

Output No No No Yes Yes · · · Yes

Case 1 1 1 2 3 · · · 3

Figure 24.1: Some possible outcomes of the ε-PLEB subroutine. Note that there can be at most one
radius that results in Case 2.

Claim 24.2.2. For the radii in R, all No outputs occur for smaller radii than all Yes outputs.

Proof. If radius r falls into Case 1, then clearly all smaller radii also fall into Case 1 and therefore
produce the output No.

If radius r falls into Case 3, then clearly all larger radii also fall into Case 3 and therefore produce the
output Yes.

It remains to consider Case 2. Clearly at most one radius in R can satisfy the condition of Case 2. With
this radius, either Yes or No could be output, but both possibilities are consistent with the claim.

Given any query point q, let r̂ be the minimum radius r for which ε-PLEB(r) says Yes. Let p̂ ∈ P be
the returned point for which q ∈ B(p̂, (1 + ε)r̂). By Claim 24.2.2, r̂ can be found by binary search.

Claim 24.2.3. p̂ satisfies (24.2.1), and therefore is a solution to the ε-NN problem.

Proof. The requirements of the ε-PLEB(r̂) subroutine ensure that that ‖p̂− q‖ ≤ r̂(1 + ε).

Recall that r̂ is the minimum radius that said Yes. If r̂ = 1 then clearly p satisfies (24.2.1). Otherwise,
ε-PLEB(r̂/(1 + ε)) output No. It follows (from (24.2.2)) that there is no point p′ ∈ P with q ∈
B(p′, r/(1 + ε)). In other words,

r

1 + ε
< min

p′∈P

∥∥p′ − q∥∥ .
Thus p̂ satisfies

‖p̂− q‖ ≤ (1 + ε)r̂ < (1 + ε)2 · min
p′∈P

∥∥p′ − q∥∥ .
Since (1 + ε)2 ≤ 1 + 3ε (see Fact B.1.3), this proves (24.2.1).

Question 24.2.4. How many radii must the binary search consider in order to determine r∗?

Answer.

log2|R|=O(log(log(∆)/ε)).

24.2.3 Solving PLEB

The main idea here is quite simple. We discretize the space, then use a hash table to identify locations
belonging to a ball.

48 c©Nicholas Harvey 2021. All rights reserved.

Preprocessing. In more detail, the preprocessing step for ε-PLEB(r) proceeds as follows. We first
partition the space into cuboids (d-dimensional cubes) of side length εr/

√
d. Note that1 the Euclidean

diameter of a cuboid is its side length times
√
d, which is εr. Each cuboid is identified by a canonical

point, say the minimal point contained in the cuboid. We then create a hash table, initially empty. For
each point pi and each cuboid C that intersects B(pi, r), we insert the (key, value) pair (C, pi) into the
hash table.

Queries. Now consider how to perform a query for a point q. The first step is to determine the cuboid
C that contains q, by simple arithmetic. Next, we look up C in the hash table. If there are no matches,
that means that no ball B(pi, r) intersects C, and therefore q is not contained in any ball of radius r (a
small ball). So, by the requirements of ε-PLEB(r), we can say No.

Suppose that C is in the hash table. Then the hash table can return an arbitrary pair (C, pj), which
tells us that B(pj , r) intersects C. By the triangle inequality, the distance from pj to q is at most r plus
the diameter of the cuboid, which is εr. So ‖pj − q‖ ≤ (1 + ε)r, which means that q is contained in the
big ball around pj . By the requirements of ε-PLEB(r), we can say Yes and we can return the point pj .

Time and Space Analysis. To analyze this algorithm, we first need to determine the number of
cuboids that intersect a ball of radius r. From (B.2.3), the volume of B(p, r) is 2O(d)rd/dd/2. On the
other hand, the volume of a cuboid is (εr/

√
d)d. So the number of cuboids that intersect this ball is

roughly
2O(d)rd/dd/2

(εr/
√
d)d

= O(1/ε)d.

Therefore the time and space used by the preprocessing step is roughly O(1/ε)d.

To perform a query, we just need to compute the cuboid containing q then look up that cuboid in the
hash table. This takes O(d) time if we use the perfect hashing of Section 15.4. This cannot be improved
— Ω(d) time is clearly necessary, since we must examine most coordinates of the vector q.

Unfortunately the preprocessing time and space is exponential in d, which is another example of the
curse of dimensionality. The next section addresses this via dimensionality reduction.

24.2.4 Applying Dimensionality Reduction

The next step is to apply the Johnson-Lindenstrauss lemma to map our points to a low-dimensional
space. Let t = O(log(n)/ε2). Let R be a random t×d matrix whose entries have distribution N(0, 1/t).
For any fixed query point q, Theorem 23.2.1 says that the linear map R approximately preserves pairwise
distances between all points in P ∪ {q} with probability 1− 1/n.

The analysis of ε-PLEB changes as follows. The preprocessing step must apply the matrix to all points
in P , which takes time O(dnt). The time to set up the hash table improves to O(1/ε)t = nO(log(1/ε)/ε2).
So assuming ε is a constant, the preprocessing step runs in polynomial time. Each query must also
apply the Johnson-Lindenstrauss matrix to the query point, which takes time O(td) = O(d log(n)/ε2).

Finally, we analyze the reduction which allowed us to solve ε-NN. Recall that the preprocessing step
simply instantiates ε-PLEB(r) for all values of r in R. As discussed in Question 24.2.1, the number of
different instances is |R| = O

(
log(∆)/ε

)
, so the total preprocessing time is

nO(log(1/ε)/ε2) · O
(

log(∆)/ε
)
.

1This can be seen from Fact B.2.1, because the cuboid has `∞ diameter εr/
√
d.

49 c©Nicholas Harvey 2021. All rights reserved.

This is polynomial time assuming ∆ ≤ 2n
poly(1/ε)

and ε is a constant. Each query must perform binary
search over different radii to find r̂. Each query to ε-PLEB now takes time O(t). So the total query
time is

O
(
dt
)

+O(log|R|) ·O(t) = O
(
t ·
(
d+ log(log(∆)/ε)

))
.

This is roughly O(d log(n)/ε2) so long as ∆ is reasonable, say ∆ ≤ 22d .

24.2.5 Discussion

Some of the earliest papers on approximate nearest neighbour are Kleinberg, Indyk and Motwani and
Kushilevitz-Ostrovsky-Rabani. The algorithm we present is due to Indyk and Motwani. It seems
quite inefficient, but of course there have been numerous improvements. The Indyk-Motwani paper
itself also proposed the alternative approach of “locality sensitive hashing”, which was touched upon in
Section 12.3. Some modern techniques for nearest neighbor are described in the survey of Andoni and
Indyk.

24.3 Fast Least-Squares Regression

Given matrix A of size d×m (with d ≥ m) and a vector b ∈ Rd, the goal is to find

x∗ ∈ argmin
x∈Rm

‖Ax− b‖ .

For some background motivation, see CPSC 340 Lecture 12 and Lecture 13.

Mathematically, this is quite a simple problem to solve: ‖Ax− b‖22 is a convex, differentiable quadratic
function, so the minimizers are the points with zero gradient. After some simple vector calculus, this
amounts to solving to the linear system

ATAx = ATb. (24.3.1)

References: UBC MATH 307 notes, (Trefethen and Bau, 1997, Theorem 11.1).

The focus of this section is algorithms for computationally solving (24.3.1).

Conventional Solutions. There are several standard approaches to solving (24.3.1).

• Naively, one could compute ATA and ATb explicitly and use Gaussian elimination to solve the
problem exactly.

Question 24.3.1. How much time does this take?

Answer.

O(dm2)timetocomputeATA,O(dm)timetocomputeATb,andO(m3)timetoperformGaussian
elimination.Sinced≥m,thisisO(dm2)time.
ThiscanbeimprovedtoO(dm1.38)byagalacticalgorithm.

• Since ATA is symmetric, we could use the Cholesky decomposition instead of Gaussian elimination.
This approach can also solve the problem exactly in O(dm2) time.

References: (Trefethen and Bau, 1997, Algorithm 11.1).

50 c©Nicholas Harvey 2021. All rights reserved.

https://dl.acm.org/doi/10.1145/258533.258653
https://dl.acm.org/doi/10.1145/276698.276876
https://dl.acm.org/doi/10.1145/276698.276877
http://en.wikipedia.org/wiki/Locality-sensitive_hashing
http://people.csail.mit.edu/indyk/p117-andoni.pdf
http://people.csail.mit.edu/indyk/p117-andoni.pdf
https://www.cs.ubc.ca/~fwood/CS340/lectures/L12.pdf
https://www.cs.ubc.ca/~fwood/CS340/lectures/L13.pdf
https://ubcmath.github.io/MATH307/orthogonality/least_squares.html
https://en.wikipedia.org/wiki/Galactic_algorithm

Theorem 24.3.2. There is a randomized algorithm to find x̂ satisfying

‖Ax̂− b‖ ≤ (1 +O(ε)) · ‖Ax∗ − b‖ (24.3.2)

in time
O(dm log d) + poly(m log d/ε).

The failure probability is at most 2e−m.

The key point is that the leading term has improved from O(dm2) to only O(dm log d). This gives an
improvement over conventional results if log d� m� d and ε is modest.

The main idea is as follows. We will use a Fast JL matrix R to reduce the number of rows of A and b
to t = O((m log d/ε)3); see Section 23.4.3. After the dimension reduction, we then solve the problem by
conventional methods.

Algorithm 24.2 Fast algorithm for least-squares regression. A has size d×m and b has length d.

1: function FastLeastSquares(matrix A, vector b, float ε)
2: Let t← O

(
(m log d/ε)3

)
3: Let R be a Fast JL matrix of size t× d
4: Compute the matrix RA and the vector Rb
5: Find x̂ ∈ argminx∈Rm ‖RAx−Rb‖, by conventional methods.
6: return x̂
7: end function

Runtime analysis. The key computations are on line 4. Computing RA by ordinary matrix mul-
tiplication would take time O(tdm), which is too slow. However, since R is a Fast JL matrix, we can
do this much more quickly. Recall from Theorem 23.3.2 that matrix-vector multiplication with R takes
time O(d log d + t). So we can construct RA by separately multiplying R by each column of A. Since
there are m columns, this takes O(dm log d + tm) time. The vector Rb can be computed in the same
way.

Next, on line 5, we can find x̂ by conventional methods in O(tm2) time. Plugging in the definition of t,
the total runtime is

O(dm log d+ tm) +O(tm2) = O(dm log d) + poly(m log d/ε).

Analysis. Define
U = span

(
{ Ax : x ∈ Rm } ∪ {b}

)
. (24.3.3)

The vectors in U all have length d, but U is a subspace of dimension at most m + 1. By (??), the
matrix R approximately preserves the norm of all vectors in U , with probability at least 1− 2e−m. By
definition of x̂, we have

‖RAx̂−Rb‖ ≤ ‖RAx∗ −Rb‖ = ‖R(Ax∗ − b)‖ ≤ (1 + ε) · ‖Ax∗ − b‖ ,

since Ax∗ − b ∈ U . On the other hand,

‖RAx̂−Rb‖ = ‖R(Ax̂− b)‖ ≥ (1− ε) ‖Ax̂− b‖ ,

since Ax̂− b ∈ U . Putting these inequalities together, we obtain

‖Ax̂− b‖ ≤ 1 + ε

1− ε
· ‖Ax∗ − b‖ .

Since 1
1−ε ≤ 1 + 2ε (see Fact B.3.5), this completes the proof of Theorem 24.3.2.

51 c©Nicholas Harvey 2021. All rights reserved.

Discussion. This algorithm is due to Tamas Sarlos. See also Section 10.3 of this survey.

There have been many improvements. Let nnz(A) denote the number of non-zero entries in the matrix
A. It is known that the guarantee (24.3.2) can be achieved in time

O(nnz(A)) + poly(m/ε).

See, for example, this paper or Theorem 21 of this survey.

24.4 Approximate Matrix Multiplication

Let A and B be matrices of size n × n. Computing the product AB exactly takes O(n3) time by
conventional methods, or O(n2.38) by a galactic algorithm. The following algorithm is much faster, and
is based on a very simple idea:

reduce the dimension of the matrices before multiplying them.

Algorithm 24.3 Algorithm to estimate AB. The matrices A and B have size n× n.

1: function FastMatMul(matrix A, B, float ε)
2: Set t = O(log(n)/ε2)
3: Let R be a t× n matrix with independent entries drawn from N(0, 1/t)
4: return ARTRB
5: end function

Question 24.4.1. What is the runtime of this algorithm?

Answer.

Itdependsontheorderinwhichthematricesaremultiplied.MultiplyingRTRfirstwillgiveruntime
O(n3).However,firstmultiplyingART,thenRBtakestimeO(n2t),andfinallycombiningthemtakes
timeO(n2t)=O(n2log(n)/ε2).

One appealing aspect of this algorithm is the following claim.

Claim 24.4.2. FastMatMul(A,B, ε) is an unbiased estimator of AB.

The proof of this claim is Exercise 24.1.

Notation. The entry of A in the ith row and jth column is denoted Ai,j . To refer to rows and columns,
we will use the following handy notation. Thinking of ∗ as a “wildcard” character, we will let Ai,∗ denote
the ith row of A and let A∗,k denote the kth column of A. Using this notation, the entries of the product
AB can be expressed as a dot product as follows.

(AB)i,k =

n∑
j=1

Ai,jBj,k = Ai,∗B∗,k

References: (Murphy, 2022, Section 7.2.3).

Definition 24.4.3. For a matrix A, its Frobenius norm ‖A‖F is defined by

‖A‖2F =
∑
i,j∈[n]

(Ai,j)
2 =

∑
i∈[n]

‖Ai,∗‖22 =
∑
j∈[n]

‖A∗,j‖22 . (24.4.1)

52 c©Nicholas Harvey 2021. All rights reserved.

https://ieeexplore.ieee.org/document/4031351
https://arxiv.org/abs/2002.01387v3
https://arxiv.org/abs/1211.1002
https://arxiv.org/abs/1411.4357
https://en.wikipedia.org/wiki/Galactic_algorithm

This is just the Euclidean norm of A when viewed as a vector of length n2.

References: (Trefethen and Bau, 1997, page 22), (Vershynin, 2018, Section 4.1.3), (Murphy, 2022, Section 7.1.3.2), (Blum et al.,

2018, Section 12.8.5), Wikipedia.

Our main theorem is that FastMatMul(A,B, ε) is a good approximation for AB, with error measured
in the Frobenius norm.

Theorem 24.4.4. With probability at least 1− 1/n,

‖AB −ARTRB‖F ≤ ε ‖A‖F ‖B‖F .

Proof. We apply dimensionality reduction to the rows of A and the columns of B. Define

X = { (Ai,∗)
T : i ∈ [n] } ∪ { B∗,k : k ∈ [n] } .

Exercise 23.2 shows that, with probability 1− 1/n,

|xTx′ − xTRTRx′| ≤ ε ‖x‖ ‖x′‖ ∀x, x′ ∈ X
=⇒ |Ai,∗B∗,k −Ai,∗RTRB∗,k| ≤ ε ‖Ai,∗‖ ‖B∗,k‖ ∀i, k ∈ [n].

Squaring and summing over i, k, we have∑
i,k∈[n]

(
Ai,∗B∗,k −Ai,∗RTRB∗,k︸ ︷︷ ︸

=(AB−ARTRB)i,k

)2 ≤ ε2
∑
i,k∈[n]

‖Ai,∗‖2 ‖B∗,k‖2

= ε2
(∑
i∈[n]

‖Ai,∗‖2
)(∑

k∈[n]

‖B∗,k‖2
)
.

The theorem follows by taking the square root and using the identity (24.4.1).

24.5 Exercises

Exercise 24.1. Prove Claim 24.4.2.

53 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

Chapter 25

Polynomial Methods

In Section 15.1 we discussed the problem of testing equality of two bitstrings in a distributed setting.
We solved that problem by comparing the hash values when using the polynomial hash functions of
Section 14.3. That was our first taste of polynomial methods.

25.1 Polynomial Identity Testing

The polynomial identity testing problem (henceforth, PIT) can roughly be defined as follows. Given
a multivariate polynomial p(x1, . . . , xn) with coefficients in some field F, decide if p equals the zero
polynomial. This problem might sound dull and algebraic, but it is perhaps better to think of it as very
abstract and general. Many interesting non-algebraic problems, such as testing equality of strings, are
related to PIT.

Let us now explain PIT in more detail. Every polynomial p(x1, . . . , xn) can be expanded into a sum
of monomials with coefficients in F. For example, the polynomial p(x, y, z) = (x + 2y)(3y − z) can be
expanded into a sum of monomials as

p(x, y, z) = 3xy + 6y2 − xz − 2yz.

If p is expanded into a sum of monomials, and all coefficients of those monomials are zero, then p is
called the zero polynomial, or identically zero.

Example 25.1.1. Is
p(x, y, z) = (x+ y)2 − (x− y)2 − 4xy

identically zero?

Answer.

Yes,bytrivialexpansion.

Example 25.1.2. Is

p(x, y, z) = (x1 − x2)(x1 − x3)(x2 − x3) − det

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

identically zero?

54

Answer.

Yes,bytheformulaforaVandermondedeterminant.

Univariate polynomials are commonly classified by their degree. For a multivariate polynomial, this
requires some explanation. A monomial is any expression of the form c ·

∏n
i=1 x

αi
i where c ∈ F and

α1, . . . , αn are non-negative integers. The total degree of this monomial is
∑n

i=1 αi. The total degree
of a polynomial is the maximum total degree of its monomials.

We can now state the PIT question mathematically as follows. If p is a polynomial of total degree d,
and we expand

p(x1, . . . , xn) =
∑

α1,...,αn≥0
α1+···+αn≤d

cα1,...,αn

n∏
i=1

xαii ,

then are all coefficients cα1,...,αn equal to zero?

Computational considerations. As stated above, PIT is a mathematical question: is p equal to
the zero polynomial, or isn’t it? We are interested in the computational aspects of PIT. This requires
discussing how the data is represented and what operations are permitted. In particular, we must clarify
what it means to be “given p”.

We will assume that p is represented as a “black box” which, given explicit values x1, . . . , xn, returns
the value p(x1, . . . , xn) in one unit of time. This model is useful because p might have an implicit
representation, such as in Example 25.1.2. Nevertheless, given numeric values for x1, x2, x3 we can
evaluate p(x1, x2, x3) by computing the determinant numerically.

Complexity Status. The complexity status of PIT is quite interesting. We will show that there is
a randomized algorithm to decide PIT. However, there is no known efficient deterministic algorithm to
decide PIT. Furthermore, if such an algorithm existed then there would be significant consequences in
complexity theory. It is perhaps fair to say that PIT is the canonical problem in RP that is not known
to be in P.

25.1.1 The Schwartz-Zippel Lemma

The main tool that we will use in this chapter is the following.

Lemma 25.1.3 (Schwartz-Zippel Lemma). Let F be any field. Let p(x1, . . . , xn) be a polynomial of
total degree d with coefficients in the field F. Assume that p is not identically zero. Let S ⊆ F be any
finite set. Then, if we pick y1, . . . , yn independently and uniformly from S,

Pr [p(y1, . . . , yn) = 0] ≤ d

|S|
.

Interestingly, the right-hand side d
|S| does not depend on n!

References: (Motwani and Raghavan, 1995, Theorem 7.2), Wikipedia.

To help understand the lemma, let p be a polynomial of total degree d over R. Fix any set S of size 2d,
and pick each yi uniformly and independently from S. According to the lemma, (y1, . . . , yn) is a root
of p with probability at most 1/2.

Question 25.1.4. Can we conclude that polynomials over R have finitely many roots?

55 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/RP_(complexity)
https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Answer.

No!Considerthepolynomialp(x1,x2)=x1whichhastotaldegreed=1.Ithasinfinitelymanyroots
becausesettingx1=0andx2toanythinggivesaroot.However,ifwefixS={0,1}andrandomly
choosey1,y2∈SthenindeedPr[p(y1,y2)=0]=1/2,soLemma25.1.3istight.

Proof of Lemma 25.1.3. We proceed by induction on n.

The base case is the case n = 1. Over any field F, a univariate polynomial of degree d has at most d
roots; see Fact A.2.13. So the probability that y1 is a root is at most d/|S|.
Now we assume the theorem is true for polynomials with n− 1 variables, and we prove it for those with
n variables. The main idea is to obtain polynomials with fewer variables by factoring out the variable
x1 from p. Let k be the largest power of x1 appearing in any monomial of p. We may write

p(x1, . . . , xn) =
k∑
i=0

xi1 · qi(x2, . . . , xn).

By our choice of k, the polynomial qk is not identically zero, and its total degree is at most d− k.

Now randomly choose the values of y2, . . . , yn ∈ S and define the event

E1 = “qk(y2, . . . , yn) = 0”.

By induction

Pr [E1] = Pr [qk(y2, . . . , yn) = 0] ≤ d− k
|S|

. (25.1.1)

We have already chosen the values y2, . . . , yn ∈ S. What remains is the univariate polynomial

f(x1) =
k∑
i=0

xi1 · qi(y2, . . . , yn) = p(x1, y2, . . . , yn).

Conditioning on the event E1, the coefficient of xk1 in f is non-zero, and so f is not identically zero. Now
choose y1 uniformly at random from S, and define the event

E2 = “f(y1) = 0” = “p(y1, . . . , yn) = 0”.

By the univariate argument of the base case,

Pr
[
E2 | E1

]
= Pr

[
f(y1) = 0 | E1

]
≤ k

|S|
. (25.1.2)

We can combine the two types of errors in a familiar way.

Pr [p(y1, . . . , yn) = 0] = Pr [E2]

≤ Pr [E1] + Pr
[
E2 | E1

]
(by Exercise A.4)

≤ d− k
|S|

+
k

|S|
(by (25.1.1) and (25.1.2))

=
d

|S|

56 c©Nicholas Harvey 2021. All rights reserved.

25.1.2 Solving PIT

Algorithm 25.1 Randomized algorithm for PIT. It is assumed that p has coefficients in F and S ⊆ F.

1: function SolvePIT(polynomial p(x1, . . . , xn), set S)
2: Pick y1, . . . , yn uniformly and independently from S
3: if p(y1, . . . , yn) = 0 then return True
4: else return False
5: end function

Recall the definitions of an RP-algorithm and a coRP-algorithm from Section 1.2.

Theorem 25.1.5. Let d be the total degree of p. If |S| ≥ 2d then SolvePIT is a coRP algorithm for
the PIT problem.

Proof. If the correct output is True then p is identically zero, so p(y1, . . . , yn) will always equal 0, and
the algorithm will always output True. So the algorithm has no false negatives.

If the correct output is False then the algorithm will incorrectly output True if p(y1, . . . , yn) = 0. By
Lemma 25.1.3, this happens with probability at most d/|S| ≤ 1/2.

25.2 Bipartite Matching

Let G = (U ∪ V,E) be a bipartite graph, meaning that U and V are disjoint sets of vertices, and every
edge in E has exactly one endpoint in U and exactly one endpoint in V . A matching in G is a set
of edges that share no endpoints. A perfect matching in G is a set of edges M ⊆ E such that every
vertex is contained in exactly one edge of M .

Polynomial time algorithms are known to decide if G has a perfect matching, and even to construct such
a matching. We will give a randomized algorithm to decide if G has a perfect matching, by reducing
that problem to PIT.

Let A be the matrix whose rows are indexed by the vertices in U and columns are indexed by the
vertices in V . The entries of A are:

Au,v =

{
xu,v (if uv ∈ E)

0 (if uv 6∈ E)
, (25.2.1)

where { xu,v : uv ∈ E } are distinct variables.

Another consequence of Claim 25.2.1 is that detA can be viewed as a polynomial over any field F. This
is because all the monomials have coefficient either +1 or −1, which are numbers in every field F.

Claim 25.2.1.
detA =

∑
perfect matching m:U→V

±
∏
u∈U

xu,m(u). (25.2.2)

Corollary 25.2.2. detA is identically zero if and only if G has no perfect matching.

Proof of Claim 25.2.1. By the Leibniz formula for determinants,

detA =
∑

bijection π:U→V
±
∏
u∈U

Au,π(u), (25.2.3)

57 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Leibniz_formula_for_determinants

where the signs are irrelevant for our purposes.

The first observation is that the monomials in the right-hand side of (25.2.3) all involve distinct sets of
variables, and therefore there can be no cancellations amongst these monomials.

Next, observe that a bijection from U to V is simply a pairing { (u, π(u)) : u ∈ U } of elements in U
and elements in V such that each vertex appears in exactly one pair. In contrast, a perfect matching is
such a bijection in which every pair (u, π(u)) is also an edge in E.

Lastly, observe that a monomial
∏
u∈U Au,π(u) is non-zero if and only if every pair (u, π(u)) is an edge in

E. This is because Au,π(u) = 0 if there is no edge from u to π(u). It follows that the non-zero summands
in (25.2.3) are precisely the summands in (25.2.2).

25.2.1 A perfect matching algorithm

Algorithm 25.2 Randomized algorithm for deciding if G has a perfect matching. Here G = (U, V,E)
is a bipartite graph and n = |U | = |V |.

1: function DecidePM(graph G)
2: Let F be any field and S any set where S ⊆ F and |S| ≥ 2n
3: Let A be the matrix described in (25.2.1)
4: Replace every non-zero entry of A with an independent random number uniform in S
5: if detA 6= 0 then return True else return False
6: end function

Question 25.2.3. What is the running time of this algorithm?

Answer.

AssumethatoperationsinFtakeO(1)time.UsingGaussianelimination,onecancomputedetAin
timeO(n3).ThiscanbeimprovedtoO(n2.38)byagalacticalgorithm.

Theorem 25.2.4. DecidePM is an RP-algorithm for deciding if G has a perfect matching.

Proof. After line 3, detA is a polynomial of total degree at most n. As observed above, it can be viewed
as a polynomial over any field F.

If G has no perfect matching then by Corollary 25.2.2, detA is identically zero and so the algorithm
will always return False. Therefore there are no false positives.

If G does have a perfect matching then, by Corollary 25.2.2, detA is not identically zero. By the
Schwartz-Zippel lemma (Lemma 25.1.3), the false negative probability is at most

total degree

|S|
≤ n

2n
=

1

2
.

Question 25.2.5. How can we decrease the failure probability to δ?

Answer.

Oneapproachistouseprobabilityamplificationbyrepeatedtrials,asinChapter??.Anotherapproach
istoincreaseS(andF)tohavesizeatleastn/δ.

58 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Galactic_algorithm

25.3 Exercises

Exercise 25.1. Let a = (a1, . . . , as) be a string of characters in vqw, Let p be a prime with p ≥ q. Let

h(a) =
(s∑
i=1

aiXi + Y
)

mod p.

be a linear hash function as defined in (14.1.1). Use Lemma 25.1.3 to prove that collisions are unlikely:

Pr [h(a) = h(b)] ≤ 1

p
.

This is similar to Corollary 14.1.7.

Exercise 25.2. Give a coRP algorithm for the PIT problem under the assumption that |F| > d.

Exercise 25.3. Give an example of a field F and a polynomial p(x1, . . . , xn) such that p is not the
zero polynomial, but nevertheless p(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ F.

Conclude that, without the assumption |F| > d, it is impossible to solve PIT when p is represented as
a black box.

Exercise 25.4. Let p(x1, . . . , xn) be a polynomial over F2, represented explicitly with a formula.
Prove that deciding whether there exist x1, . . . , xn ∈ F2 such that p(x1, . . . , xn) 6= 0 is NP-hard.

Exercise 25.5. Suppose that p(x1, . . . , xn) is represented as an explicit formula (using addition,
subtraction, multiplication and parentheses). Let d be the total degree of p.

If d ≥ |F|, then Lemma 25.1.3 does not give any useful information about the number of roots. Despite
that, give a coRP algorithm for PIT.

Exercise 25.6. Algorithm 25.2 is a randomized, polynomial time algorithm for deciding if a bipartite
graph has a perfect matching.

Part I. Give a randomized, polynomial time algorithm for deciding if a bipartite graph has a matching
of size at least k. You should use or modify Algorithm 25.2.

Note: k can depend on n.

Part II. BONUS: Give a randomized algorithm to find the size of a maximum matching in O(n2.38)
time.

Exercise 25.7. Let A,B,C be n× n matrices with entries in any field F. We would like to decide if

A ·B ?
= C. Of course this can be solved exactly in O(n3) time by matrix multiplication. The following

interesting algorithm has runtime only O(n2).

59 c©Nicholas Harvey 2021. All rights reserved.

Algorithm 25.3 An algorithm for deciding if A ·B ?
= C. Assume that F is a finite field.

1: function MatMult(matrix A,B,C)
2: Pick vectors r and s in Fn uniformly at random
3: if (rTA) · (Bs) = rTCs then return True
4: else return False
5: end function

Part I. Define a polynomial p with 2n variables such that A ·B 6= C if and only if p is not identically
zero.

Part II. Assuming that F is finite with |F| > 2, prove that MatMult can decide if A · B ?
= C with

failure probability at most 3/4.

Part III. How can the algorithm be modified to handle the case F = R?

Part IV. BONUS: Even if |F| = 2, show that the failure probability is still at most 3/4.

60 c©Nicholas Harvey 2021. All rights reserved.

Chapter 26

Martingales

Probability begins with the definition of independence.

“Probability: Theory and Examples”, R. Durrett

26.1 Introduction

When one is faced with multiple random variables, perhaps the first question one should ask is whether
they are independent. If so, this may simplify their analysis because they can be analyzed separately.
Moreover, it is simpler to generate independent random variables; for example, they can be generated
simultaneously, possibly even on different computers.

Computer programs running on a single machine have a temporal aspect that is not well captured by
the notion of independence. For example, a program might generate at each time step a “new” random
number, but one whose distribution somehow depends on the previous random numbers.

One common model for sequences of dependent random variables is a Markov chain. These are
typically used to model random sequences of “states” (categorical RVs), in which the distribution of
the next state is determined once the current state is known.

References: (Anderson et al., 2017, Definition 10.42), (Motwani and Raghavan, 1995, Section 6.2), (Mitzenmacher and Upfal,

2005, Section 7.1), (Grimmett and Stirzaker, 2001, Section 6.1), Wikipedia.

In contrast, martingales are sequences of real-valued RVs in which the next RV can depend arbitrarily
on all previous RVs; however, they must satisfy

the expectation of the next RV, conditioned on all previous RVs, must equal the current RV.

This is of course a vague description, but it conveys the key ideas and allows us to discuss some examples.

Question 26.1.1. Let S0, S1, . . . , ST ∈ {Sunny,Cloudy} be random variables satisfying

Pr [S0 = Sunny] = 1/2

Pr [S0 = Cloudy] = 1/2

Pr [St = St−1] = 2/3 ∀t ∈ [T]

Pr [St 6= St−1] = 1/3 ∀t ∈ [T].

Are these a Markov chain or a martingale?

61

https://en.wikipedia.org/wiki/Markov_chain

Answer.

Thesearecategoricalrandomvariables,sotheycannotbeamartingale.TheyareaMarkovchain
becausethedistributionofStiscompletelydeterminedbythevalueofSt−1.

Example 26.1.2. Let S0, S1, . . . , ST ∈ Z satisfy

Pr [S0 = 1] = 1/2

Pr [S0 = 2] = 1/2

Pr [St − St−1 = S0] = 1/2 ∀t ∈ [T]

Pr [St − St−1 = −S0] = 1/2 ∀t ∈ [T]

Are these a Markov chain or a martingale?

These are a martingale because

E [St | S0, . . . , St−1] =
1

2
· (St−1 + S0) +

1

2
· (St−1 − S0) = St−1.

However, they are not a Markov chain. For example, suppose that S1 = 0. Then S2 might take values
±1 with probability 1/2 (if S0 = 1), or might take values ±2 with probability 1/2 (if S0 = 2). Since the
distribution cannot be determined from S1 alone, they do not form a Markov chain.

Question 26.1.3. Let S0, S1, . . . , ST ∈ Z be a standard random walk, meaning that S0 = 0 and

Pr [St − St−1 = ±1] = 1/2 ∀t ∈ [T]

Are these a Markov chain or a martingale?

Answer.

Theyareboth!TheyareaMarkovchainbecausethedistributionofStdependsonlyonSt−1.They
areamartingalebecause

E[St|S0,...,St−1]=
1

2
·(St−1+1)+

1

2
·(St−1−1)=St−1.

26.2 Definitions

Consider a randomized algorithm that runs at discrete time steps t ∈ [T]. We will keep track of the
full history1 of its random variables as follows.

Full history: Ft = (all random variables that have been generated by the end of time t) ∀t ∈ [T].

As more RVs are generated over time, we have the obvious2 containment

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ FT .

Typically we set F0 = ∅ for notational convenience.

With respect to this full history, a martingale is a sequence of random variables

S0, S1, S2, . . . , ST

satisfying three conditions.

1A reader comfortable with measure theoretic probability will notice that this concept (and its notation) is building
toward the idea of a filtration (Grimmett and Stirzaker, 2001, page 473) (Klenke, 2008, Definition 9.9).

2We will use the notation of sets for operations on Ft, although strictly speaking they should be viewed as vector-valued
random variables.

62 c©Nicholas Harvey 2021. All rights reserved.

• To rule out pathological situations, we will require that E [|St|] is finite for all t.

• The value of St is completely determined by time t. In other words, the value of St is completely
determined by the vector Ft.

• Given everything that is known at time t− 1, we expect that St will equal St−1. In symbols,

E [St | Ft−1] = St−1. (26.2.1)

References: (Motwani and Raghavan, 1995, Definition 4.11), (Grimmett and Stirzaker, 2001, Definition 12.1.8), (Roch, 2020,

Definition 3.30), (Durrett, 2019, Section 4.2), (Klenke, 2008, Definition 9.24), Wikipedia.

The theory of martingales becomes much richer if we consider infinite sequences of random variables.
However in computer science applications that is not always necessary, and we can illustrate many of
the key ideas by focusing on the case of finite3 sequences.

26.2.1 Background on expectations

In order to understand martingales, it is important to have a solid understanding of conditional expec-
tations. Defining conditional expectations for continuous RVs requires considerable care4, so we will
assume for simplicity that all RVs are discrete. Let us first review the definitions.

Definition 26.2.1 (Expectation conditioned on an event). Without loss of generality we consider
events of the form “B = b”, where B is a RV and b is a fixed constant. The conditional expectation
E [A | B = b] is a non-random scalar. It is defined to equal

E [A | B = b] =
∑
a

a · Pr [A = a | B = b] . (26.2.2)

References: (Lehman et al., 2018, Definition 19.4.5), (Anderson et al., 2017, Definitions 10.2 and 10.7).

Definition 26.2.2 (Expectation conditioned on a RV). E [A | B] is a random variable that takes
the value E [A | B = b] whenever B = b.

References: (Anderson et al., 2017, Definition 10.23), (Mitzenmacher and Upfal, 2005, Definition 2.7), (Motwani and Raghavan,

1995, Definition 4.4), (Grimmett and Stirzaker, 2001, Definition 3.7.3).

Expectation of conditional expectation. Since E [A | B] is a random variable, we can take its
expectation. This amounts to eliminating the conditioning on B.

Claim 26.2.3 (Law of total expectation). E [E [A | B]] = E [A].

3In particular, this restricts our attention to uniformly integrable martingales/Doob martingales. See, e.g., (Grimmett
and Stirzaker, 2001, Example 12.3.9), (Durrett, 2019, Section 4.6), (Klenke, 2008, Theorem 11.7).

4See, e.g., (Grimmett and Stirzaker, 2001, Section 10.2 and 10.4), (Grimmett and Stirzaker, 2001, Section 4.6), (Durrett,
2019, Section 4.1), (Klenke, 2008, Chapter 8).

63 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Martingale_(probability_theory)#Definitions

Proof.

E [E [A | B]] =
∑
b

E [A | B = b] · Pr [B = b] (by Definition A.3.9)

=
∑
b

(∑
a

a · Pr [A = a | B = b]
)
· Pr [B = b] (by (26.2.2))

=
∑
a

a ·
(∑

b

Pr [A = a ∧ B = b]
)

(by Definition A.3.4)

=
∑
a

a · Pr [A = a] (by Fact A.3.6)

= E [A] .

References: (Anderson et al., 2017, Equation (10.28) and (10.29)), (Mitzenmacher and Upfal, 2005, Theorem 2.7), (Grimmett and

Stirzaker, 2001, Theorem 3.7.4), (Motwani and Raghavan, 1995, Lemma 4.9), (McDiarmid, 1998, equation (31)), Wikipedia.

In fact, the same argument works even if all expectations are conditioned on C.

Claim 26.2.4 (Tower property). E [E [A | B,C] | C] = E [A | C].

References: (Motwani and Raghavan, 1995, Lemma 4.14), (Durrett, 2019, Theorem 4.1.13(ii)), (Klenke, 2008, Theorem 8.14(iv)),

(Grimmett and Stirzaker, 2001, Exercise 3.7.1(f)), (McDiarmid, 1998, equation (30)), Wikipedia.

With ordinary expectations, any constants can be pulled outside due to linearity of expectation. For
example, E [aX] = aE [X] if a is a constant. Interestingly, when using conditional expectations, it is
possible to pull certain random variables outside of the expectation, since conditional expectations are
themselves random variables.

Claim 26.2.5 (Pulling out known factors). Let A, B and C be random variables such that A is
completely determined by C. (That is, A = f(C) for some function f .) Then

E [A ·B | C] = A · E [B | C] .

References: (Anderson et al., 2017, Equation (10.36)), (Grimmett and Stirzaker, 2001, Exercise 3.7.1(e)), (Klenke, 2008, Theorem
8.14(iii)).

26.2.2 An equivalence for martingales

Martingales can be characterized as sequences of RVs that give the best guess about a future RV.

“for finite [sequences] all corresponding martingales may be obtained in this way.”

Colin McDiarmid, “Concentration”.

Theorem 26.2.6 (Informal).

For all t, St is the best guess for ST , given everything known at time t

⇐⇒ S0, . . . , ST is a martingale

To prove this we will separately consider the two directions. First we show that a martingale is com-
pletely determined by the final RV ST , together with the sequence F0, . . . , FT .

Claim 26.2.7. For any martingale S0, S1, . . . , ST ,

St = E [ST | Ft] ∀t ≤ T.

64 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Law_of_total_expectation
https://en.wikipedia.org/wiki/Conditional_expectation#Basic_properties

References: (Durrett, 2019, Theorem 4.2.5), (Grimmett and Stirzaker, 2001, Exercise 12.1.2), (Klenke, 2008, Remark 9.27).

Proof. Observe that Fk, the RVs generated up to time k, can be regarded as a pair of RVs

Fk = Fk−1, Fk\Fk−1, (26.2.3)

of which the latter describes the new RVs generated at time k.

The martingale property (26.2.1) says that

E [ST | FT−1] = ST−1. (26.2.4)

This proves the claim for t = T − 1.

Now take the expectation conditioned on FT−2, to obtain

E [ST | FT−2] = E [E [ST | FT−2, FT−1\FT−2] | FT−2] (by Claim 26.2.4)

= E [E [ST | FT−1] | FT−2] (by (26.2.3))

= E [ST−1 | FT−2] (by (26.2.4))

= ST−2 (by (26.2.1)).

This proves the claim for t = T − 2. Iterating this argument proves the claim for all t.

It is worth calling attention to the following special case.

Corollary 26.2.8. If S0, S1, . . . , ST is a martingale then

E [ST] = E [S0] .

Moreover, if S0 is not random (which would hold if F0 = ∅, for example), then E [ST] = S0.

References: (Mitzenmacher and Upfal, 2005, Lemma 12.1).

Proof. Simply apply Claim 26.2.7 with t = 0 then take the unconditional expectation.

The following claim gives the other direction of Theorem 26.2.6.

Claim 26.2.9. Let S be any random variable with E [|S|] finite. Define

St = E [S | Ft] ∀t ∈ {0, . . . , T} .

Then S0, S1, . . . , ST is a martingale.

The proof is left as Exercise 26.1.

References: (Motwani and Raghavan, 1995, Theorem 4.13), (Roch, 2020, Example 3.34), (Klenke, 2008, Exercise 9.2.1).

26.2.3 Relaxing to inequalities

Sometimes we encounter random variables that satisfy (26.2.1) with inequality instead of equality.
These can still be useful, so they deserve their own names.

A supermartingale satisfies: E [St | Ft−1] ≤ St−1 ∀t ∈ [T]

A submartingale satisfies: E [St | Ft−1] ≥ St−1 ∀t ∈ [T].

65 c©Nicholas Harvey 2021. All rights reserved.

These names might be the opposite of what you might expect: a supermartingale goes down in expec-
tation, whereas a submartingale goes up in expectation. Oh well — the names are firmly established,
and we’re stuck with them.

References: (Grimmett and Stirzaker, 2001, Definition 12.1.9), (Motwani and Raghavan, 1995, Definition 4.7), (Durrett, 2019,

Section 4.2), (Roch, 2020, Definition 3.30), (Klenke, 2008, Definition 9.24), Wikipedia.

The following claim gives a trivial generalization of Corollary 26.2.8 to these settings as well.

Claim 26.2.10. Suppose that S0, S1, . . . , ST is:

a supermartingale. Then E [ST] ≤ E [S0]

a submartingale. Then E [ST] ≥ E [S0] .

26.3 Azuma’s Inequality

For our purposes, the main appeal of martingales is that they have powerful concentration properties,
despite lacking independence. This is one reason that martingales find many uses in computer science.

The main martingale concentration result we will use is Azuma’s inequality, which is shown in the
following theorem. It is a generalization5 of Hoeffding’s inequality, which we discussed in Section 9.3
and Section 21.3.

Theorem 26.3.1. Let S0, S1, . . . , Sn be a martingale, as in Section 26.2. Suppose that |St−St−1| ≤ 1
for all t ∈ [n]. For any α ≥ 0,

Pr [Sn ≥ S0 + α] ≤ exp(−α2/2n)

and Pr [Sn ≤ S0 − α] ≤ exp(−α2/2n).

Combining these Pr [|Sn − S0| ≥ α] ≤ 2 exp(−α2/2n).

References: (McDiarmid, 1998, Theorem 3.10), (Cesa-Bianchi and Lugosi, 2006, Lemma A.7), (Motwani and Raghavan, 1995,

Theorem 4.16), (Mitzenmacher and Upfal, 2005, Theorem 12.6), (Alon and Spencer, 2000, Theorem 7.2.1), (Roch, 2020, Theorem

3.52), (Grimmett and Stirzaker, 2001, Theorem 12.2.3), (Wainwright, 2019, Corollary 2.20), (Klenke, 2008, Exercise 9.2.4), Wikipedia.

26.4 Applications of Azuma’s Inequality

26.4.1 Balls and bins, Bloom filters

Our first application is intended to illustrate two ideas.

• An approach to show strong concentration bounds for a RV that is not a sum of independent RVs.

• An argument that our best guess for a RV does not change much over time.

Consider the following algorithm that throws b balls independently into m bins. The number X of
non-empty bins is returned at the end.

5In fact, this generalization was known to Hoeffding. In his paper, he wrote “the inequalities... remain true [with] the
weaker assumption that the sequence... is a martingale.”

66 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Martingale_(probability_theory)#Submartingales,_supermartingales,_and_relationship_to_harmonic_functions
https://en.wikipedia.org/wiki/Azuma%27s_inequality
https://www.jstor.org/stable/2282952

1: function ThrowBalls(int b, int m)
2: Create array B[1..m] of Booleans, initially all False
3: for t = 1, . . . , b
4: Generate Yt independently and uniformly in [m] . The bin for ball t
5: Set B[Yt]← True
6: Compute X, the number of True entries of B
7: return X
8: end function

We remark that X can be expressed as

X = NonEmpty(Y) = |{ Yt : t ∈ [b] }|.

So the code needn’t maintain the array B; that is just a conceptual convenience.

Our Bloom filter discussion in Section 12.4 relies on a balls and bins analysis. Specifically, when
b = 1.45m we showed in Claim 12.4.13 that E [X] < 0.499m. The runtime analysis of the Bloom filter
initialization relies on showing that Pr [X ≥ m/2] is small. Since X is not a sum of independent RVs,
we cannot use the Chernoff or Hoeffding inequalities. Nevertheless, we can give a tail bound for X using
Azuma’s inequality.

Theorem 26.4.1.
Pr
[
X − E [X] ≥ c

√
b
]
≤ exp(−c2/2).

Following Section 26.2, we let Ft be all RVs created up to the end of iteration t of the outer loop. Then
the full history is as follows.

F0 = ∅
F1 = (Y1)

F2 = (Y1, Y2)

F3 = (Y1, Y2, Y3)

... =
...

Ft = (Yi : i ≤ t) ∀t ∈ [b].

Our best guess for X changes over time as the full history unfolds. Define

St = E [X | Ft] ∀t ∈ {0, . . . , b} .

Then S0, S1, . . . , Sb is a martingale, by Claim 26.2.9.

Note that Fb contains all generated random variables. So the expectation conditioned on Fb does nothing
at all — all RVs are known once Fb is known. Thus

Sn = E [X | Fb] = X.

On the other hand F0 contains no random variables. So the expectation conditioned on F0 is just the
unconditional expectation. Thus S0 is not random, and simply equals

S0 = E [X | F0] = E [X] .

A key observation is that the best guess for X changes by at most 1 in each time step.

67 c©Nicholas Harvey 2021. All rights reserved.

Claim 26.4.2. Fix any t ∈ [b]. Then |St − St−1| ≤ 1.

Proof sketch. Recall that

St−1 = E [X | Y1, . . . , Yt−1]

St = E [X | Y1, . . . , Yt−1, Yt] .

Choosing a location for ball t can affect the number of non-empty bins by at most 1, so |St−St−1| ≤ 1.

Proof. Let Y1, . . . , Yb be the random choices generated by ThrowBalls(b,m). Now let Z1, . . . , Zb be
a copy of Y where we generate a new random value for Zt. Clearly

|NonEmpty(Y)−NonEmpty(Z)| ≤ 1 (26.4.1)

since only one ball has changed its location.

Now we will take the expectation conditioned on Ft = {Y1, . . . , Yt}, but not conditioning on the new
value Zt. The key observation is that

E [NonEmpty(Z) | Ft] = E [NonEmpty(Y) | Ft−1] . (26.4.2)

This is because Z has the same distribution as Y , and we have not conditioned on Zt. We get

1 ≥ E [|NonEmpty(Y)−NonEmpty(Z)| | Ft] (by (26.4.1))

≥ | E [NonEmpty(Y) | Ft]− E [NonEmpty(Z) | Ft] | (by Jensen’s inequality, Fact B.4.2)

= |E [NonEmpty(Y) | Ft]− E [NonEmpty(Y) | Ft−1]| (by (26.4.2))

= |St − St−1|.

Claim 26.4.2 shows that the hypotheses of Azuma’s inequality (Theorem 26.3.1) are satisfied. We obtain

Pr
[
X − E [X] ≥ c

√
b
]

= Pr
[
Sb − S0 ≥ c

√
b
]
≤ exp(−c2/2).

This proves Theorem 26.4.1.

26.4.2 Vertex coloring

Our next application is intended to illustrate two ideas.

• It can be useful for RVs to enter the full history in a way that is not the most obvious.

• It is possible to show that a RV is concentrated around some value, without knowing what that
value is!

A vertex coloring of a graph G = (V,E) is a function f : V → [c] such that f(u) 6= f(v) for all
uv ∈ E. The chromatic number of G is the minimum integer c for which a coloring exists. This is
often denoted χ(G).

Consider the following algorithm for computing the chromatic number of a random graph. The algorithm
is not interesting, it just helps to understand the temporal aspect of the random variables.

68 c©Nicholas Harvey 2021. All rights reserved.

Algorithm 26.1 An algorithm that generates a random graph in which each edge is added indepen-
dently with probability p, then computes its chromatic number.

1: function RandGraph(int n, float p)
2: Create graph G = (V,E) with V ← [n] and E ← ∅
3: for t = 1, . . . , n
4: for s = 1, . . . , t− 1
5: Add edge st to E with probability p
6: Compute χ(G) by exhaustive search
7: return χ(G)
8: end function

Our main result shows that χ(G) is tightly concentrated around its expectation. Mysteriously, the
theorem does not reveal what that expectation is.

Theorem 26.4.3.

Pr
[
|χ(G)− E [χ(G)]| ≥ c

√
n
]
≤ 2 exp(−c2/2).

References: (Alon and Spencer, 2000, Theorem 7.2.4), (Mitzenmacher and Upfal, 2005, Section 12.5.4), (Motwani and Raghavan,

1995, Exercise 4.11).

Following Section 26.2, we let Ft be all RVs created up to the end of iteration t of the outer loop. Let
Xuv ∈ {0, 1} be the RV that indicates if edge uv ∈ E. Then the full history is as follows.

F0 = ∅
F1 = ∅ (no edges are added when t = 1)

F2 = (X12)

F3 = (X12, X13, X23)

... =
...

Ft = (Xuv : 1 ≤ u < v ≤ t) ∀t ∈ [n].

Our best guess for χ(G) changes over time as the full history unfolds. Define

St = E [χ(G) | Ft] ∀t ∈ {0, . . . , n} .

Then S0, S1, . . . , Sn is a martingale, by Claim 26.2.9. Note that Sn (which equals χ(G)) is a RV giving
the chromatic number of a random graph with parameters n and p. On the other hand S0 (which equals
S1) is not random and simply equals E [χ(G)].

The key is to understand how much the best guess for χ(G) changes at each time step.

Claim 26.4.4. Fix any t ∈ [n]. Then |St − St−1| ≤ 1.

Proof sketch. Recall that

St−1 = E [χ(G) | Ft−1]

St = E [χ(G) | Ft] .

Choosing the edges for vertex t affects the chromatic number by at most one, because we can always
give t a new color.

69 c©Nicholas Harvey 2021. All rights reserved.

Proof. Let G be the random graph generated by RandGraph(n, p). Now let H be a copy of G where
we generate fresh independent samples for all edges in Et = { st : s < t }. Observe that

|χ(G)− χ(H)| ≤ 1. (26.4.3)

This is because any coloring of G can be modified to a coloring of H by giving vertex t a new color,
or vice versa. Now we take the expectation of (26.4.3) conditioned on the edges of G in Ft, but not
conditioning on the resampled edges of H. We get

1 ≥ E [|χ(G)− χ(H)| | Ft]

≥ | E [χ(G) | Ft]− E [χ(H) | Ft] |,

by Jensen’s inequality (Fact B.4.2). Now the key observation is that E [χ(H) | Ft] = E [χ(G) | Ft−1].
This is because H has the same distribution as G, and we have not conditioned on H’s edges in Et. So

1 ≥ |E [χ(G) | Ft]− E [χ(G) | Ft−1]|
= |St − St−1|.

Claim 26.4.4 shows that the hypotheses of Azuma’s inequality (Theorem 26.3.1) are satisfied. We obtain
that

Pr
[
|χ(G)− E [χ(G)]| ≥ c

√
n
]

= Pr
[
|Sn − S0| ≥ c

√
n
]
≤ 2 exp(−c2/2).

This proves Theorem 26.4.3.

26.5 Proof of Azuma’s inequality

Let λ > 0 be an arbitrary parameter. A useful viewpoint is to define the following random variables.

Xt = exp
(
λ(St − S0)− λ2t/2

)
∀t ∈ {0, . . . , n}

This might seem a strange definition, but there are some fundamental reasons why it is very natural.
In more advanced contexts, it is called the stochastic exponential.

The key is the following claim, after which the remainder of the proof is straightforward.

Claim 26.5.1. The RVs X0, X1, . . . , Xn are a supermartingale.

Now we follow Chernoff’s approach of Section 21.2.1.

Pr [Sn − S0 ≥ α] = Pr
[

exp
(
λ(Sn − S0)− λ2n/2

)
≥ exp(λα− λ2n/2)

]
(by monotonicity)

≤ E [Xn]

exp(λα− λ2n/2)
(by Markov’s inequality)

≤ E [X0]

exp(λα− λ2n/2)
(by Claims 26.5.1 and 26.2.10)

= exp(−λα+ λ2n/2) (since X0 = 1)

= exp(−α2/n+ α2/2n) = exp(−α2/2n) (by plugging in λ = α/n).

This completes the proof of Theorem 26.3.1. It remains to prove the claim.

70 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Dol%C3%A9ans-Dade_exponential

Proof of Claim 26.5.1. Consider any time t. Then, by definition of Xt,

E [Xt | Ft−1] = E
[

exp
(
λ(St − S0)− λ2t/2

)
| Ft−1

]
Observe that the random variables St−1 and S0 are completely determined by Ft−1, and so eλ(St−1−S0)−λ2t/2

is also. By Claim 26.2.5 we can pull that outside the expectation.

= eλ(St−1−S0)−λ2t/2 · E
[

exp
(
λ(St − St−1)

)
| Ft−1

]
Since |St−St−1| ≤ 1 and E [St − St−1 | Ft−1] = 0, the hypotheses of Hoeffding’s lemma (Lemma 21.3.2)
are satisfied, so we obtain the upper bound

≤ eλ(St−1−S0)−λ2t/2 · eλ2/2 = Xt−1.

This shows that X0, . . . , Xn form a supermartingale.

26.6 Exercises

Exercise 26.1. Prove Claim 26.2.9.

Exercise 26.2. Let S0, S1, . . . , Sn be a martingale, as in Section 26.2. Suppose that there are
non-random values c1, . . . , cn such that |St − St−1| ≤ ct for all t ∈ [n]. Define

Xt = exp
(
λ(St − S0)− λ2

2

t∑
i=1

c2
i

)
∀t ∈ {0, . . . , n} .

Prove that X0, . . . , Xn form a supermartingale.

71 c©Nicholas Harvey 2021. All rights reserved.

Chapter 27

Gradient Descent

Let f : Rn → R be a convex function and let X ⊆ Rn be a convex set. We will assume that minx∈X f(x)
is achieved by some point x∗. Our objective is to find a point x ∈ X for which f(x)− f(x∗) is small.

TODO: Define subgradients.

Since f is convex, we have ∂f(x) 6= ∅ for all x ∈ Rn. Throughout this chapter we will use the Euclidean
norm, and we will assume that f is 1-Lipschitz. This condition can be equivalently stated in terms of
subgradients (via Fact B.3.8), which implies

‖g‖2 ≤ 1 ∀x ∈ X , g ∈ ∂f(x). (27.0.1)

27.1 Unconstrained gradient descent

The algorithm is shown in Algorithm 27.1.

Algorithm 27.1 Gradient descent for minimizing a convex, 1-Lipschitz function over Rn.

1: procedure GradientDescent(vector x1 ∈ Rn, int T)
2: Let η = 1/

√
T

3: for i← 1, . . . , T do
4: xi+1 ← xi − ηgi, where gi = ∇f(xi) if f is differentiable, or
5: gi is any subgradient in ∂f(xi) if f is non-differentiable

6: return
∑T

i=1 xi/T

Remark 27.1.1. Observe that the only way that Algorithm 27.1 accesses the function f is in line
4. We assume that f is presented to the algorithm as a subgradient oracle, which receives a point
x ∈ Rn, and returns any subgradient g ∈ ∂f(x).

Theorem 27.1.2. Suppose that f : Rn → R is convex and 1-Lipschitz. Fix an optimal solution
x∗ ∈ argminx f(x) and a starting point x1 ∈ Rn. Define η = 1√

T
. Suppose that ‖x1 − x∗‖2 ≤ 1. Then

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤ 1√

T
.

References: (Bubeck, 2015, Theorem 3.2), (Shalev-Shwartz and Ben-David, 2014, Corollary 14.2, §14.2.3).

72

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (B.3.1))

=
1

η
〈 xi − xi+1, xi − x∗ 〉 (by the gradient step in line 4)

=
1

2η

(
‖xi − xi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
(by the cosine law (B.2.1)).

To analyze the average error, sum the previous displayed equation over i. The last two terms telescope,
yielding

T∑
i=1

(
f(xi)− f(x∗)

)
≤ 1

2η

((T∑
i=1

‖xi − xi+1‖22
)

+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)

≤ 1

2η

(T∑
i=1

‖ηgi‖22 + ‖x1 − x∗‖22
)

(by the gradient step in line 4)

≤ ηT

2
+

1

2η
(by (27.0.1) and the assumption on x1)

Dividing by T and using Jensen’s inequality (Fact B.4.2) and the definition of η gives

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤ η

2
+

1

2Tη
=

1√
T
,

as required.

Remark 27.1.3. The error guarantee of Theorem 27.1.2 is optimal for any algorithm that only accesses
f using a subgradient oracle (Bubeck, 2015, Theorem 3.13).

General reduction from arbitrary scaling. The analysis present above assumes that the given
function f is 1-Lipschitz. How shall we handle a function that is L-Lipschitz? It also has a certain
“scale assumption” ‖x1 − x∗‖2 ≤ 1. How could we handle a general scale, say ‖x1 − x∗‖2 ≤ R? In
Section 27.4 we will discuss a general reduction that can handle such scenarios.

Theorem 27.1.4. Suppose that we have a theorem giving a convergence rate guarantee c(T) for
gradient descent assuming f is 1-Lipschitz and assuming the “scale” ‖x1 − x∗‖2 ≤ 1. Suppose h is an
L-Lipschitz function whose “scale” is bounded by R. Then there is a black-box reduction from h to f ,
showing that gradient descent on h achieves convergence rate RL · c(T).

27.2 Projected gradient descent

In this section we consider the problem minx∈X f(x) where X is a closed, convex set. Again, f is
assumed to be convex and 1-Lipschitz.

The ordinary gradient descent algorithm does not ensure that the iterates remain in X . In this section
we modify the algorithm to project back onto X . The algorithm now takes a gradient step from the
iterate xi to compute a new point yi+1, then projects onto X to obtain the new iterate xi+1.

The algorithm, shown in Algorithm 27.2, is a slight modification of Algorithm 27.1. The theorem is a
slight modification of Theorem 27.1.2. The only changes are highlighted below.

73 c©Nicholas Harvey 2021. All rights reserved.

Algorithm 27.2 Projected gradient descent for minimizing convex, 1-Lipschitz functions over a convex
set.

1: procedure ProjectedGradientDescent(set X ⊆ Rn, vector x1 ∈ X , int T)

2: Let η = 1/
√
T

3: for i← 1, . . . , T do
4: yi+1 ← xi − ηgi, where gi ∈ ∂f(xi).

5: xi+1 ← ΠX (yi+1)

6: return
∑T

i=1 xi/T

Theorem 27.2.1. Let X ⊆ Rn be a convex set. Suppose that f : Rn → R is convex and 1-Lipschitz

(with respect to ‖·‖2). Fix an optimal solution x∗ ∈ argminx∈X f(x) and a starting point x1 ∈ X .
Define η = 1√

T
. Suppose that ‖x1 − x∗‖2 ≤ 1. Then

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤ 1√

T
.

References: (Bubeck, 2015, Theorem 3.2), (Shalev-Shwartz and Ben-David, 2014, §14.4.1).

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (B.3.1))

=
1

η
〈 xi − yi+1 , xi − x∗ 〉 (by the gradient step in line 4) (27.2.1)

=
1

2η

(∥∥∥xi − yi+1

∥∥∥2

2
+ ‖xi − x∗‖22 −

∥∥∥ yi+1 − x∗
∥∥∥2

2

)
(by the cosine law (B.2.1))

≤ 1

2η

(∥∥∥xi − yi+1

∥∥∥2

2
+ ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
.

The last line uses Fact B.3.10: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , we have
‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22.

To analyze the average error, sum the previous displayed equation over i. The last two terms telescope,
yielding

T∑
i=1

(
f(xi)− f(x∗)

)
≤ 1

2η

((T∑
i=1

∥∥∥xi − yi+1

∥∥∥2

2

)
+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)

≤ 1

2η

(T∑
i=1

‖ηgi‖22 + ‖x1 − x∗‖22
)

(by the gradient step in line 4)

≤ ηT

2
+

1

2η
(by (27.0.1) and the assumption on x1)

Dividing by T and using Jensen’s inequality (Fact B.4.2) and the definition of η gives

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤ η

2
+

1

2Tη
=

1√
T
,

as required.

74 c©Nicholas Harvey 2021. All rights reserved.

27.3 Stochastic gradient descent

Stochastic gradient descent is a generalization of gradient descent in which we relax the notion of a
subgradient oracle. Instead of requiring that the oracle return an actual subgradient, we will allow it to
return a random vector that in expectation is a subgradient. (This is formalized below.) The stochastic
gradient descent algorithm, shown in Algorithm 27.3, is a trivial modification of Algorithm 27.2 to use
this stochastic oracle.

Algorithm 27.3 Stochastic gradient descent for minimizing a convex, Lipschitz function over a convex
set X .

1: procedure StochasticGradientDescent(set X ⊆ Rn, vector x1 ∈ X , int T)
2: Let η = 1/

√
T

3: for i← 1, . . . , T do
4: Let ĝi be a random vector obtained from the subgradient oracle at xi

5: yi+1 ← xi − η ĝi ,

6: xi+1 ← ΠX (yi+1)

7: return
∑T

i=1 xi/T

The analysis of stochastic gradient descent is actually quite straightforward. Below we will prove
Theorem 27.3.2, which is very similar to Theorem 27.2.1, it just requires some care with conditional
expectations.

With that in mind, let us use the notation of Section 26.2, in which Ft consists of all RVs created up to
the end of iteration t of the algorithm. Then the full history is as follows.

F0 = ∅
F1 = (ĝ1)

F2 = (ĝ1, ĝ2)

F3 = (ĝ1, ĝ2, ĝ3)

... =
...

Ft = (ĝi : i ≤ t) ∀t ∈ [T]. (27.3.1)

Claim 27.3.1. For each i ∈ [T],

• ĝi is completely determined by Fi, and

• xi+1 is completely determined by Fi.

Proof sketch. The first statement is trivial from (27.3.1). By induction, xi is determined by Fi−1. Thus,
xi and ĝi are both determined by Fi, from which it follows that yi+1 and xi+1 are too.

Randomized subgradient oracle: assumptions. To analyze the algorithm, we require two as-
sumptions about the subgradient oracle. For notational convenience, we define

gi = E [ĝi | Fi−1] .

75 c©Nicholas Harvey 2021. All rights reserved.

Our first assumption is that

E [ĝi | Fi−1]︸ ︷︷ ︸
=gi

∈ ∂f(xi). (27.3.2)

That is, the expected output of the oracle is a subgradient.

Note that both sides of (27.3.2) are completely determined by Fi−1. For the left, this follows from
definition of conditional expectation (see Definition 26.2.2). For the right, this follows from Claim 27.3.1.

Our second assumption is that the vectors returned by the subgradient oracle are not too large. We
formalize this assumption as:

E
[
‖ĝi‖22

]
≤ 1 ∀i. (27.3.3)

Theorem 27.3.2. Let X ⊆ Rn be a convex set. Suppose that f : Rn → R is convex. Fix an
optimal solution x∗ ∈ argminx∈X f(x) and a starting point x1 ∈ X . Define η = 1√

T
. Suppose that

‖x1 − x∗‖2 ≤ 1. Under our assumptions on the subgradient oracle,

E

[
f

(
1

T

T∑
i=1

xi

)]
− f(x∗) ≤ 1√

T
.

References: (Shalev-Shwartz and Ben-David, 2014, Theorem 14.8), (Bubeck, 2015, Section 6.1).

Before proving the theorem, it is useful to define the noise.

Noise in subgradient oracle: ẑi = gi − ĝi.

Lemma 27.3.3.

E

[
f
(1

T

T∑
i=1

xi

)]
− f(x∗) ≤ 1√

T
+

1

T
E

[
T∑
i=1

〈 ẑi, xi − x∗ 〉

]
.

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (B.3.1))

≤ 〈 ĝi, xi − x∗ 〉+ 〈 ẑi, xi − x∗ 〉 (by definition of ẑi)

=
1

η
〈 xi − yi+1, xi − x∗ 〉 + 〈 ẑi, xi − x∗ 〉 (by the gradient step)

The first term is identical to the quantity considered in the previous section, equation (27.2.1). Thus,
summing over all T and telescoping, we obtain

T∑
i=1

(
f(xi)− f(x∗)

)
≤

T∑
i=1

‖xi − yi+1‖22
2η

+
‖x1 − x∗‖22

2η
+

T∑
i=1

〈 ẑi, xi − x∗ 〉

Now using that xi − yi+1 = ηĝi and ‖x1 − x∗‖ ≤ 1, we obtain

≤ η

2

T∑
i=1

‖ĝi‖22 +
1

2η
+

T∑
i=1

〈 ẑi, xi − x∗ 〉. (27.3.4)

76 c©Nicholas Harvey 2021. All rights reserved.

Now dividing by T and taking the expectation, we have

E

[
1

T

T∑
i=1

(
f(xi)− f(x∗)

)]
≤ η

2T

T∑
i=1

E
[
‖ĝi‖22

]
+

1

2ηT
+ E

[
1

T

T∑
i=1

〈 ẑi, xi − x∗ 〉

]
.

Using our assumption (27.3.3) on the oracle, and Jensen’s inequality (Fact B.4.2), we obtain

E

[
f
(T∑
i=1

xi
T

)]
− f(x∗) ≤ η

2
+

1

2ηT
+ E

[
1

T

T∑
i=1

〈 ẑi, xi − x∗ 〉

]
.

Plugging in η = 1/
√
T completes the proof.

Claim 27.3.4. Define S0 = 0 and

Si =
∑
j≤i
〈 ẑj , xj − x∗ 〉 ∀i ∈ [T].

Then S0, S1, . . . , ST is a martingale (with respect to the full history F0, F1, . . . , FT).

The proof is left as Exercise 27.1.

Proof of Theorem 27.3.2. Since S0, S1, . . . , ST is a martingale, it follows from Corollary 26.2.8 that
E [ST] = E [S0] = 0. So by Lemma 27.3.3, we have

E

[
f
(1

T

T∑
i=1

xi

)]
− f(x∗) ≤ 1√

T
+

1

T
E

[
T∑
i=1

〈 ẑi, xi − x∗ 〉︸ ︷︷ ︸
=ST

]
=

1√
T
.

27.3.1 Application: training ML models

To train a machine learning model, we often need to minimize a function f : Rn → R of the form

f(x) =
1

m

m∑
i=1

fi(x)

where each fi is convex.

This setting commonly arises if x ∈ Rn gives some parameters of the model, there are m training
examples, and fi is a “loss function” that measures how well these parameters do at classifying the ith

example.

A prototypical example would be training a “soft” support vector machine, with the training set

Examples: z1, . . . , zm ∈ Rn

Labels: y1, . . . , ym ∈ {+1,−1}

and loss function fi(x) = max {0, 1− yi〈 x, zi 〉}. If 〈 x, zi 〉 has the opposite sign of yi then fi(x) gives
a positive loss; otherwise, if they have the same sign and |〈 x, zi 〉| ≥ 1, then fi(x) gives no loss. Thus
minimizing f yields parameters x for which the sign of 〈 x, zi 〉 tends to match the label yi.

References: (Shalev-Shwartz and Ben-David, 2014, Equation (15.6)).

Suppose we have a (deterministic) subgradient oracle for each fi. We can build upon these to give a
randomized subgradient oracle for f , with which we can execute SGD.

77 c©Nicholas Harvey 2021. All rights reserved.

The randomized subgradient oracle. The randomized subgradient oracle for f is very simple.
Given a fixed point x, pick an index I ∈ [m] uniformly at random, then return any subgradient of fI at
the point x.

Question 27.3.5. Suppose that each function fi is 1-Lipschitz. Is assumption (27.3.3) necessarily
satisfied?

Answer.

Yes.Eachvectorgihas‖gi‖2≤1byFactB.3.8,whichimpliesthat‖ĝ‖2≤1withprobability1.So
‖ĝ‖

2
2≤1,whichimplies(27.3.3).

Claim 27.3.6. E [ĝ] ∈ ∂f(x).

Proof. Let si ∈ ∂fi(x) be the vector that would be returned by the ith subgradient oracle, so that
E [ĝ] = 1

m

∑m
i=1 si. Then

E [ĝ] ∈ 1

m

m∑
i=1

∂fi(x) (definition of Minkowski sum)

= ∂
(1

m

m∑
i=1

fi(x)
)

(by Fact B.3.9)

= ∂
(
f(x)

)
.

27.3.2 Application: geometric median

Let p1, . . . , pm be points in Rn. A geometric median of these points is a point x∗ that minimizes

f(x) =
1

m

m∑
i=1

‖x− pi‖ .

We present an application of SGD to approximate the geometric median. Following the notation of the
previous section, let fi(x) = ‖x− pi‖.

Claim 27.3.7. fi is 1-Lipschitz.

Proof sketch. This follows from the triangle inequality.

Claim 27.3.8. Define

g =

{
x−pi
‖x−pi‖ (if x 6= pi)

0 (if x = pi).

Then g ∈ ∂fi(x).

Proof sketch. If x 6= pi then fi is differentiable at x, and one may verify that g = ∇fi(x). Otherwise
x = pi, so x is the global minimizer of fi, in which case 0 ∈ ∂fi(x).

Imagine that we have a warm start for finding the geometric median. Specifically, we have a point
x1 ∈ Rn satisfying

‖x1 − x∗‖ ≤ λ where λ = 40f(x∗).

Interestingly, there is a randomized algorithm to find this warm start in O(n) time. See Appendix C.1
of this paper. Given the warm start, SGD provides the desired approximation.

78 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Median#Geometric_median
https://arxiv.org/abs/1606.05225

Theorem 27.3.9. Given the warm start x1, run stochastic gradient descent with no constraints (i.e.,
X = Rn) for T = 1600/ε2 iterations. Then

E [f(xT)] ≤ (1 + ε) · f(x∗).

Proof. Theorem 27.3.2 yields

E [f(xT)]− f(x∗) ≤ λ√
T

=
40f(x∗)√

T
=

40f(x∗)√
1600/ε2

= εf(x∗).

Question 27.3.10. What is the runtime of this algorithm?

Answer.

EachiterationofSGDrequiresO(n)time,sothetotalruntimeisO(nT)=O(n/ε2).

27.4 Scaling reductions

Our analyses above make two assumptions

• Scale of codomain: the given function f is 1-Lipschitz, and

• Scale of domain: ‖x1 − x∗‖2 ≤ 1.

How can we handle a general scale, say an L-Lipschitz function with ‖x1 − x∗‖2 ≤ R? There is a general
reduction that can handle such scenarios.

Meta-theorem. Suppose that we have a theorem giving a convergence rate guarantee c(T) for gradient
descent assuming that f : X̂ → R is 1-Lipschitz and assuming ‖x1 − x∗‖2 ≤ 1. Suppose that h : X → R
is a convex function that is L-Lipschitz, and such that ‖x1 − x∗‖ ≤ R. Then there is a black-box
reduction from h to f , showing that gradient descent on h achieves convergence rate RL · c(T).

Proof of meta-theorem. Let OPT = minx∈X h(x). Define X̂ = X/R and f : X̂ → R by

f(x) =
1

RL
(h(Rx)−OPT).

Thus,

h(x) = RL · f(x/R) +OPT (27.4.1)

min
x∈X̂

f(x) = 0.

Claim 27.4.1. v ∈ ∂h(x) iff v/L ∈ ∂f(x/R).

Consider running gradient descent on h with step sizes ηt = R
L
√
t

from the starting point x1, producing

iterates x2, x3, Let gi be the subgradient used in the ith iteration. Define ĝi = gi/L.

Simulataneously, imagine running gradient descent on f with step sizes η̂t = 1√
t

= L
Rηt and vectors

ĝi = gi/L, from the starting point x̂1 = x1/R. Let x̂2, x̂3, . . . be the vectors produced.

Claim 27.4.2. x̂i = xi/R for all i ≥ 1.

79 c©Nicholas Harvey 2021. All rights reserved.

Proof. By induction, the case i = 1 true by definition. So suppose true up to i. By definition gi ∈ ∂h(xi),
so Claim 27.4.1 implies that ĝi ∈ ∂f(xi/R) = ∂f(x̂i). Then

ˆxi+1 = x̂i − η̂i · ĝi =
1

R
xi −

L

R
ηi ·

1

L
gi =

1

R
(xi − ηigi) =

1

R
xi+1.

To illustrate the meta-theorem, we apply it to Theorem 27.1.2, obtaining:

Theorem 27.4.3. Suppose that f : Rn → R is convex and L-Lipschitz (with respect to ‖·‖2). Fix
an optimal solution x∗ ∈ argminx f(x) and a starting point x1 ∈ Rn. Define η = L

R
√
T

. Suppose that

‖x1 − x∗‖2 ≤ R. Then

h

(
T∑
i=1

xi
T

)
− h(x∗) = RL · f

(
T∑
i=1

xi
RT

)
(by (27.4.1))

= RL · f

(
T∑
i=1

x̂i
T

)
(by Claim 27.4.2)

≤ RL√
T

(by Theorem 27.1.2).

27.5 Exercises

Exercise 27.1 The martingale in SGD.

Part I. Prove that E [ẑi | Fi−1] = 0.

Part II. Prove Claim 27.3.4.

Exercise 27.2 High-probability bound for SGD. Let f : Rn → R be a convex, 1/2-Lipschitz
function. Let X ⊆ Rn be a convex set with diam(X) = 1, and assume x1 ∈ X .

Suppose that the subgradient oracle satisfies (27.3.2). However, instead assuming (27.3.3), we assume
that the noise satisfies ‖ẑi‖ ≤ 1/2.

Part I. Prove that ‖ĝi‖22 ≤ 1.

Part II. Prove that

Pr

[
f
(1

T

T∑
i=1

xi

)
− f(x∗) ≥

1 +
√

2 ln(1/δ)√
T

]
≤ δ.

80 c©Nicholas Harvey 2021. All rights reserved.

Chapter 28

The Lovász Local Lemma

The Lovász Local Lemma (LLL) is an intriguing method for analyzing events that are not independent,
but have some restricted sort of dependencies. It is not as widely applicable as many of the other the
techniques we have seen so far, but from time to time one encounters scenarios in which the LLL is the
only technique that works.

28.1 Statement of the Symmetric LLL

Very often when designing randomized algorithms, we create a discrete probability space in which there
are “bad events” E1, . . . , En that we do not want to occur. For example, in the congestion minimization
problem (Section 22.2), Ei could be the event that edge i has too much congestion. Often our analysis
aims to show that we can avoid these bad events with high probability, i.e., Pr

[∧n
i=1 Ei

]
≈ 1.

In this chapter we consider the weaker goal of showing that Pr
[∧n

i=1 Ei
]
> 0. There are two cases in

which this goal is particularly simple.

• Mutually independent events. Suppose that the events are mutually independent, and that
Pr [Ei] < 1 for every i. Then

Pr
[∧n

i=1 Ei
]

=

n∏
i=1

Pr
[
Ei
]
> 0. (28.1.1)

For example, suppose we pick n digits at random and let Ei = “ith digit is non-zero”. Then
∧n
i=1 Ei

is the event that all digits are zeros. This event does indeed happen with positive probability, due
to (28.1.1).

• Union bound works. Suppose that
∑n

i=1 Pr [Ei] < 1. Then, by a union bound (see (A.3.1)),

Pr
[∧n

i=1 Ei
]

= 1− Pr [
∨n
i=1 Ei] ≥ 1−

n∑
i=1

Pr [Ei] > 0.

If neither of these scenarios applies, then there are not many general-purpose techniques to try. The
Lovász Local Lemma (LLL) is one of the few, and it has intriguing applications for a range of problems.

Roughly speaking, the LLL is applicable in scenarios where the Ei’s are not mutually independent, but
they can have some sort of limited dependencies. Formally, a dependency graph for events E1, . . . , En

81

is defined as follows. The vertex set is [n]. The neighbors of vertex i (excluding i itself) are denoted
Γ(i), and we also define Γ+(i) = Γ(i) ∪ {i}. The key requirement is that event Ei is independent from
{ Ej : j 6∈ Γ+(i) }, the events that are not neighbors of i. This last condition is stated more precisely
as

Pr [Ei] = Pr
[
Ei |

⋂
j∈J Ej

]
for all J ⊆ [n] \ Γ+(i).

So, regardless of whether some of the events outside Γ+(i) occur, the probability of Ei occurring is
unaffected.

Theorem 28.1.1 (The Symmetric LLL). Suppose that there is a dependency graph of maximum degree
d. If Pr [Ei] ≤ p for every i and

p · e · (d+ 1) ≤ 1 (SLL)

then Pr
[⋂n

i=1 Ei
]
≥
(

d
d+1

)n
> 0.

References: (Motwani and Raghavan, 1995, Corollary 5.12), (Alon and Spencer, 2000, Corollary 5.1.2), (Mitzenmacher and Upfal,

2005, Theorem 6.11), Wikipedia.

Remark 28.1.2.

• Since
(

d
d+1

)n ≈ exp(−n/d), due to Fact A.2.5, the LLL only gives an exponentially small proba-
bility of avoiding E1, . . . , En.

• The condition (SLL) can be improved to ped ≤ 1. See, e.g., Harvey & Vondrák, Lemma 9.

28.2 Application: k-SAT

Instead, we will illustrate the LLL by considering a concrete application of it in showing satisfiability
of k-CNF Boolean formulas. Recall that a k-CNF formula is a Boolean formula, involving any finite
number of variables, where the formula is a conjunction (“and”) of any number of clauses, each of which
is a disjunction (“or”) of exactly k literals (a variable or its negation). Let us assume that, for each
clause, the variables appearing in it are all distinct.

For example, here is a 3-CNF formula with three variables and eight clauses.

φ(a, b, c) = (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩
(a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c) ∩ (a ∪ b ∪ c)

This formula is obviously unsatisfiable. One can easily generalize this construction to get an unsatisfiable
k-CNF formula with k variables and 2k clauses. Our next theorem says: the reason this formula is
unsatisfiable is that we allowed each variable to appear in too many clauses.

Theorem 28.2.1. Let φ be a k-CNF formula where each variable appears in at most 2k/ek clauses.
Then φ is satisfiable.

Proof. Consider the probability space in which each variable is independently set to true or false with
equal probability. A clause is not satisfied if every literal appearing in that clause is false. (For example,
a∪ b∪ c is unsatisfied if a is true, b is false, and c is true.) This happens with probability 2−k, since the
clause involves k distinct variables.

Let Ei be the event that the ith clause is unsatisfied. We have just argued that

Pr [Ei] = 2−k =: p.

82 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma
https://arxiv.org/abs/1711.06797v1

Consider the graph defined on [n] in which there is an edge {i, j} if some variable appears in both
clause i and clause j. It is easy to see that this is a dependency graph: whether clause i is satisfied is
independent from the clauses sharing no variables with clause i.

Each variable in clause i appears in at most 2k/ek− 1 other clauses. The number of neighbors of clause
i is at most k times larger, since it contains k variables. That is,

|Γ(i)| ≤ 2k/e− 1 =: d.

Since pe(d + 1) ≤ 1, condition (SLL) is satisfied and Pr
[⋂n

i=1 Ei
]
> 0. So, if we pick values for the

variables at random, there is positive probability of satisfying φ. This shows that φ is satisfiable.

28.3 Symmetric LLL: a proof sketch

In this section we give a sketchy proof of the symmetric LLL that tries to explain the sequence of
ideas that leads to the proof. If this sketch is not to your taste, a correct and concise proof is given in
Section 28.4.1. Instead of assuming (SLL), it will be convenient to assume the strengthened hypothesis

4pd ≤ 1. (28.3.1)

To make the notation more meaningful, let Bi denote the “bad” event Ei and let Gi be the “good” event
Bi. Note that independence from Bi is equivalent to independence from Gi. For any set S ⊆ [n], let
GS = ∩i∈SGi.
The objective of the proof is to show that Pr

[
G[n]

]
> 0, i.e., with positive probability, all good events

occur simultaneously. Note that the union bound gives the easy lower bound

Pr [GS] = 1− Pr [∪i∈SBi] ≥ 1−
∑
i∈S

Pr [Bi] ≥ 1− |S|p, (28.3.2)

but in our scenario, this is too weak — we could have |S|p � 1. Instead, a natural idea is to use the
chain rule (Fact A.3.5) to break apart this large conjunction:

Pr
[
G[n]

]
=

n∏
k=1

Pr
[
Gk | G[k−1]

]
. (28.3.3)

We just need to show that each factor in this product is strictly positive.

Idea 1: Rather than showing that each factor is positive, it turns out to be convenient to negate the
event and prove an upper bound. Specifically, we want to show that

Pr [Bk | GS] ≤ αp ∀S ⊆ [n] (Hope)

for some α to be chosen later. In order for this conditional probability to be well defined, we need
that Pr [GS] > 0. Let’s ignore that for now as our whole purpose is to prove the stronger fact that
Pr
[
G[n]

]
> 0. Trivially,

Pr [Bk | GS] = Pr
[
Bk | GS∩Γ(k) ∩GS\Γ(k)

]
.

Idea 2: We would like to somehow use the fact that Bk is independent of GS\Γ(k) (due to the dependency
graph). But it is difficult to use that fact due to the additional conditioning on GS∩Γ(k). So as a first
step we use the definition of conditional probability to write

Pr [Bk | GS] =
Pr
[
Bk ∩GS∩Γ(k) | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] .

83 c©Nicholas Harvey 2021. All rights reserved.

Idea 3: The next idea is to drop the “∩GS∩Γ(k)” event yielding the following upper bound. We would
hope that still this gives a good bound since Γ(k) is small and GS∩Γ(k) is a very likely event.

Pr [Bk | GS] ≤
Pr
[
Bk | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] =
Pr [Bk]

Pr
[
GS∩Γ(k) | GS\Γ(k)

] ≤ p

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
The equality here uses our second idea, that Bk is independent of the events outside of Γ(k).

Now, to prove (Hope), it suffices to prove that Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1/α. The good news is that

the conjunction GS∩Γ(k) involves few events, so we are in good shape to use the union bound as in
(28.3.2):

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1−

∑
i∈S∩Γ(k)

Pr
[
Bi | GS\Γ(k)

]
. (28.3.4)

If S ∩ Γ(k) = ∅ then this quantity is 1 as the sum is empty. Otherwise, |S \ Γ(k)| < |S|, so we can use
induction on |S|. We have

Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≥ 1−

∑
i∈Γ(k)

Pr
[
Bi | GS\Γ(k)

]
(by (28.3.4))

≥ 1− dαp (inductively using (Hope), and |Γ(k)| ≤ d)

≥ 1− α/4 (by the strengthened hypothesis (28.3.1))

= 1/α

if we now choose α = 2. This shows that (Hope) is satisfied.

28.4 The General LLL

The Symmetric Local Lemma is useful, but often somewhat restrictive. It works best when all events are
equally probable, and when all neighborhood sizes are the same. We might want to consider scenarios
in which some events are quite likely and some are quite rare. The likely events would need to depend
on few other events, and the rare events could perhaps depend on many other events. There is a general
form of the local lemma that can handle such scenarios.

Theorem 28.4.1 (General LLL). Suppose that there is a dependency graph and an x ∈ (0, 1)n satis-
fying

Pr [Ei] ≤ xi ·
∏
j∈Γ(i)

(1− xj) ∀i. (GLL)

Then Pr
[⋂n

i=1 Ei
]
≥
∏n
i=1(1− xi) > 0.

References: (Motwani and Raghavan, 1995, Theorem 5.11), (Alon and Spencer, 2000, Lemma 5.1.1), Wikipedia.

This form of the local lemma is confusing at first because it’s not obvious what these xi values should
be. In order to satisfy (GLL), on the right-hand side we want xi to be big and each xj to be small. Due
to that tension, care is needed in finding the right xi.

28.4.1 A Concise Proof of Theorem 28.4.1

We simultaneously prove by induction on |S| that, for all S ⊆ [n],

Pr [GS] > 0 (28.4.1a)

Pr [Bk | GS] ≤ xk. (28.4.1b)

84 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma

In the case S = ∅, (28.4.1a) is trivial and (28.4.1b) follows directly from (GLL).

By relabeling, we may assume that S = {1, . . . , s}, so

Pr [GS] =

s∏
j=1

Pr
[
Gj | G{1,...,j−1}

]
=

s∏
j=1

(
1− Pr

[
Bj | G{1,...,j−1}

])
≥

s∏
j=1

(1− xj),

where we inductively use (28.4.1a) to ensure that the conditional probabilities are well-defined, and we
inductively use (28.4.1b) to provide the inequality. This proves (28.4.1a).

Next consider (28.4.1b). If S ∩ Γ(k) = ∅ then Pr [Bk | GS] = Pr [Bk], so (28.4.1b) follows directly
from (GLL). Otherwise, relabeling so that S ∩ Γ(k) = {1, . . . , t}, we have

Pr [Bk | GS] = Pr
[
Bk | GS∩Γ(k) ∩GS\Γ(k)

]
=

Pr
[
Bk ∩GS∩Γ(k) | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

]
≤

Pr
[
Bk | GS\Γ(k)

]
Pr
[
GS∩Γ(k) | GS\Γ(k)

] =
Pr [Bk]∏t

j=1 Pr
[
Gj | G(S\Γ(k))∪{1,...,j−1}

]
≤

xk ·
∏
i∈Γ(k)(1− xi)∏t

j=1

(
1− Pr

[
Bj | G(S\Γ(k))∪{1,...,j−1}

]) ≤ xk ·
∏
i∈Γ(k)(1− xi)∏t

j=1

(
1− xj

) .

The second inequality uses (GLL) and the third uses induction. The last expression is clearly at most
xk, proving (28.4.1b).

28.4.2 General implies Symmetric

Finally, let us conclude by noting that Theorem 28.4.1 implies Theorem 28.1.1. To see this, consider an
instance satisfying (SLL). Set xi = 1/(d+ 1). The RHS of (GLL) is

xi ·
∏
j∈Γ(i)

(1− xi) ≥
1

d+ 1
·
(

1− 1

d+ 1

)d
≥ 1

e(d+ 1)
(by calculus)

≥ p (by (SLL)).

This shows that (GLL) is satisfied, so Theorem 28.4.1 implies

Pr

[
n⋂
i=1

Ei

]
≥

n∏
i=1

(1− xi) =
(d

d+ 1

)n
,

which is the conclusion of Theorem 28.1.1.

28.5 An Algorithmic Local Lemma

As stated above, the LLL asserts the existence of a point in a probability space that simultaneously
avoids certain bad events, assuming that their probabilities and dependencies are small enough. How-
ever, it does not suggest an efficient method to find such a point. This naturally leads to a research
question:

85 c©Nicholas Harvey 2021. All rights reserved.

is there an algorithmic form of the LLL?

This questioned had been studied for decades, culminating in a significant breakthrough by Robin Moser
in 2009.

Suppose we wanted to actually find an point in the probability space avoiding the bad events. If we
repeatedly picked independent samples from the underlying probability distribution, the expected time
to find a point avoiding the bad events could be exponential in n. Usually we would like to find this
point in time poly(n). This can be done for essentially all known applications of the local lemma.

Today we will discuss an algorithmic LLL which is not quite that general. Instead, we will focus on the
application of the LLL to showing that SAT formulae are satisfiable, as discussed last time.

Theorem 28.5.1. There is a universal constant α ≥ 1 such that the following is true. Let φ be a
k-CNF formula where each variable appears in at most T := 2k−α/k clauses. Then φ is satisfiable.
Moreover, there is a randomized, polynomial time algorithm to find a satisfying assignment.

The theorem is stronger when α is small. The proof that we will present can be optimized to get α = 3.
The existential result from last time achieves α = lg2(e) ≈ 1.44, which is essentially optimal. So today’s
result is weaker only by a small constant factor.

The algorithm proving the theorem is extremely simple, and algorithms of this sort were certainly con-
sidered decades ago. But, they were not analyzed until 2009, when the audacious and brilliant graduate
student Robin Moser at ETH made a tremendous breakthrough. Related ideas were independently
discovered by Pascal Schweitzer, also a graduate student.

References: Moser’s PhD Thesis Section 2.5, Schweitzer’s paper.

28.5.1 The Algorithm

Moser’s algorithm is given in Algorithm 28.1.

Algorithm 28.1 Algorithm to find a satisfying assignment for a k-SAT formula φ, under the conditions
of Theorem 28.5.1.

1: function Solve(φ)
2: Randomly pick {0, 1} values for each variable in φ . This uses n random bits
3: while there is an unsatisfied clause C
4: Fix(C)
5: return the variable assignment
6: end function
7: function Fix(C)
8: Set each variable in C to 0 or 1 randomly and independently . This uses k random bits
9: while there is an unsatisfied clause D sharing some variable with C

10: Fix(D) . Possibly D = C
11: end function

Notation. Let n be the number of variables and m be the number of clauses in φ. Let T := 2k−α/k be
the maximum number of occurrences of each variable. Each clause contains k variables, each of which
can appear in only T − 1 other clauses. So each clause shares a variable with less than R := kT = 2k−α

other clauses.

86 c©Nicholas Harvey 2021. All rights reserved.

http://e-collection.library.ethz.ch/view/eth:6780
http://people.mpi-inf.mpg.de/~pascal/docs/incompress_lll_Schweitzer.pdf

Claim 28.5.2. Consider any call to Fix that terminates. Let V be the set of variables that are
assigned a different value after the call than before the call. Then every clause containing a variable in
V is satisfied after the call.

Proof. Consider some clause D that contains a variable in V but is not satisfied after the call terminates.
Consider the last time that any variable x in D was resampled. This must have happened during some
call to Fix(E), for some clause E that also contains x. But Fix(E) would not terminate until D was
satisfied, which is a contradiction.

Corollary 28.5.3. Consider any call to Fix that terminates. Every clause that was satisfied before
the call is still satisfied after the call completes.

Proof. If none of its variables changed, it is still satisfied. If at least one of its variables changed,
Claim 28.5.2 applies.

Corollary 28.5.4. Assume that C is violated, and consider any call to Fix(C) that terminates. The
number of satisfied clauses before the call is strictly more than the number of satisfied clauses after the
call.

Proof. By Corollary 28.5.3, the number of satisfied clauses cannot decrease. Furthermore, clause C
must certainly be satisfied afterwards in order for Fix(C) to terminate.

Corollary 28.5.5. Solve calls Fix at most m times. If the algorithm terminates, the output is a
satisfying assignment.

Proof. By Corollary 28.5.4, every call from Solve to Fix(C) that terminates increases the number of
satisfied clauses by at least one. The first claim follows since there are m clauses. The second claim is
obvious: the only way that Solve can terminate is that all clauses are simultaneously satisfied.

So it remains to show that, with high probability, every call to Fix terminates. The analysis of the
algorithm is quite unusual, and counterintuitive the first time one sees it.

28.5.2 Incompressibility

From experience with software tools like gzip, one is likely familiar with the statement that “random
information cannot be compressed”. Let us now formalize that fact by stating that some strings can
be compressed, but only a small fraction of them.

Claim 28.5.6. Let x ∈ {0, 1}` be a uniformly random bit string of length `. The probability that x
can be compressed by log(1/δ) bits is at most δ.

Proof. Consider any deterministic algorithm for encoding all bit strings of length ` into bit strings of
arbitrary length. The number of bit strings that are encoded into ` − b bits is at most 2`−b. So, a
random bit string has probability 2−b of being encoded into `− b bits.

One can view this as a simple special case of the Kraft inequality.

87 c©Nicholas Harvey 2021. All rights reserved.

http://en.wikipedia.org/wiki/Kraft's_inequality

28.5.3 Analysis of Algorithm 28.1

Theorem 28.5.7. Let s = m · (logm + c) + log(1/δ) where c is a sufficiently large constant. Then
the probability that the algorithm makes more than s calls to Fix (including both the top-level and
recursive calls) is at most δ.

The proof proceeds by considering the interactions between two agents: the “CPU” and the “Debugger”.
The CPU runs the algorithm, periodically sending messages to the Debugger (we describe these messages
in more detail below). However, if Fix gets called more than s times the CPU interrupts the execution
and halts the algorithm.

The CPU needs n bits of randomness to generate the initial assignment in Solve, and needs k bits
to regenerate variables in each call to Fix. Since the CPU will not execute Fix more than s times, it
might as well generate all its random bits at the very start of the algorithm. So the first step performed
by the CPU is to generate a random bitstring x of length n+ sk to provide all the randomness used in
executing the algorithm.

The messages sent from the CPU to the Debugger are as follows.

• Every time the CPU runs Fix(C), it sends a message containing the identity of the clause C, and
an extra bit indicating whether this is a top-level Fix (i.e., a call from Solve) or a recursive Fix.

• Every time Fix(C) finishes the CPU sends a message stating “recursive call finished”.

• If Fix gets called s times, the CPU sends a message to the Debugger containing the current {0, 1}
assignment of all n variables.

Because the Debugger is notified when every call to Fix starts or finishes, it always knows which clause
is currently being processed by Fix. A crucial detail is to figure out how many bits of communication
are required to send these messages.

• For a top-level Fix, logm+O(1) bits suffice because there are only m clauses in φ.

• For a recursive Fix, logR + O(1) bits suffice because the Debugger already knows what clause
is currently being fixed, and that clause shares variables with only R other clauses, so only R
possible clauses could be passed to the next call to Fix.

• When each call to Fix(C) finishes, the corresponding message takes O(1) bits.

• When Fix gets called s times, the corresponding message takes n+O(1) bits.

The main point of the proof is to show that, if Fix gets called s times, then these messages reveal the
random string x to the Debugger.

Since each clause is a disjunction (an “or” of k literals), there is exactly one assignment to those variables
that does not satisfy the clause. So, whenever the CPU tells the Debugger that it is calling Fix(C), the
Debugger knows exactly what the current assignment to C is. So, starting from the assignment that
the Debugger received in the final message, it can work backwards and figure out what the previous
assignment was before calling Fix. Repeating this process, it can figure out how the variables were set
in each call to Fix, and also what the initial assignment was. Thus the Debugger can reconstruct the
random string x.

The total number of bits sent by the CPU are

88 c©Nicholas Harvey 2021. All rights reserved.

• m(logm+O(1)) bits for all the messages sent when Solve calls Fix.

• s · (logR+O(1)) for all the messages sent in the ≤ s recursive calls.

• n+O(1) bits to send the final assignment.

Let’s ignore the O(1) terms, which can be eliminated by choosing the constant c and α appropriately.
Then x has been compressed from n+ sk bits to

m logm + s logR + n bits.

This is an overall shrinking of(
n+ sk

)
−
(
m logm+ s logR+ n

)
= s(k − logR) − m logm

= sα − m logm (since R = 2k−α)

=
(
m(logm+ c) + log(1/δ)

)
α − m logm (definition of s)

≥ log(1/δ)

bits, assuming that c and α are sufficiently big constants.

We have argued that, if Fix gets called s times, then x can be compressed by log(1/δ) bits. By
Claim 28.5.6, this is possible with probability at most δ.

28.6 Exercises

Exercise 28.1 Local lemma for 0-1 matrices. Let M be a matrix with m rows, n columns
such that

• every entry Mi,j ∈ {0, 1},

• every row sums to r (i.e.,
∑n

j=1Mi,j = r for all i),

• every column sums to c (i.e.,
∑m

i=1Mi,j = c for all j.)

Show that there exists a vector Y ∈ {0, 1}n such that, letting Z = M · Y , we have

max
i
Zi ≤ (r/2) +O

(√
r log(rc)

)
min
i
Zi ≥ (r/2)−O

(√
r log(rc)

)
.

89 c©Nicholas Harvey 2021. All rights reserved.

Part I

Back matter

90

Acknowledgements

Thanks to my teaching assistant (Victor) and various students over the years for many ideas, suggestions,
corrections, and exercises.

91

Appendix B

Mathematical Background

B.1 Miscellaneous Facts

Fact B.1.1 (Stirling’s Approximation).

e
(n
e

)n
< n! < en

(n
e

)n
References: (Lehman et al., 2018, Theorem 14.5.1), Wikipedia.

Fact B.1.2 (Bounds on binomial coefficients). For any integers n, k with 1 ≤ k ≤ n,

(n
k

)k
≤
(
n

k

)
≤

k∑
i=0

(
n

i

)
≤
(ne
k

)k
.

References: (Cormen et al., 2001, page 1186), (Vershynin, 2018, Exercise 0.0.5), (Motwani and Raghavan, 1995, Proposition B.2),

(Shalev-Shwartz and Ben-David, 2014, Lemma A.5), Wikipedia.

Fact B.1.3. For 0 ≤ ε ≤ 1, we have (1 + ε)2 ≤ 1 + 3ε.

Proof. Expand (1 + ε)2 as 1 + 2ε+ ε2, and use ε2 ≤ ε when ε ≤ 1.

B.2 Geometry and norms

Norms. For a vector x ∈ Rd, its `p norm is defined to be

‖x‖p =
(d∑
i=1

|xi|p
)1/p

∀p ∈ [1,∞)

‖x‖∞ = max
1≤i≤d

|xi|

Every norm ‖·‖ satisfies the

Triangle inequality: ‖a+ b‖ ≤ ‖a‖+ ‖b‖ .

92

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Binomial_coefficient#Bounds_and_asymptotic_formulas

The `2 norm is also called the Euclidean norm. One useful identity it satisfies is

‖a− b‖22 = ‖a‖22 − 2aTb+ ‖b‖22 ∀a, b ∈ Rn. (B.2.1)

This identity might not have a canonical name, but some suggestions I have heard include the generalized
Pythagoras identity, the law of cosines, or simply completing the square.

References: This is immediate from the bilinearity of an inner product. See, e.g., Apostol “Calculus, Volume II”, page 17, or

Wikipedia.

Let
B(p, r) = { x : ‖p− x‖ ≤ r } (B.2.2)

denote the Euclidean ball in Rd around p of radius r. If d is even, the volume of B(p, r) is

volB(p, r) =
πd/2rd

(d/2)!
.

References: (Blum et al., 2018, Section 2.4.1), Wikipedia.

By Stirling’s formula, we have the bound

volB(p, r) ≤ πd/2rd

(d/2e)d/2
=

(2eπ)d/2rd

dd/2
. (B.2.3)

The following fact allows us to compare norms.

Fact B.2.1. For all x ∈ Rd,

‖x‖p ≤ ‖x‖r ≤ d1/r−1/p · ‖x‖p ∀1 ≤ r ≤ p ≤ ∞.

In particular, the most useful cases are

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞
1√
d
‖x‖1 ≤ ‖x‖2 ≤

√
d · ‖x‖∞ .

References: Wikipedia.

Exercises

Exercise B.1. Although every norm satisfies the triangle inequality, the squared Euclidean norm
does not. However, it does satisfy an approximate triangle inequality. Prove that, for any vectors u, v,
we have

‖u− v‖22 ≤ 2 · (‖u‖22 + ‖v‖22).

B.3 Facts from Convex Analysis

B.3.1 One-dimensional functions

Let f : S → R be a function defined on an interval S ⊆ R.

93 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Inner_product_space#Basic_properties
http://en.wikipedia.org/wiki/Deriving_the_volume_of_an_n-ball
http://en.wikipedia.org/wiki/Lp_space#Relations_between_p-norms

Definition B.3.1. We say that f is convex on S if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ S and all λ ∈ [0, 1].

Geometrically, this says that the secant line between the points (x, f(x)) and (y, f(y)) lies above the
function f . The following example illustrates that f(x) = x2 is convex.

An equivalent statement of this definition is as follows.

Fact B.3.2. Suppose f : S → R is convex. Then, for any points x, y ∈ S with x < y, we have

f(z) ≤ f(y)− f(x)

y − x
· (z − x) + f(x)

for all z ∈ [x, y].

For sufficiently nice functions, one can easily determine convexity by looking at its second derivative.

Fact B.3.3. Suppose f : S → R is twice differentiable. Then f is convex if and only if the second
derivative f ′′ is non-negative on the interior of S.

In our example above we used f(x) = x2. Its second derivative is f ′′(x) = 2, which is non-negative, so
f is convex.

The next fact says that, for convex functions, the linear approximation at any point lies beneath the
function.

Fact B.3.4 (Subgradient Inequality). Suppose f : S → R is convex, and f is differentiable at a point
x ∈ S. Then

f(y) ≥ f(x) + f ′(x)(y − x),

for any point y ∈ S.

The following example illustrates this for f(x) = x2 at the point x = 0.5.

94 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Secant_line

B.3.2 Various Inequalities from Convexity

In the analysis of randomized algorithms, we frequently use various inequalities to simplify expressions
or make them easier to work with. These inequalities usually follow by convexity arguments and basic
calculus. For example, let us revisit the following familiar fact.

Fact A.2.5 (Approximating ex near zero). For all real numbers x,

1 + x ≤ ex.

Moreover, for x close to zero, we have 1 + x ≈ ex.

Proof. Convexity of ex follows from Fact B.3.3 since its second derivative is ex, which is non-negative
on R. Applying Fact B.3.4 at the point x = 0, we obtain

f(y) ≥ f ′(x) · (y − x) + f(x) = y + 1.

Fact B.3.5.
1

1 + 2z
≤ 1− z ∀z ∈ [0, 1/2].

95 c©Nicholas Harvey 2021. All rights reserved.

Proof. Convexity of f(z) = 1/(1 + 2z) on the set S = (0,∞) follows from Fact B.3.3 since its second
derivative is 8/(1 + 2z)3, which is non-negative on S. Applying Fact B.3.2 at x = 0 and y = 1/2, we
obtain

f(z) ≤ f(y)− f(x)

y − x
· (z − x) + f(x)

=
1/2− 1

1/2
· (z − 0) + 1 = 1− z ∀z ∈ [0, 1/2].

Fact B.3.6. Fix any c > 0. Then cz ≤ 1 + (c− 1)z for all z ∈ [0, 1].

Proof. The second derivative of cz is cz · ln2(c), which is non-negative, so cz is convex. Applying
Fact B.3.2 at the points x = 0 and y = 1, we obtain

cz ≤ cy − cx

y − x
· (z − x) + cx = (c− 1) · z + 1.

96 c©Nicholas Harvey 2021. All rights reserved.

Exercises

Exercise B.2. Prove that

ln(1 + z) ≤ z for z > −1

ln(1 + z) ≥ ln(2)z ≥ z/2 for z ∈ [0, 1]

B.3.3 Multi-dimensional functions

Definition B.3.7 (Subgradient). Let f : X → Rn be a function. Recall that a subgradient of f at x
is any vector g satisfying:

f(y) ≥ f(x) + 〈 g, y − x 〉 ∀y ∈ X . (B.3.1)

References: (Shalev-Shwartz and Ben-David, 2014, Definition 14.4).

Fact B.3.8 (Lipschitz equivalence). Let X be convex and open. Let f : X → R be convex. The
following conditions are equivalent.

• f : X → R is L-Lipschitz:

|f(x)− f(y)| ≤ L ‖x− y‖2 ∀x, y ∈ X . (B.3.2)

• f has bounded subgradients:

‖g‖2 ≤ L ∀w ∈ X, g ∈ ∂f(w). (B.3.3)

References: (Shalev-Shwartz and Ben-David, 2014, Definition 12.6 and Lemma 14.7).

Fact B.3.9. Let f1, . . . , fn be convex functions, and let α1, . . . , αn ≥ 0. Then

∂
(
α1f1(x) + · · ·+ αnfn(x)

)
= α1∂f1(x) + · · ·αn∂fn(x).

The sum on the right-hand side is a Minkowski sum.

References: (Hiriart-Urruty and Lemaréchal, 2001, Theorem D.4.1.1).

Fact B.3.10 (Projection decreases Euclidean distance). ‖ΠX (y)− x‖2 ≤ ‖y − x‖2 for all x ∈ X .

References: (Shalev-Shwartz and Ben-David, 2014, Lemma 14.9).

B.4 Probability

B.4.1 Expectation

For non-negative integer-valued random variables, the expectation has the formula Fact A.3.10. The
following fact gives the analogous formula for arbitrary random variables.

Fact B.4.1. Let X be a non-negative random variable. Then

E [X] =

∫ ∞
0

Pr [X ≥ x] dx =

∫ ∞
0

(1− F (x)) dx,

where F is the CDF of X.

97 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Minkowski_addition

References: For the special case of continuous random variables, see (Grimmett and Stirzaker, 2001, Lemma 4.3.4) or (Mitzenmacher

and Upfal, 2005, Lemma 8.1). For arbitrary random variables, see (Vershynin, 2018, Lemma 1.2.1), (Durrett, 2019, Exercise 1.7.2)

and (Klenke, 2008, Theorem 4.26).

Fact B.4.2 (Jensen’s inequality). Let f : Rn → R be a function and X a random vector.

If f is convex: f(E [X]) ≤ E [f(X)]

If f is concave: f(E [X]) ≥ E [f(X)]

The following special case is useful. Let x1, . . . , xn ∈ Rn. Let λ1, . . . , λn ∈ [0, 1] satisfy
∑n

i=1 λi = 1.
Then

If f is convex: f
(n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

References: (Cormen et al., 2001, Equation (C.26)), (Vershynin, 2018, page 7), (Mitzenmacher and Upfal, 2005, Lemma 2.4),

(Klenke, 2008, Theorem 7.9), (Durrett, 2019, Theorem 1.5.1), (Grimmett and Stirzaker, 2001, Exercise 5.6.1), Wikipedia.

B.4.2 Variance

Definition B.4.3. The variance of a random variable X is defined to be

Var [X] = E
[

(X − E [X])2
]
.

References: (Lehman et al., 2018, Definition 20.2.2), (Cormen et al., 2001, Equation (C.27)), (Motwani and Raghavan, 1995, page

443), (Mitzenmacher and Upfal, 2005, Definition 3.2), (Grimmett and Stirzaker, 2001, Definition 3.3.5), (Durrett, 2019, page 29).

Fact B.4.4. Variance satisfies the following identity.

Var [X] = E
[
X2
]
− E [X]2 . (B.4.1)

Consequently,
Var [X] = E

[
X2
]

if E [X] = 0. (B.4.2)

References: (Lehman et al., 2018, Definition 20.3.1), (Anderson et al., 2017, Fact 3.48), (Cormen et al., 2001, Equation (C.27)),

(Motwani and Raghavan, 1995, Proposition C.8), (Mitzenmacher and Upfal, 2005, Definition 3.2), (Grimmett and Stirzaker, 2001,

page 51), (Durrett, 2019, Equation (1.6.2)), (Klenke, 2008, Definition 5.1(iii)).

Proof.

Var [X] = E
[

(X − E [X])2
]

(by definition)

= E
[
X2 − 2X E [X] + E [X]2

]
(expand the quadratic)

= E
[
X2
]
− 2 E [X] E [X] + E [X]2 (linearity of expectation)

= E
[
X2
]
− E [X]2 . (simplifying).

This proves (B.4.1). The equation (B.4.2) is immediate.

Fact B.4.5. Let G1, . . . , Gd be pairwise independent random variables with finite variance. Let

σ1, . . . , σd ∈ R be arbitrary. Then Var
[∑d

i=1 σiGi

]
=
∑d

i=1 σ
2
i Var [Gi].

References: (Lehman et al., 2018, Lemma 20.3.4 and Lemma 20.3.8), (Anderson et al., 2017, Facts 3.52 and 8.11), (Cormen et al.,

2001, page 1200), (Mitzenmacher and Upfal, 2005, Theorem 3.5 and Exercise 3.4), (Grimmett and Stirzaker, 2001, Theorem 3.3.11).

98 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Jensen%27s_inequality

B.4.3 Gaussian random variables

One of the most important continuous distributions is the Gaussian distribution. It is also called
the Normal distribution. This distribution has two real parameters, its mean (denoted µ) and its
variance (denoted σ2). The distribution with those parameters is denoted N(µ, σ2).

References: (Anderson et al., 2017, Definition 3.60), (Grimmett and Stirzaker, 2001, Definition 4.4.4), Wikipedia.

One useful property is that sums of Gaussians are also Gaussian.

Fact B.4.6. Let g1, . . . , gd be independent random variables where gi has distribution N(0, 1). Then,
for any scalars σ1, . . . , σd, the sum

∑d
i=1 σigi has distribution N(0,

∑d
i=1 σ

2
i) = N(0, ‖σ‖22).

References: (Anderson et al., 2017, Example 7.8 and Example 8.20), (Grimmett and Stirzaker, 2001, Example 4.8.3), (Durrett,

2019, Theorem 2.1.20 and Corollary 3.3.13), Wikipedia.

Remark B.4.7. Fact B.4.6 can be viewed in the more abstract context of stable random variables.
The Gaussian distribution is 2-stable. More generally, if X is an α-stable RV, and X1, . . . , Xd are
independent copies of X, then

∑d
i=1 σiXi has the distribution ‖σ‖αX. See Equation (1.8) in “Stable

Distributions: Models for Heavy Tailed Data” with β = 0, γi = σi and δ = 0.

References: (Durrett, 2019, Section 3.8), Wikipedia.

A useful fact about the Gaussian distribution is the following bound on its right tail.

Fact B.4.8 (Gaussian tail bound). Let X have the distribution N(0, 1). Let x > 0. Then

1√
2π

(x−1 − x−3) exp(−x2/2) ≤ Pr [X ≥ x] ≤ 1√
2π
x−1 exp(−x2/2).

References: (Vershynin, 2018, Proposition 2.1.2), (Durrett, 2019, Theorem 1.2.6), (Feller, 1968, Lemma VII.1.2), (Wainwright,

2019, Exercise 2.2).

99 c©Nicholas Harvey 2021. All rights reserved.

https://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://edspace.american.edu/jpnolan/wp-content/uploads/sites/1720/2020/09/Chap1.pdf
https://edspace.american.edu/jpnolan/wp-content/uploads/sites/1720/2020/09/Chap1.pdf
https://en.wikipedia.org/wiki/Stable_distribution

Bibliography

Alon, N. and Spencer, J. (2000). The probabilistic method. Wiley Interscience, second edition.

Anderson, D. F., Sepäläinen, T., and Valkó, B. (2017). Introduction to Probability. Cambridge.

Blum, A., Hopcroft, J., and Kannan, R. (2018). Foundations of data science.
https://www.cs.cornell.edu/jeh/book.pdf.

Boucheron, S., Lugosi, G., and Massart, P. (2012). Concentration Inequalities: A nonasymptotic theory
of independence. Oxford.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3-4):231–357.
https://arxiv.org/abs/1405.4980.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms. MIT
Press, Cambridge, MA, second edition.

Dubhashi, D. P. and Panconesi, A. (2009). Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press.

Durrett, R. (2019). Probability: Theory and Examples. Cambridge, fifth edition.
https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume I. John Wiley
& Sons, third edition.

Grimmett, G. and Stirzaker, D. (2001). Probability and Random Processes. Oxford University Press,
third edition.

Guruswami, V., Rudra, A., and Sudan, M. (2019). Essential coding theory.
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of Convex Analysis. Springer-Verlag.

Klenke, A. (2008). Probability Theory: A Comprehensive Course. Springer.

Lehman, E., Leighton, F. T., and Meyer, A. R. (2018). Mathematics for computer science.
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf.

McDiarmid, C. (1998). Concentration.
http://cgm.cs.mcgill.ca/~breed/conc/colin.pdf.

100

https://www.cs.cornell.edu/jeh/book.pdf
https://arxiv.org/abs/1405.4980
https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf
http://cgm.cs.mcgill.ca/~breed/conc/colin.pdf

Mitzenmacher, M. and Upfal, E. (2005). Probability and computing: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

Murphy, K. P. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.
https://probml.github.io/pml-book/book1.html.

Roch, S. (2020). Modern discrete probability: An essential toolkit.
https://people.math.wisc.edu/~roch/mdp/index.html.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press.
https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/index.html.

Shmoys, D. P. and Shmoys, D. B. (2010). The Design of Approximation Algorithms. Cambridge
University Press.
http://designofapproxalgs.com/book.pdf.

Trefethen, L. N. and Bau, III, D. (1997). Numerical Linear Algebra. SIAM.

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge University Press.
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf.

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge.

101 c©Nicholas Harvey 2021. All rights reserved.

https://probml.github.io/pml-book/book1.html
https://people.math.wisc.edu/~roch/mdp/index.html
https://www.cs.huji.ac.il/w~shais/UnderstandingMachineLearning/index.html
http://designofapproxalgs.com/book.pdf
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf

	A Warmup: Set Cover
	Definition and Background
	Randomized Rounding

	Concentration Bounds, with details
	Chernoff bound, in detail
	Proofs for Chernoff Bound
	Proof of the Hoeffding Bound
	Exercises

	More Applications of Concentration
	Balls and Bins: The Heaviest Bin
	Congestion Minimization
	Error-correcting codes

	Dimensionality Reduction
	Intuition
	The Johnson-Lindenstrauss Theorem
	Fast Johnson-Lindenstrauss
	Subspace Embeddings
	Exercises

	Applications of Johnson-Lindenstrauss
	Streaming algorithms for 2
	Euclidean nearest neighbor
	Fast Least-Squares Regression
	Approximate Matrix Multiplication
	Exercises

	Polynomial Methods
	Polynomial Identity Testing
	Bipartite Matching
	Exercises

	Martingales
	Introduction
	Definitions
	Azuma's Inequality
	Applications of Azuma's Inequality
	Proof of Azuma's inequality
	Exercises

	Gradient Descent
	Unconstrained gradient descent
	Projected gradient descent
	Stochastic gradient descent
	Scaling reductions
	Exercises

	The Lovász Local Lemma
	Statement of the Symmetric LLL
	Application: k-SAT
	Symmetric LLL: a proof sketch
	The General LLL
	An Algorithmic Local Lemma
	Exercises

	I Back matter
	Acknowledgements
	Mathematical Background
	Miscellaneous Facts
	Geometry and norms
	Facts from Convex Analysis
	Probability

	References

