CPSC 536N Randomized Algorithms (Winter 2014-15, Term 2) Assignment 3

Due: Wednesday March 11th, in class.

Question 1: Streaming: improved dependence on δ

The algorithm of Lecture 14 estimates the ℓ_2 -norm of the frequency vector with $(1 + \epsilon)$ -multiplicative error and failure probability δ . The space required is $O(\log(n)/\delta\epsilon^2)$ bits. In this problem, you must find a variant of this algorithm that uses only $O(\log(n)\log(1/\delta)/\epsilon^2)$ bits.

Use the following approach. Run the Lecture 14 algorithm with δ fixed to 1/4, so that the space usage is only $O(\log(n)/\epsilon^2)$ bits. Now generate ℓ mutually independent estimates by running ℓ parallel copies of the algorithm. Combine those ℓ estimates using a trick from assignment 1.

Question 2: Variance of the ℓ_2 -estimator

(a): Prove the claim in Lecture 14 about the variance of the estimate in the case t = 1.

Claim 1. Let $f \in \mathbb{R}^n$ be an arbitrary vector. Let L be a row vector of random signs that are 4-wise independent and with E[L] = 0. Let y = Lf. Then

$$\operatorname{Var}\left[y^{2}\right] \leq \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \operatorname{E}\left[L_{j_{1}}L_{j_{2}}L_{j_{3}}L_{j_{4}}\right] f_{j_{1}}f_{j_{2}}f_{j_{3}}f_{j_{4}} \leq 3 \|f\|_{2}^{4}.$$

(The left-hand inequality is already proven in Lecture 14.)

Hint: Consider each term in the sum separately. There are several cases. For example, what happens with the terms for which all $j_1, ..., j_4$ are distinct?

(b): **OPTIONAL:** Prove that actually $\operatorname{Var} [y^2] \leq 2 \|f\|_2^4$.

(More on next page...)

Question 3: Sparsifiers

In this question, let us prove the following claim whose proof was omitted from Lecture 11. The proof is just an application of the Chernoff bound, but a bit fiddly.

Claim 2. Let $P \subseteq E_i$ be a projection of a cut. Then

$$\Pr\left[|w(P) - \mathbb{E}[w(P)]| > \frac{\epsilon \cdot \operatorname{sm}(P)}{\log n}\right] \leq 2\exp\left(-\frac{\epsilon^2 \rho \cdot \operatorname{sm}(P)}{3 \cdot 2^i \log^2 n}\right)$$

To set up the proof, let $X_{j,e}$ be the random variable that is 1 if edge e is chosen during the j^{th} round of sampling. Then

$$w(P) = \sum_{j=1}^{\rho} \sum_{e \in P} \frac{k_e}{\rho} X_{j,e}.$$

We cannot directly apply the Chernoff bound to this sum because of the scaling factors k_e/ρ . But, with enough fiddling, the Chernoff bound can be applied.

Hints:

- The main properties that we need about each edge e are that $\Pr[X_{j,e} = 1] = 1/k_e$ and every $e \in P$ has $k_e \leq 2^i$.
- The main properties that we need about P are that E[w(P)] = |P| and $sm(P) \ge |P|$.
- It may be useful to define the random variable Y_{j,e} = (k_e/2ⁱ)X_{j,e} and consider the sum Σ^ρ_{j=1}Σ_{e∈P} Y_{j,e}.
 When applying the Chernoff bound, you will need to separately handle the cases δ ≤ 1 and δ > 1.