
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 6

Prof. Nick Harvey University of British Columbia

Today we discuss two other uses of randomized algorithms in computer networking and distributed
systems.

1 Consistent Hashing

It is an approach for storing and retrieving data in a distributed system. There are several design goals,
many of which are similar to the goals for peer-to-peer systems.

• There should be no centralized authority who decides where the data is stored. Indeed, no single
node should know who all the other nodes in the system are, or even how many nodes there are.

• The system must efficiently support dynamic additional and removal of nodes from the system.

• Each node should store roughly the same amount of data.

We now describe (a simplification of) the consistent hashing method, which meets all of the design
goals. It uses a clever twist on the traditional hash table data structure. Recall that with a traditional
hash table, there is a universe U of “keys” and a collection B of “buckets”. A function f : U → B is called
a “hash function”. The intention is that f nicely “scrambles” the set U . Perhaps f is pseudorandom
in some informal sense, or perhaps f is actually chosen at random from some family of functions.

For our purposes, the key point is that traditional hash tables have a fixed collection of buckets. In our
distributed system, the nodes are the buckets, and our goal is that the nodes should be dynamic. So
we want a hashing scheme that can gracefully deal with a dynamically changing set of buckets.

The main idea can be explained in two sentences. The nodes are given random locations on the
unit circle, and the data is hashed to the unit circle. Each data item is stored on the node whose
location is closest. In more detail, let C be the unit circle. (In practice we can discretize it and let
C = { i/2K : i = 0, ..., 2K − 1 } for some some sufficiently large K.) Let B be our set of nodes. Every
node x ∈ B chooses its “location” to be some point y ∈ C, uniformly at random. We have a function
f : U → C which maps data to the circle, in a pseudorandom way. But what we really want is to map
the data to the nodes (the buckets), so we also need some method of mapping points in C to the nodes.
To do this, we map each point z ∈ C to the node whose location y is closest to z (i.e., (y − z) mod 1 is
as small as possible).

The system’s functionality is implemented as follows.

• Initial setup. Setting up the system is quite trivial. The nodes choose their locations randomly
from C, then arrange themselves into a doubly-linked, circular linked list, sorted by their locations
in C. (Network connections are formed to represent the links in the list.) Then the hash function
f : U → C is chosen, and made known to all users and nodes.

• Storing/retrieving data. Suppose a user wishes to store or retrieve some data with a key k.
She first applies the function f(k), obtaining a point on the circle. Then she searches through
the linked list of nodes to find the node b whose location is closest to f(k). The data is stored or

1

retrieved from node b. (To search through the list of nodes, one could use naive exhaustive search,
or perhaps smarter strategies. See Section 1.2.)

• Adding a node. Suppose a new node b is added to the system. He chooses his random location,
then inserts himself into the sorted linked list of nodes at the appropriate location.

And now something interesting happens. There might be some existing data k in the system for
which the new node’s location is now the closest to f(k). That data is currently stored on some
other node b′, so it must now migrate to node b. Note that b′ must necessarily be a neighbor of
b in the linked list. So b can simply ask his two neighbors to send him all of their data which for
which b’s location is now the closest.

• Removing a node. To remove a node, we do the opposite of addition. Before b is removed
from the system, it first contacts its two neighbors and sends them the data which they are now
responsible for storing.

1.1 Analysis

By randomly mapping nodes and data to the unit circle, the consistent hashing scheme tries to ensure
that no node stores a disproportionate fraction of the data.

Suppose there are n nodes. For any node b, the expected fraction of the circle for which it is responsible
is clearly 1/n. (In other words, the arc corresponding to points that would be stored on b has expected
length 1/n.)

Claim 1 With probability at least 1− 1/n, every node is responsible for at most a O(log(n)/n) fraction
of the circle. This is just a O(log n) factor larger than the expectation.

Proof: Let a = blog2 nc. Define overlapping arcs A1, . . . , A2a on the circle as follows:

Ai = [i · 2−a, (i+ 3a) · 2−a mod 1].

We will show that every such arc probably contains a node. That implies that the fraction of the circle
for which any node is responsible is at most twice the length of an arc, i.e., 6a2−a = Θ(log n/n).

Pick n points independently at random on the circle. Note that Ai occupies a 3a2−a fraction of the
unit circle. The probability that none of the n points lie in Ai is:

(1− 3a2−a)n ≤ exp(−3a2−an) ≤ exp(−3a) ≤ n−2.

By a union bound, the probability that there exists an Ai containing no node is at most 1/n. 2

This claim doesn’t tell the whole story. One would additionally like to say that, when storing multiple
items of data in the system, each node is responsible for a fair fraction of that data. So one should
argue that the hash function distributes the data sufficiently uniformly around the circle, and that the
distribution of nodes and the distribution of data interact nicely.

We will not prove this. But, assume that it is true, each node stores nearly-equal fraction of the data.
There is a nice consequence for data migration. When a node b is added (or removed) from the system,
recall that the only data that migrates is the data that is newly (or no longer) stored on node b. So the
system migrates a nearly-minimal amount of data each time a node is added or removed.

2

1.2 Is this system efficient?

To store/retrieve data with key k, we need to find the server closest to f(k). This is done by a linear
search through the list of nodes. That may be acceptable if the number of nodes is small. But, if one
is happy to do a linear search of all nodes for each store/retrieve operation, which not simply store the
data on the least-loaded node, and retrieve the data by exhaustive search over all nodes?

The original consistent hashing paper overcomes this problem by arguing that, roughly, if the nodes
don’t change too rapidly then all users’ “opinions” about where the data is stored don’t differ too much.
So we can store each piece of data on just a few machines, and store/retrieve operations don’t need to
examine all nodes.

But there is another approach. We have just discussed the peer-to-peer system SkipNet, which forms
an efficient routing structure between a system of distributed nodes. Each node can have an arbitrary
identifier (e.g., its location on the unit circle), and O(log n) messages suffice to find the node whose
identifier equals some value f(k), or even the node whose identifier is closest to f(k).

Thus, by combining the data distribution method of consistent hashing and the routing method of a peer-
to-peer routing system, one obtains an highly efficient method for storing data in a distributed system.
Such a storage system is called a distributed hash table. Actually our discussion is chronologically
backwards: consistent hashing came first, then came the distributed hash tables such as Chord and
Pastry. SkipNet is a variation on those ideas.

2 Leader Election

Suppose we have n nodes in a distributed system, of which k are good and the rest are malicious. We
would like to somehow elect a leader that is good.

The model of communication is:

• Nodes communicate by broadcasting a message. All other nodes reliably receive that message,
together with the identity of the sender.

• Each node has access to a random number generator.

• The malicious players secretly communicate with a computationally unbounded adversary that
controls their actions.

Feige presented a very simple and elegant algorithm for the leader election problem.

Theorem 2 (Feige ’99) Suppose k ≥ (1 +α)n/2. There is an algorithm that elects a good leader with
success probability at least αO(log(1/α).

So, for example, if 10% of the nodes are malicious then we can take α = 0.8, and elect a good leader
with success probability αΩ(log(1/α), perhaps roughly 0.25.

To understand why this is impressive, it helps to see why a naive strategy doesn’t work. If we know
that only 10% of the node are malicious, then why not just pick x ∈ {1, . . . , n} uniformly at random
and designate node x the leader? The success probability would be is 0.9, which is better than Feige’s
result!

The issue is: how can we randomly choose x? There is no centralized source of randomness. We can’t
designate a fixed node, say node 1, to randomly choose x for us, because node 1 might be malicious.

3

Perhaps we can designate a good node to choose x randomly for us, then use x as the leader? But
this is circular logic: “designating a good node” is the same problem as “choosing a good leader”. In
fact, Feige proves that the problem of collectively flipping a random coin is equivalent to the problem
of choosing a good leader.

Still, maybe there are some useful ideas here. One would think that initially there are many good nodes,
so if we “combine” all their randomness, we should be able to make progress towards picking a random
node. For example, maybe we could pick one bit of x, which amounts to saying that half of the nodes
are still eligible to be x and the other half aren’t. Hopefully half of the remaining nodes are still good.
Then we can repeat this process until we have just one node left, which is hopefully good.

Feige’s algorithm, shown in Algorithm 1, follows this strategy. But the way in which it selects half of
the nodes is quite clever. It selects half of the nodes by choosing the lightest bin. This is a nice
strategy because, if the malicious nodes collude and distribute themselves in an unbalanced way, then
choosing the lightest bin should actually decrease the fraction of malicious nodes!

Algorithm 1: Feige’s Lightest Bin algorithm. Bin i consists of the nodes who broadcast bit i.

1 Function LightestBin():
2 Let B ← {1, . . . , n}
3 repeat
4 Every player broadcasts a single bit. For the good players, this is a random bit.
5 Let Bi denote the players who broadcast i.
6 if |B0| ≤ |B|/2 then
7 B ← B0

8 else
9 B ← B1

10 until |B| ≤ 1;
11 If |B| = 1, that node is the leader

Let’s begin with a simple claim that illustrates the main ideas.

Claim 3 Suppose k is a power of two and k > n/2, i.e., there is a strict majority of good nodes. Then
LightestBin() elects a good leader with probability at least k−O(log k).

Suppose we flip 2c random coins. What is the probability that exactly c of them are heads? By Stirling’s
formula, it is (

2c

c

)
· 2−2c =

(2c)!

c!c!
· 2−2c c→∞

=

√
2π2c(2c/e)2c(√
2πc(c/e)c

)2 · 2−2c =
1√
πc
.

In fact
(

2c
c

)
2−2c ≥ 1/

√
4c for all c ≥ 1.

Proof: The probability that B0 and B1 each have exactly k/2 good nodes is at least 1/
√

2k. In this
case, regardless of how the malicious nodes divide themselves amongst the bins, the lighter bin will have
at most (n− k)/2 malicious nodes. But k > n/2 implies k/2 > (n− k)/2. So the lightest bin still has a
strict majority of good nodes and the number of good nodes is still a strict power of two. The argument
can continue inductively for ` = log2 k rounds.

In the ith round there are k/2i good nodes so the probability of an even split at least
√

2i/4k. The
rounds are independent, so the probability of a good split in every round is at least

`−1∏
i=0

√
2i/4k = (1/4k)`/2

`−1∏
i=0

2i/2 = (1/4k)`/22(1+···+`−1)/2 = (1/4k)`/22`(`−1)/4 ≈ k−`/4.

4

2

This might not seem too impressive. After all, k−O(log k) is a pretty small success probability. But, if
we make stronger guarantees about the number of good nodes, we can do better.

Proof (of Theorem 2). (Sketch)

Instead of insisting that the good players split with exactly half in each bin, let’s just ask that they are
fairly well balanced. Specifically, we want that each bin has at least k/2− k2/3 good players.

We can analyze the probability of this happening by a Chernoff bound. Let Xi be the indicator of the
event that the ith good node chooses bin 0. Let X =

∑k
i=1Xi. Then E [Xi] = 1/2 and E [X] = k/2.

Set δ = 2k−1/3. The probability that some bin has fewer than k/2− k2/3 = (1 + δ)k/2 good players is

Pr
[
|X − k/2| > k2/3

]
≤ 2 exp(−δ2 E [X] /3) < 2 exp(−k1/3/2) < 1/k,

as long as k is sufficiently large.

Let kj be the number of good nodes at the end of the jth round. Let Ej be the event that, in the jth

round, either B0 or B1 has less than kj/2 − k2/3
j good players. If none of the events E1, . . . , Ej occur

then kj ≥ k/2j −O(k2/3).

By our previous Chernoff bound, Pr [Ej | kj] ≤ 1
kj

, so

Pr
[
Ej | E1 ∧ · ∧ Ej−1

]
≤ 1

k/2j −O(k2/3)
≈ 2j

k

If the algorithm runs for ` rounds, a union bound gives that the probability of an unbalanced split in
any round is

Pr [E1 ∨ · · · ∨ E`] /
∑
j≤`

2j/k ≈ 2`/k.

This bound is small enough so long as ` is slightly less than log2 k.

To conclude, let nj be the number of nodes after the jth round. Since we choose the lightest bin, we
necessarily have

nj ≤ n/2j .

On the other hand, if all splits are good then

kj ≥ k/2j −O(k2/3).

So we can inductively maintain that kj ≥ (1 + Ω(α)) · nj/2.

The argument breaks down when kj gets too close to nj/2, which will happens when kj = (1/α)O(1).
When that happens, we can use the analysis of Claim 3 to finish the proof. �

5

	Consistent Hashing
	Analysis
	Is this system efficient?

	Leader Election

