
CPSC 536N: Randomized Algorithms 2014-15 Term 2

Lecture 4

Prof. Nick Harvey University of British Columbia

We begin today’s lecture by resuming our discussion of the congestion minimization problem. Next, we
will discuss the negative binomial distribution, another distribution that often arises in analyzing
randomized algorithms. We conclude by using that distribution to analyze the randomized QuickSort
algorithm.

1 Congestion Minimization, Continued

Recall that last time we were discussing the congestion minimization problem, which we may define as
the following integer program:

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

xiP ∈ {0, 1} ∀i = 1, . . . , k and P ∈ Pi
Here, the set Pi consists of all paths between the nodes si and ti.

That problem is NP-hard to solve, so we “relax” it into a linear program, basically by replacing the
integrality constraints with non-negativity constraints. It turns out to be convenient also to add the
constraint C ≥ 1. The resulting linear program is:

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

C ≥ 1
xiP ≥ 0 ∀i = 1, . . . , k and P ∈ Pi

Remarkably, this LP can be solved in time polynomial in n (the number of nodes of G), even though its
number of variables could be exponential in n. The details are best left for a course on optimization1.
Our algorithm will solve this LP and obtain a solution where the number of non-zero xiP variables is
only polynomial in n. Let C∗ be the optimum value of the LP.

Claim 1 C∗ ≤ OPT .

Proof: The LP was obtained from the IP by removing constraints. Therefore any feasible solution for
the IP is also feasible for the LP. In particular, the optimal solution for the IP is feasible for the LP. So
the LP has a solution with objective value equal to OPT . 2

1 There are two ways to do this. The first way is to solve the dual LP using the ellipsoid method. This can be done in
poly(n) time even though it can have exponentially many constraints. The second way is to find a “compact formulation”
of the LP which uses fewer variables, much like the usual LP that you may have seen for the ordinary maximum flow
problem.

1

The Rounding. Our algorithm will solve the LP and most likely obtain a “fractional” solution — a
solution with some non-integral variables, which is therefore not feasible for the IP. The next step of
the algorithm is to “round” that fractional solution into a solution which is is feasible for the IP. In
doing so, the congestion might increase, but we will ensure that it does not increase too much.

The technique we will use is called randomized rounding. For each each i = 1, . . . , k, we randomly
choose exactly one path Pi by setting Pi = P with probability xiP . (The LP’s constraints ensure that
these are indeed probabilities: they are non-negative and sum up to 1.) The algorithm outputs the
chosen paths P1, . . . , Pk.

Analysis. All that remains is to analyze the congestion of these paths. Let Y a
i be the indicator

random variable that is 1 if a ∈ Pi and 0 otherwise. Let Y a =
∑

i Y
a
i be the congestion on arc a. The

expected value of Y a is easy to analyze:

E [Y a] =
∑
i

E [Y a
i] =

∑
i

∑
P∈Pi with a∈P

xiP ≤ C∗,

where the inequality comes from the LP’s second constraint. (Recall we assume that the fractional
solution is optimal for the LP, and therefore C = C∗.)

The Chernoff bound says, if X is a sum of independent random variables each of which take values in
[0, 1], and µ is an upper bound on E [X], then

Pr [X ≥ (1 + δ)µ] ≤ exp
(
− µ ·

(
(1 + δ) ln(1 + δ)− δ

))
∀δ > 0.

We apply this to Y a, taking µ = C∗ and α = 1 + δ = 6 log n/ log log n. Following our balls-and-bins
argument from last time,

Pr [Y a ≥ αC∗] ≤ exp
(
− C∗

(
α lnα− (α− 1)

))
≤ exp

(
− α lnα+ α− 1

)
≤ exp

(
− (6/2) lnn

)
= 1/n3.

We now use a union bound to analyze the probability of any arc having congestion greater than αC∗.

Pr [any a has Y a ≥ αC∗] ≤
∑
a∈A

Pr [Y a ≥ αC∗] ≤
∑
a∈A

1/n3 ≤ 1/n,

since the graph has at most n2 arcs. So, with probability at least 1 − 1/n, the algorithm produces a
solution for which every arc has congestion at most αC∗, which is at most α ·OPT by Claim 1. So our
algorithm has approximation factor α = O(log n/ log logn).

Further Remarks. The rounding algorithm that we presented is actually optimal: there are graphs
for which OPT/C∗ = Ω(log n/ log logn). Consequently, every rounding algorithm which converts a frac-
tional solution of LP to an integral solution of IP must necessarily incur an increase of Ω(log n/ log log n)
in the congestion.

That statement does not rule out the possibility that there is a better algorithm which behaves com-
pletely differently (i.e., one which does not use IP or LP at all). But sadly it turns out that there is no
better algorithm (for the case of directed graphs). It is known that every efficient algorithm must have
approximation factor α = Ω(log n/ log log n), assuming a reasonable complexity theoretic conjecture
(NP 6⊆ BPTIME(nO(log logn))). So the algorithm that we presented is optimal, up to constant factors.

2

2 The Negative Binomial Distribution

The negative binomial distribution is a woefully underappreciated distribution. It shows up in
many different randomized algorithms, but it is not taught or covered in textbooks as much as it should
be.

There are a few ways to define this distribution. We adopt the following definition. There are two
parameters, p ∈ [0, 1] and k ∈ N. Suppose we perform a sequence of independent Bernoulli trials, each
succeeding with probability p. Let Y be the number of trials performed until we see the kth success.
Then Y is said to have the negative binomial distribution.

Note that this is quite different from the usual binomial distribution. For example, if X is a binomial
random variable with parameters n and p then the value of X is always at most n. In contrast, Y
has positive probability of taking any integer value larger than or equal to k. Nevertheless, there is a
relationship between the tails of X and Y . The following claim is quite useful, although hard to find in
the literature.

Claim 2 Let n, k ∈ N and p ∈ (0, 1]. Let Y be a random variable distributed according to the negative
binomial distribution with parameters k and p. Let X be a random variable distributed according to the
binomial distribution with parameters n and p. Then Pr [Y > n] = Pr [X < k].

Informally, this is quite easy to see. Roughly, both events say that “after performing n trials, we still
have not seen k successes”. That argument is not completely formal because the sample spaces of X
and Y are not the same.2

An important consequence of the previous claim is that Chernoff bounds give tail bounds on Y .

Claim 3 Let Y have the negative binomial distribution with parameters k and p. Pick δ ∈ (0, 1) and

set n =
⌈

k
(1−δ)p

⌉
. Then Pr [Y > n] ≤ exp

(
− δ2k/2(1− δ)

)
.

Proof: Let X have the binomial distribution with parameters n and p. Note that E [X] = np ≥
k/(1− δ); this last quantity will be denoted by µmin. Then

Pr [Y > n] = Pr [X < k] (by Claim 2)

= Pr [X < (1− δ)µmin]

≤ exp(−δ2µmin/2) (by Chernoff bound)

= exp
(
− δ2k/2(1− δ)

)
.

2

3 Example: Quicksort

Quicksort is one of the most famous algorithms for sorting an array of comparable elements. (We
assume for simplicity that the array has no equal elements.) The quicksort algorithm is recursive. In
each recursive call it picks a pivot, then partitions the current array into two parts: the elements that

2 The easiest way to make this formal is using a method known as “coupling” to put X and Y into the same probability
space. Another way is to explicitly compute the probabilities Pr [Y > n] and Pr [X < k], then show that they are equal
using identities involving binomial coefficients.

3

are strictly smaller than the pivot, and the elements that are at least the pivot. This partitioning
process takes time that is linear in the size of the current array. It then recursively sorts the two parts,
stopping the recursion when the current array consists of a single element.

It is well-known that quicksort probably takes O(m logm) time to sort an array of length m if each
partitioning step chooses the pivot element uniformly at random from the current array. There are
many ways to prove this fact. We now give a short proof using Chernoff bounds applied to random
variables with the negative binomial distribution.

Let m be the size of the original input array. Notice that the total amount of work done by all
subroutines at level i of the recursion is O(m), since each element of the input array appears in at most
one subproblem at level i. So we obtain a runtime bound of O(mL) if we can show that the maximum
level of any recursive subproblem is L.

Every leaf of the recursion corresponds to a distinct element of the input array, so there are exactly
m leaves. We will show that every leaf has level O(logm). To do so, fix a particular element x of the
input array and consider all partitioning steps involving x. Intuitively, we would like each recursive
call to partition the current array into two halves of nearly equal size. To formalize this, we say that a
partitioning step is “good” if it partitions the current array into two parts, both of which have size at
least one third of that array. So the probability of being good is 1/3.

Each good partitioning step shrinks the size of the current array by a factor of 2/3 or better, so after
log3/2(m) < 3 lnm good partitioning steps the current array has size at most 1. So x can be involved
in at most 3 lnm good partitioning steps, irrespective of the random decisions. Our only worry is that
x could be involved in many bad partitioning steps. We can upper bound the number of partitioning
steps involving x using a negative binomially distributed random variable: the number of trials needed
to see k = 3 lnm successes when the probability of success is 1/3.

We use Claim 3 with δ = 2/3, so n = d27 lnme. Then the probability that more than n trials are needed
to see k successes is at most exp(−δ2(3 lnm)/2(1 − δ)) = m−2. So the number of partitioning steps
involving x (i.e., the depth of the leaf containing x) exceeds n with probability at most m−2. Taking a
union bound over all m elements of the array, the probability that any leaf has depth greater than n is
at most 1/m. Therefore the running time is O(mn) = O(m logm) with probability at least 1− 1/m.

References: Mitzenmacher-Upfal Exercise 4.20, Dubhashi-Panconesi Section 2.4.

4

	Congestion Minimization, Continued
	The Negative Binomial Distribution
	Example: Quicksort

