
Notes on Randomized Kaczmarz

Mark Schmidt

April 9, 2015

1 Problem Definition

• Input: we are given m equalities aTi x = bi, where each bi ∈ R and each ai ∈ Rn for i = 1, 2, . . . ,m.

• Output: a point x∗ ∈ Rn that satisfies all m inequalities, aTi x∗ = bi (we assume such a point exists).

Written in matrix form, we want solve a linear system Ax = b. In this notation, element i of b is given by
bi (so b ∈ Rm) and each row i of A is given by aTi (so A ∈ Rm×n).

2 Kaczmarz Algorithm

The Kaczmarz algorithm requires an initial guess x0 and generates a sequence of iterations {xk} that converge
to x∗. Specifically, given xk we generate xk+1 as the solution to the problem

xk+1 = argmin
{x | aTi x=bi}

‖x− xk‖.

That is, the algorithm sets xk+1 to the closest value to xk that satisfies the constraint aTi xk+1 = bi. We
call this operation the ‘projection’ of xk onto the set {x | aTi xk+1 = bi}. As long make sure we never stop
selecting any i, the algorithm converges to x∗.
Below is a picture of the algorithm in action. The blue point is x0, the yellow lines show the sequence of
projections, and the green line shows the overall trend towards the intersection of the two lines.

1

2.1 History of the method

According to Wikipedia, the method was proposed in 1937 by Polish mathematician Stefan Kaczmarz. It is
a very popular approach in the field of image reconstruction, where it was re-invented by Gordon et al. under
the name algebraic reconstruction technique (ART). They are also sometimes called ‘row-action’ method,
since each iteration only involves one row of the matrix. Another name used by Bertsekas is ‘component-
solution’ methods and you may hear the expressions ‘cyclic projection’ or ‘successive projection’ (for obvious
reasons). The Kaczmarz algorithm is also closely-related to an earlier result in some lecture notes of von
Neumann originally distributed in 1933 but published in 1950. That work considers two subspaces, and
shows that alternately projecting onto the two subspaces converges to the projection of the initial point onto
the intersection of the subspaces. You can get the published version from the UBC library, I’ve scanned the
result below so that you can appreciate modern typesetting:

There are bunch of interesting generalizations of the Kaczmarz method. For example, there are variants
that try to speed up the convergence rate, there are variants that allow linear inequalities instead of just
equalities, there are variants that find a point in the intersection of convex sets, there are variants that
use a general Bregman divergences instead of the Euclidean norm, there are variants that solve certain
optimization problems, and there are variants that do the projections in parallel. An informal survey of
these methods is given in Section 5 of my notes on ‘big-n’ problems (where you can also get the citations
mentioned in this document):
http://www.cs.ubc.ca/~schmidtm/Documents/2012_Notes_BigN.pdf

2.2 Should we use this method? What does this have to do with randomization?

There are an enormous number of ways to solve linear systems, so how does this compare to other strategies?
The key advantage of the method is that the iterations are extremely simple and cheap, you only do operations
with one row of the matrix (and the iterations are faster when ai is sparse). This is especially appealing
with the number of rows m is very large, since the iteration cost is actually independent of m. This is a key
advantage over most of the standard strategies for solving linear systems.
However, in order for the method to be useful we need to know that it doesn’t need too many iterations to
reach an accurate solution. Work by Deutsch & Hundal in the 1980s and 1990s, as well as Galantai during
the 2000s show that the convergence rate depends on a certain measure of the ‘angle’ between the sets (see
the link above for the full references). If you look at the figure from the previous page, you can get an
intuition for why this angle will affect the convergence rate; in that figure you would go faster if the lines

2

where closer to perpendicular and you would go slower if the lines were closer to being parallel. Although
these works are very impressive, it is hard to compare the angle criterion to the convergence rates of other
methods for solving linear systems which depend on things like the singular values of the matrix A.
In 2009, Strohmer and Vershynin analyzed the convergence rate of the Kaczmarz algorithm with random
selection of the rows i. Using random selection was not new and was being used in practice for decades
before this work, but with a simple and elegant argument Strohmer and Vershynin showed that randomized
selection achieves a fast convergence rate that depends on quantities that are more-closely related to the
singular values of the matrix A. This nice result has got a lot of attention, and led to a variety of interesting
works in this area (including being an inspiration for some of my own work).

3 Randomized Kaczmarz

Let σj(A) denote singular value j ofA, organized in decreasing order so that σ1(A) ≥ σ2(A) ≥ . . . σmin{m,n}(A).
In their analysis, Strohmer and Vershynin use the extra assumption that σn(A) > 0. This implies that m ≥ n,
that A has n independent columns, and that there can be at most one solution x∗ (recall that we assumed at
least one solution exists). Note that these assumptions are not actually needed to show convergence of the
Kaczmarz algorithm, but as far as I know there is no convergence rate analysis of the randomized algorithm
without this assumption.

3.1 Simple form of the iteration

First, we’ll derive a nicer formula for xk+1. By noting that squaring the (non-negative) objective and dividing
it by 2 does not change the argmin, we re-write the iteration as the solution to the problem

xk+1 = argmin
{x|aTi x=bi}

1

2
‖x− xk‖2,

which is strongly-convex (implying that the solution is unique). To derive the solution of this problem, we
write the Lagrangian as

L(x, λ) =
1

2
‖x− xk‖2 + λ(aTi x− bi).

The solution of the problem is the stationary point of the Lagrangian. Taking the gradient and equating its
components to zero gives

∇xL(x, λ) = xk+1 − xk + λai = 0,

∇λL(x, λ) = aTi xk+1 − bi = 0.

From the first equality, we have
xk+1 = xk − λai,

and plugging this into the second equality gives

aTi (xk − λai)− bi = 0,

which means that λ =
aTi xk−bi
aTi ai

=
aTi xk−bi
‖ai‖2 and the iteration can be written as

xk+1 = xk −
aTi xk − bi
‖ai‖2

ai, (1)

which is clearly quite simple to implement.

3

3.2 Linear Convergence and Outline of Proof

We will derive a bound of the form

E[‖xk − x∗‖2] ≤ ρk‖x0 − x∗‖2,

for some ρ < 1. This shows that the expected error is cut by a fixed fraction on each iteration. This is
called ‘linear convergence’, ‘geometric convergence’ (because the error goes down as a geometric sequence),
or ‘exponential convergence’. The term ‘exponential’ convergence comes from writing ρ = (1 − δ) for some
δ < 1 and then using the convexity inequality 1 − δ ≤ e−δ to get (1 − δ)k = exp(−δk). This term can be
somewhat misleading because ‘exponential’ convergence sounds much better than ‘linear’ convergence, but
they are basically the same.
This convergence rate implies that the number of iterations to reach an accuracy of ε is at most O(log(1/ε)).
It’s not as fast as the superlinear convergence of some other methods, but on the other hand this is probably
the best we can expect from a method that only looks at one row at a time. To show a rate like the above,
we will first show that

E[‖xk − x∗‖2] ≤ ρ‖xk−1 − x∗‖2,

where the expectation is only taken with respect to the selection of the random i on iteration k. We then
altnernate between taking expectations with respect to previous random choices and applying the inequality
until we get back to x0,

E[‖xk − x∗‖2] = E[E[‖xk − x∗‖2]]

≤ E[ρ‖xk−1 − x∗‖2]

= ρE[‖xk−1 − x∗‖2]

≤ ρ(ρ‖xk−2 − x∗‖2)

= ρ2‖xk−2 − x∗‖2

· · ·
≤ ρk‖x0 − x∗‖2.

Technically, we are being really sloppy above in how we define the expectations and expectations of expec-
tations, but you can do this more carefully by defining a sequence of σ-fields Fk and using the law of total
expectation (also known as the tower rule) to formally show that the above reasoning is sound.

3.3 Measure of progress for arbitrary selection of i

We want to establish a relationship between ‖xk+1 − x∗‖ and ‖xk − x∗‖, and a logical way to do this is to
start from ‖xk − x∗‖2 then add/subtract xk+1 inside the norm and expand the square,

‖xk − x∗‖2 = ‖xk − xk+1 + xk+1 − x∗‖2

= ‖(xk − xk+1) + (xk+1 − x∗)‖2

= ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2 − 2〈xk − xk+1, xk+1 − x∗〉.

The first two terms on the right side are quantities we expect to show up, but the last term looks unpleasant.
Fortunately, for this algorithm the last term is 0 because (xk−xk+1) and (xk+1−x∗) are orthogonal. Below
is a picture showing why they will be orthogonal in two dimensions,

4

and we can show this formally by observing that xk − xk+1 = γai for some scalar γ so we have

(xk − xk+1)T (xk+1 − x∗) = γaTi (xk+1 − x∗) = γ(aTi xk+1 − aTi x∗) = γ(bi − bi) = 0,

where we used that both xk+1 and x∗ solve equality i. Using that this inner product is zero and re-arranging,
we get

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (2)

This holds for any choice of the hyper-plane i to project onto and is almost what we want. Now we just
need to make that the quantity ‖xk+1 − xk‖ is big enough to guarantee a fixed amount of progress, and we
can do this by an appropriate selection of i.

3.4 Linear convergence with uniform sampling

The simplest randomized scheme for selecting i is to choose each possible row i with probability 1/m. Let’s
take the expectation of (2) with this choice,

E[‖xk+1 − x∗‖] = ‖xk − x∗‖2 − E[‖xk+1 − xk‖2]

= ‖xk − x∗‖2 − E

[∣∣∣∣∣∣∣∣aTi xk − bi‖ai‖2
ai

∣∣∣∣∣∣∣∣2
]

definition of iteration, Equation (1)

= ‖xk − x∗‖2 − E
[

(aTi xk − bi)2

‖ai‖4
‖ai‖2

]
take scalars outside norm

= ‖xk − x∗‖2 − E
[

(aTi xk − aTi x∗)2

‖ai‖2

]
cancel terms and use aTi x∗ = bi

(∗) = ‖xk − x∗‖2 −
m∑
i=1

1

m

(aTi (xk − x∗))2

‖ai‖2
definition of expectation

≤ ‖xk − x∗‖2 −
m∑
i=1

1

m

(aTi (xk − x∗))2

‖A‖2∞,2
defining ‖A‖2∞,2 , max

i
{‖ai‖2}

= ‖xk − x∗‖2 −
1

m‖A‖2∞,2

m∑
i=1

(aTi (xk − x∗))2 ‖A‖∞,2 does not depend on i

= ‖xk − x∗‖2 −
1

m‖A‖2∞,2
‖A(xk − x∗)‖2 ‖Az‖2 =

m∑
i=1

(aTi z)
2

=

(
1− 1

m‖A‖2∞,2
‖A(xk − x∗)‖2

‖xk − x∗‖2

)
‖xk − x∗‖2 common factor of ‖xk − x∗‖2

5

Note that at this point, we haven’t made any assumption about A except that an x∗ exists. In particular,
we haven’t yet used any assumption that x∗ is unique, so the above inequality actually holds for any solution
x∗. To get the final expression we now use that

||z||
||Az||

≤ sup
Ax 6=0

||x||
||Ax||

=
1

σn(A)
.

and thus if we also have z 6= 0 that
‖Az‖
‖z‖

≥ σn(A).

We can do the substituion z = xk−x∗ and use the inequality above if we assume that xk 6= x∗ and Axk 6= Ax∗
(this is reasonable since if either of these conditions are true then xk solves the problem and the bound we
want to show holds trivially), which gives the final result

E[‖xk+1 − x∗‖] ≤

(
1− σn(A)2

m‖A‖2∞,2

)
‖xk − x∗‖2.

Since we require ρ < 1 for the rate to be meaningful, we need σn(A) to satisfy

0 < σn(A)2 ≤ m‖A‖2∞,2.

The lower bound holds because we assumed σn(A) > 0, and the upper bound is true because σn(A) ≤
σ1(A) ≤ ‖A‖F =

√∑m
i=1

∑n
j=1 a

2
ij ≤

√
mmaxi{

∑n
j=1 a

2
ij} =

√
m‖A‖∞,2, where we use that the Frobenius

norm

‖A‖F ,

√√√√ m∑
i=1

n∑
j=1

a2ij =
√

Tr(ATA) =

√√√√min{m,n}∑
i=1

σi(A)2,

is always at least as large σ1(A).

3.5 Linear convergence with non-uniform sampling

Instead of sampling each row i with probability 1/m, Strohmer and Verhsynin consider sampling each row

with probability ‖ai‖2∑m
j=1 ‖aj‖2

= ‖ai‖2
‖A‖2F

. Using this sampling strategy, the argument is the same up to the line

marked (∗), and at this line you will get an ‖ai‖2 term in the numerator that cancels the corresponding term
in the denominator (and you will get ‖A‖2F in the denominator instead of m). This avoids the need to use
inequality the ‖ai‖ ≤ ‖A‖∞,2. Proceeding as before, you will eventually get to the rate

E[‖xk+1 − x∗‖] ≤
(

1− σn(A)2

‖A‖2F

)
‖xk − x∗‖2.

We have ‖A‖2F ≤ m‖A‖2∞,2 so this is always at least as fast as the uniform sampling strategy, and it will be
faster if any two rows don’t have the same norm.
If you think it’s weird to sample the rows proportional to their norms, you would be right. The solution
is invariant to scaling of the row norms, as long as you scale the corresponding elements of b by the same
amounts, so it’s strange that the algorithm depends on the row norms. Also note that instead of sampling
non-uniformly, you could scale each row so that it has a norm of one, and then do uniform sampling. But
note that this changes σn(A)2.

6

