Due: Tuesday March 18th, in class.

Question 1: Can Johnson-Lindenstrauss Lemma preserve area?

- (a): Suppose the distances between three points are preserved with multiplicative error $1 + \epsilon$. Is the area of the corresponding triangle also always preserved with multiplicative error $1 + O(\epsilon)$, or even some constant multiplicative error?
- (b): Suppose u and v are mutually orthogonal unit vectors. Observe that the vectors u and v together with the origin form a right-angled isosceles triangle with area 1/2. Suppose the lengths of the triangle are distorted with multiplicative error at most $1 + \epsilon$. What is the multiplicative error for the area of the triangle?
- (c): Suppose a set V of n points are given in Euclidean space \mathbb{R}^n . Let $0 < \epsilon < 1$. Give a randomized algorithm that produces a low-dimensional mapping $f : V \to \mathbb{R}^T$ such that the areas of all triangles formed from the n points are preserved with multiplicative error $1 + \epsilon$. What is the value of T for your mapping? Please give the exact number and do not use big-O notation.

Hint: If two triangles lie in the same plane (a 2-dimensional affine space) in \mathbb{R}^n , then under a linear mapping their areas have the same multiplicative error. For every triangle, add an extra point to form a right-angled isosceles triangle in the same plane.)

Question 2: Margin Preservation under Dimensionality Reduction

Let $(x_1, y_1), \ldots, (x_N, y_N)$ be labeled examples with $x_i \in \mathbb{R}^n$, $||x_i|| = 1$ and $y_i \in \{-1, 1\}$ for all *i*. Suppose that the examples are separable with margin γ . That is, there exists a vector $w \in \mathbb{R}^n$ with ||w|| = 1, $y_i = \operatorname{sign}(w^{\mathsf{T}} x_i)$ for all *i*, and $\min_i |w^{\mathsf{T}} x_i| = \gamma$.

Let $f : \mathbb{R}^n \to \mathbb{R}^k$ be the linear map f(x) = Lx where L is the JL matrix of size $k \times n$. and $k = \Omega(\log(N)/\alpha^2\gamma^2)$. Prove that the dimension-reduced examples $(f(x_1), y_1), \ldots, (f(x_N), y_N)$ are separable with margin $(1 - \alpha)\gamma$.

Hint: JL says that f preserves norms up to a factor $(1 \pm \epsilon)$ with high probability where, say, $\epsilon = \alpha \gamma / 100$. Use the identities

$$||u + v||^{2} - ||u - v||^{2} = 4u^{\mathsf{T}}v$$
$$||u + v||^{2} + ||u - v||^{2} = 2||u||^{2} + 2||v||^{2},$$

show that inner products are preserved with additive error. That is,

$$|f(u)^{\mathsf{T}}f(v) - u^{\mathsf{T}}v| \leq O(\epsilon).$$

Conclude that f(w) is a consistent linear separator of the dimension-reduced examples, and

$$\min_{i} \frac{|f(w)^{\top} f(x_{i})|}{\|f(w)\| \|f(x_{i})\|} \geq (1-\alpha)\gamma.$$

Question 3: Subspace Embeddings: Recursive Version

In this question we gave a crude argument that gives a subspace embedding with $m = O(k \log(k/\alpha)/\alpha^2)$. In this question we will improve it to $m = O(k \log(1/\alpha)/\alpha^2)$.

As in class, let B be an $m \times k$ matrix whose entries are independent with distribution N(0, 1/m). Let $S = \{ x \in \mathbb{R}^k : ||x||_2 = 1 \}$. Our goal is to show that

$$1 - \alpha \le \|By\| \le 1 + \alpha \qquad \forall y \in S.$$

Let P be an ϵ -net of S. Consider any point $y_0 \in S$. As before we approximate y_0 using $p_0 = \operatorname{argmin}_{p \in P} ||y_0 - p||$. The residual is $y_1 = y_0 - p_0$ where $||y_1|| \le \epsilon$. As in class, we write $||By_0|| \le ||Bp_0|| + ||By_1||$, and we use JL to control $||Bp_0||$.

The new idea is as follows. Instead of using the crude entry-wise bound on B to control the error $||By_1||$, you can also use P to approximate y_1 . This will lead to additional vectors p_2 and y_2 , then p_3 and y_3 , etc. Show that this strategy will work with $\epsilon = \alpha/3$ and $m = O(k \log(1/\alpha)/\alpha^2)$.

Question 4: BONUS: Improved Subspace Embedding

In this question we give an improved subspace embedding with $m = O(k/\alpha^2)$.

(a): Define $Q_{\gamma} = \left\{ w : w \in \frac{\gamma}{\sqrt{k}} \mathbb{Z}^k, \|w\|_2 \leq 1 \right\}$ for $\gamma \in (0, 1)$. Prove $|Q_{\gamma}| \leq e^{k \cdot f(\gamma)}$ for some function $f(\gamma)$ (which needn't be optimized).

Hint: Given $z \in Q_{\gamma}$ define a cube C_z centered at z with side length γ/\sqrt{k} . Note that these cubes are all disjoint, then use a volume argument (you may use that an ℓ_2 ball of radius r in \mathbb{R}^k has volume $(C_k \cdot r/\sqrt{k})^k$ for some constant C_k which is $\Theta(1)$ as k grows).

(b): Show that if for some matrix A of size $k \times k$ we have $|u^{\mathsf{T}}Av| \leq \alpha$ for all $u, v \in Q_{\gamma}$, then $|x^{\mathsf{T}}Ax| \leq \alpha/(1-\gamma)^2$ for all $x \in \mathbb{R}^k$ of unit ℓ_2 norm.

Hint: Write $y = (1 - \gamma)x$ and round down the coordinates of y to obtain $z \in Q_{\gamma}$. Argue that $y \in C_z$ and use that any point in a convex polytope can be written as a convex combination of the vertices of that polytope.

(c): Let B be the JL matrix of size $m \times k$ as before. Let A in the last problem be $B^{\mathsf{T}}B - I$. Choose some appropriate γ and conclude that $m = O(k/\alpha^2)$ suffices.