CPSC 531H Machine Learning Theory (Term 2, 2013-14) Assignment 2

Due: Tuesday February 25th, in class.

Question 1: [Mohri 6.1] Let \mathcal{H} be a set of classifiers with VC-dimension d. Let \mathcal{F}_t be the set of classifiers obtained by taking a weighted majority vote of t classifiers from \mathcal{H} , as in the AdaBoost algorithm. Prove that the VC-dimension of \mathcal{F}_t is at most $O(td \log(td))$.

Note: You only need to prove an upper bound, not a lower bound.

Hint: It could be helpful to use the Sauer-Shelah lemma.

Question 2: [Mohri 6.3] Assume that the main weak learner assumption of AdaBoost holds (i.e., under any distribution, there exists a base learner with error strictly better than 1/2). Let h_t be the base learner selected at round t. Show that the base learner h_{t+1} selected at round t+1 must be different from h_t .

Question 3: Prof. Marge Innizwut proposes the following simple kernel function:

$$K(x, x') = \begin{cases} 1 & \text{if } x = x' \\ 0 & \text{otherwise.} \end{cases}$$

- (a): Prove this is a legal kernel. You may assume the instance space X is finite. Specifically, describe a mapping $\Phi: X \to \mathbb{R}^m$ (for some value m) such that $K(x, x') = \Phi(x)^{\mathsf{T}} \Phi(x')$.
- (b): Marge likes this kernel because in the range of Φ , any labeling of the points in X will be linearly separable. So, this should be perfect for learning any desired target function just run a kernelized version of Perceptron or SVM. Why is any assignment of labels to points linearly separable?
- (c): What is the problem with Marge's reasoning why does this kernel not necessarily make the learning task easy?

Question 4 is on the reverse side.

Question 4: $(1 - \epsilon)$ -approximation to maximum margin via Perceptron

The simple MARGIN-PERCEPTRON algorithm from Lecture 10 gave us a 1/3-approximation to the maximum margin. In this exercise, let's derive the variant of MARGIN-PERCEPTRON that gives a $(1 - \epsilon)$ approximation.

The basic algorithm takes the training data, and arbitrary parameter γ as input, and our desired approximation error ϵ as input. Let us assume that $||x_i|| = 1$ for all *i*.

 $\overline{\mathrm{Margin-Perceptron}}$

- •Input: $(x_1, y_1), \ldots, (x_m, y_m), \gamma \in [0, 1], \epsilon \in [0, 1].$
- •Initialize $w_0 \leftarrow 0$ and $t \leftarrow 0$

 \bullet Repeat

-Find any i with either

Misclassification: $y_i \neq \operatorname{sign}(w_t^{\mathsf{T}} x_i)$ Poor margin: $|w_t^{\mathsf{T}} x_i| / ||w_t|| \leq (1 - \epsilon)\gamma$

-If such an *i* is found, set $w_{t+1} \leftarrow w_t + y_i x_i$ and $t \leftarrow t+1$.

•Until no such i exists

•Output $w_t / \|w_t\|$

(a): Suppose that there exists a linear threshold function $x \mapsto \operatorname{sign}(\bar{w}^{\mathsf{T}}x)$ with $\operatorname{margin}(\bar{w}) \geq \gamma$. Prove that

 $||w_t|| \ge t\gamma$ for all $t \ge 0$.

Hint: Use Cauchy-Schwarz.

(b): Prove that

$$||w_{t+1}|| \le ||w_t|| + (1-\epsilon)\gamma + \frac{1}{2||w_t||}$$

Hint: Use the Taylor approximation of \sqrt{x} at x = 1.

(c): Prove that

$$||w_t|| \le \frac{2}{\epsilon\gamma} + (1 - \epsilon/2)\gamma t$$
 for all $t \ge 0$.

Hint: Consider separately the cases $||w_t|| < 1/(\epsilon\gamma)$ and $||w_t|| \ge 1/(\epsilon\gamma)$. In the former case use a trivial bound, and in the latter case use part (b).

- (d): Assume the existence of \bar{w} as in part (a). Conclude that, after at most $4/(\epsilon\gamma)^2$ iterations, MARGIN-PERCEPTRON outputs a classifier with margin at least $(1 \epsilon) \cdot \gamma$. *Hint:* Combine the lower bounds and upper bounds on $||w_t||$.
- (e): Let $\gamma^* = \max_w \operatorname{margin}(w)$ be the maximum margin of any linear classifier on the given examples. Design a new function MARGIN-MAXIMIZER which takes as input the labeled examples and the parameter ϵ . The new function can call MARGIN-PERCEPTRON at most $O(\log(1/\gamma^*)/\epsilon)$ times. It must output a classifier with margin at least $(1 2\epsilon)\gamma^*$.