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It is important to recall a property we had in a previous lecture, which was

∀G an undirected graph, α ∈ [1,∞) the number of α min cuts of G is < n2α/2.

The same result is true if G is a multigraph. Furthermore, the same result is true if G has any
non-negative, rational weights — we can scale the weights up to be integers, then view those
integral weights as indicating the number of parallel copies of an edge. Lastly, the same result is
true if G has any non-negative, real weights because the weights can be approximated arbitrarily
well by rationals.

1 LP Formulation of the ATSP

Definition 1.1 (Asymmetric Travelling Salesman Problem, ATSP). Given a directed graph
G = (V,A), with weights w : A→ R+ we want to find

arg min
π

{∑
v∈V

wv,π(v) : π : V → V a cyclic permutation

}

This is the analog of the Travelling Salesman problem (TSP), but in a directed graph. For
our purposes we will assume we are given a complete graph. We will further assume that the
triangle inequality holds, that is ∀x, y, z ∈ V wx,y ≤ wx,z + wz,y.

1.1 Notation

For any U ⊆ V

δ+(U) = { (u,w) : u ∈ U,w /∈ U }
δ−(U) = { (w, u) : u ∈ U,w /∈ U }

And ∀v ∈ V we write δ+(v) = δ+({v}) and δ−(v) = δ−({v}). For any vector x ∈ RA+, and
F ⊆ A we use the notation x(F ) =

∑
a∈F xa.

1.2 Held-Karp LP Relaxation

The Held-Karp linear programming relaxation of ATSP is:

min wTx

s.t. x(δ−(v)) = x(δ+(v)) ∀v ∈ V Eulerian

x(δ+(U)) ≥ 1 ∀U s.t. ∅ 6= U ( V Strongly Connected

0 ≤ xa ≤ 1 ∀a ∈ A
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This LP has exponentially many constraints, in terms of the number of vertices, since the third
constraint depends on each subset of the vertices, but we will show it can still be solved in
polynomial time.

Claim 1.2. The Held-Karp LP Relaxation for ATSP can be solved in time polynomial in the
number of vertices.

Proof. Recall that by searching the space in a binary fashion we can turn a problem of optimal-
ity into one of feasibility. By results discussed in previous lectures if we can find a poly-time
separation oracle to determine whether a given x respects all of the constraints we can solve the
problem in polynomial time. Note the second and last lines contain at most linearly many con-
straints, and can be checked in constant time, thus the bottle neck is the “Strongly Connected”
constraints.
Note that the “Strongly Connected” constraints state “any cut of V has weight ≥ 1” which
is equivalent to “the max s-t flow value ≥ 1 ∀s, t ∈ V ” by the Max-Flow Min-Cut theorem.
The flow interpretation of this constraint is a lot easier to verify, as there are only O(n2) pairs
s, t ∈ V . Recall we came up with a linear program for solving this problem in an earlier lecture,
and thus have a polynomial time algorithm for verifying a polynomial number of constraints.
We can use all of this to construct a separation oracle for the feasible region of this LP. First we
check the constraints that can be checked in polynomial time, if any of them are not satisfied
we return that constraint. Then we check if any pair s, t ∈ V has max-flow less than 1. If it
does than we can return the set U which has the minimum cut δ+(U) for that s-t flow problem
as the constraint that is violated.
Since we have a polynomial time separation oracle, this LP can be solved in polynomial time.

Next we discuss how we can interpret this LP as a statement about undirected graphs.

Claim 1.3. ∀U ⊆ V x(δ+(U)) = x(δ−(U))

Proof. Note that from our constraints
∑

v∈U x(δ+(v))− x(δ−(v)) = 0.
In order to transform this expression into the one in our claim, we examine the summation, by
considering what contribution each individual edges has to the sum. There are four cases, in
which we consider whether the endpoints of v1v2 are in U or not.
Case 1: v1, v2 ∈ U . Then the contribution to the sum is 0, as xv1v2 is added as x(δ+(v1)) and
subtracted as x(δ−(v2)).
Case 2: v1, v2 /∈ U . Then the contribution to the sum is again 0, as xv1v2 is added in neither
term.
Case 3: v1 ∈ U v2 /∈ U . In this case there is a xv1v2 term added as x(δ+(v1)) but as v2 /∈ U this
is never subtracted away. Thus the contribution to the sum is xv1v2 .
Case 4: v1 /∈ U v2 ∈ U . Similar to case 3, but the other way around, so the contribution to the
sum is −xv1v2 .
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By this analysis we can see

0 =
∑
v∈U

x(δ+(v))− x(δ−(v))

=
∑

a∈δ+(U)

xa −
∑

b∈δ−(U))

xb

= x(δ+(U))− x(δ−(U))

=⇒ x(δ+(U)) = x(δ−(U))

Claim 1.4. ∃ undirected graph G′ = (V,E′) with weights y ∈ RE′ such that ∀U ⊂ V y(δ(U)) =
x(δ+(U)). (Note that this is not true in general, but holds since we have a Eulerian graph)

Proof. Set ∀v, w ∈ V yvw = (xvw + xwv)/2. Then

y(δ(U)) =
∑

v∈U,w 6∈U

xvw + xvw
2

=
1

2

(
x(δ+(U)) + x(δ−(U))

)
= x(δ+(U)),

where the last equality follows by Claim 1.3.

Corollary 1.5. ∀α ≥ 1 | { U : x(δ+(U)) ≤ α } | < n2α

Proof. This follows from our discussion of α min cuts, since the minimum cut of our graph G′

is ≥ 1, by our strongly connected constraints.

2 Rounding the LP Solution

When we get an integral solution to this LP we have a solution to the ATSP. However we may
not get an integral solution, in which case we need to round our solution to get something that
is integral. We next give an algorithm which does just that.

Let H be an empty digraph on V
Let K := 200 lnn.
for all i ∈ [K] do

for all pairs of vertices ∈ V do
With probability xuv add uv to H

end for
end for

We will show that this gives an approximation which is O(log(n)OPT), where OPT is the size
of the optimal solution, with high probability.
This requires the use of the Markov inequality, which follows. For additional details, see Prof.
Harvey’s Lecture 2 Notes for Randomized Algorithms.

Theorem 2.1 (Markov’s Inequality). Given a non-negative random variable X, and α ∈
R+, Pr[X ≥ αE[X]] ≤ 1

α
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Claim 2.2. With probability ≥ 0.9 w(H) ≤ O(log(n))wTx

Proof. In order to use Markov’s inequality we need to know the expectation of w(H).

E[w(H)] = E[
∑
uv∈A

number of times uv added to H × wuv]

=
∑
uv∈A

E[number of times uv added to H × wuv]

=
∑
uv∈A

wuvE[number of times uv added to H]

= K
∑
uv∈A

wuvxuv

= K · wTx

So Pr[w(H) > 10KwTx] ≤ 1
10

Next we begin a proof that the graph H is Strongly Connected with high probability.
That proof requires a knowledge of Chernoff bounds. For additional details, see Prof. Harvey’s
Lecture 2 Notes for Randomized Algorithms.

Theorem 2.3 (Chernoff Bound). Let X1, X2, ..., Xn be independent random variables over the
range [0, 1], X =

∑
iXi, and µ = E[X]. For any δ ∈ [0, 1], then

Pr[X ≤ (1− δ)µ or X ≥ (1 + δ)µ] ≤ 2 exp
(−δ2µ

3

)
.

The Chernoff bound can be used to significantly decrease the failure probability in Claim 2.2,
although we will not bother to do this. Next we show that the probability of any specific cut
being more than 25% larger or smaller than its expectation is O( 1

n3 ).

Claim 2.4. Choose U ⊂ V , recall µ = E[|δ+(U)|], then Pr[|δ+(U)| /∈ [34 ,
5
4 ]µ] ∈ O( 1

n3 )

Proof. Choose U ⊂ V , let Za,i =

{
1 if arc a is added in the ith iteration

0 otherwise
Note:

|δ+H(U)| =
K∑
i=1

∑
a∈δ+(U)

Za,i

And so

µ = E[|δ+H(U)|]

=
K∑
i=1

∑
a∈δ+(U)

E[Za,i]

=

K∑
i=1

∑
a∈δ+(U)

xa

= K · x(δ+H(U))
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Thus

Pr

[
|δ+H(U)| /∈

[3

4
,
5

4

]
µ

]
≤ 2 exp

(
− µ/48

)
= 2 exp

(
−K · x(δ+(U))/48

)
≤ 2 exp

(
− 4 ln(n)x(δ+(U))

)
≤ n−3x(δ+(U))

The previous claim shows that, for a fixed U ⊆ V , |δ+(U)| is close to E[|δ+(U)|] with high
probability. In the next lecture we will show that, with high probability, for every U ⊆ V ,
|δ+(U)| is close to E[|δ+(U)|].
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