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In the previous lecture, we discussed max flow problems. Today, we consider the Travelling
Salesman Problem (TSP), and several restricted variants. Although these restrictions of TSP
are also NP-hard, we will see a variant of TSP whose optimum solution we can approximate
with at most logarithmic error.

1 Max Flow, Min Weight Flow

Max Flow:

We’re given a directed graph G = (V,A) and numbers ca ∈ R+ ∀a ∈ A

max
∑

a∈δ+(s)

xa

such that
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V − {s, t}

0 ≤ xa ≤ ca ∀a ∈ A

Min Weight Flow:

Suppose further that the edges have weights {wa : a ∈ A}, and f is a non-negative real
number.

min
∑
a∈A

waxa

such that
∑

a∈δ+(s)

xa = f

∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V \{s, t}

0 ≤ xa ≤ ca ∀a

If f and ca ∀a ∈ A are integral and the problems are feasible, both problems have integral
optimal solutions.

2 Travelling Salesman Problem

1. Let G = (V, E) be a graph, we ∀e ∈ E. Find a minimum weight cycle that visits each
vertex exactly once. This is NP-hard (without weights, this is the Hamiltonian cycle
problem).
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2. Assume the input graph is the complete graph Kn. This is still NP-hard, by the following
reduction. Given any G with n = |V |, put weights on Kn as follows:

we =

{
1 if e ∈ G
n2 if e /∈ G

Then the optimal solution has cost n if and only if G has a Hamiltonian cycle.

Even approximations are still NP-hard. Say we’re looking for a Hamiltonian cycle in Kn

of cost ≤ α ∗ optimum. Again, given G with n = |V |, put weights on Kn as follows:

we =

{
1 if e ∈ G
n2α if e /∈ G

Then the optimum solution is n if G has a Hamiltonian cycle, and ≥ αn2 if G doesn’t have
a Hamiltonian cycle.

3. Assume the weights satisfy the following properties:

Triangle inequality: ∀a, b, c, wab ≤ wac + wcb

Non negativity: ∀a, b, wab ≥ 0

Symmetry: wab = wba

This variant is still NP-hard, even if the metric is just distances for points in R2 [Garey,
Graham, Johnson 1976], [Papadimitriou 1977].

If the metric is Rd for some constant d, we can approximate the optimum solution to within
any factor 1 + ε [Arora 1996], [Mitchell 1996]. For general metrics, we can approximate
within a factor of 1.5 [Christofides 1976]. For a much more detailed history, see Vygen’s
recent survey at http://www.or.uni-bonn.de/~vygen/files/optima.pdf.

3 Directed Graphs

For the following, we’re given the following data:

V = {1, 2, . . . , n}
w : V × V → R+

∀i, j ∈ V wij ≥ 0

∀i, j, k ∈ V wij ≤ wik + wkj

Despite these restrictions, the optimum solution to the TSP problem is still hard to approximate
to within 1.01.

We can approximate to within log2(n) · optimum [Frieze, Galbiati, Maffioli 1982]. Later:

approximate to within O
(

logn
log logn

)
It is an open question if this can be improved to O(1).

Consider the following example:
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Note that this is not a complete example; there aren’t edges between all vertices. We can
use metric completion to compute weights to assign to edges between all vertices to complete
this example.

Instead of trying to solve TSP directly, let’s find a collection of cycles that go through every
vertex exactly once.

Note: minimum weight of a cycle cover ≤ minimum weight of a Hamiltonian cycle. We can
reduce this problem to a minimum weight flow problem as follows:

For each vertex i, define new vertices i+ and i−. For each edge ij with weight wij in the
original graph, define an edge i+j− in our new graph with weight wij . Let the desired flow value
f = |V |, and ca = 1 ∀a ∈ A

Every vertex receives and sends 1 unit of flow. Because c and f are integral, there is an
integral optimum solution: every arc sends either 1 or 0 units of flow.

For the example graph, the associated min weight graph is the following graph:
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s

a+ b+ c+ d+ e+

a− b− c− d− e−

t

3 2

9 7 102 1

2

10

1

Given we’ve solved the min weight flow problem, let C = {ab : xab = 1, a, b ∈ V }. This is a
cycle cover. Similarly, given a cycle cover we can extract a 0-1 flow.

This gives a bijection between cycle covers and 0-1 flows that preserves weights. So we can
solve min cost cycle cover in polynomial time.

Idea for TSP:

1. Find a minimum weight cycle cover.

2. Pick a designated vertex from each cycle.

3. Make a new graph where each cycle has been shrunk to a supernode.

4. Weight of an arc between two supernodes is the weight of shortest path between two
designated nodes in original graph

a, b c, d, e

9

5

Claim 3.1. Minimum weight cycle cover ≤ minimum weight Hamiltonian cycle in the original
graph
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Proof. A Hamiltonian cycle is a sequence of paths between designated graph nodes. Every arc
in the new graph has weight the shortest path between designated nodes. A Hamiltonian cycle
visits every designated node, therefore weight(HC) ≥ minwt(CC).

Claim 3.2. The number of recursive steps is less than or equal to log2(n).

Proof. Each cycle has length ≥ 2, so the number of vertices halves at each step.

The CC in the shrunken graph gives paths in the original graph. Concatenate all these
paths. The resulting walk is strongly connected and Eulerian (for every vertex, in-degree =
out-degree). An Eulerian graph has a closed walk that visits every edge exactly once. To get
a HC, look at the sequence of vertices in the closed walk, and keep the first occurence of each
vertex.

Weight(new subsequence) ≤ weight(closed walk) by the triangle inequality.
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