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1 Combinatorial IPs

1.1 Mathematical programs

• Linear Program (LP):

{
min cTx
s.t. ai

Tx ≤ bi ∀i = 1, · · · ,m
LP can be efficiently solved by e.g Ellipsoid Method.

• Integer Program (IP)


min cTx
s.t. ai

Tx ≤ bi ∀i = 1, · · · ,m
x ∈ Zn

IP cannot be efficiently solved assuming P 6= NP

1.2 Combinatorial Optimization

Combinatorial optimization deals with study of optimization problems that have discrete so-
lutions and some combinatorial flavor such as involving graphs. These problems have many
applications in operation research, computer networks, compilers, online advertising and etc.
Also in this area there exist rich theory of what can be solved efficiently and what cannot.

1.3 Example

Max weight perfect matching problem: Given bipartite graph G = (V,E), every edge e has
weight we. Find a maximum-weight perfect matching which is a set M ⊂ E s.t. every vertex
has exactly one incident edge in M .

Example 1.1. The blue edges are a max-weight perfect matching M .
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The natural integer program:
max

∑
e∈E we · xe

s.t.
∑

e incident to v xe = 1 ∀v ∈ V
xe ∈ {0, 1} ∀e ∈ E

This IP can be efficiently solved in many different ways.

1.4 How to solve combinatorial IPs?

Generally there are two common approaches for solving combinatorial IPs:

• Design combinatorial algorithm that directly solves IP. Often such algorithms have a nice
LP interpretations.

• Relax IP to an LP; prove that they give same solution; solve LP by the ellipsoid method.

– Need to show special structure of the LPs extreme points

– Sometimes we can analyze the extreme points combinatorially

– Sometimes we can use algebraic structure of the constraints. For example, if con-
straint matrix is Totally Unimodular then IP and LP are equivalent.

In this session we will see examples of these approaches.

2 Max Flow and Min Cut

2.1 Network Flow

Let D = (N,A) be a directed graph. Every arc a has a capacity ca ≥ 0. We want to send oil
from the node s to the node t through pipelines so that oil doesn’t leak from any node except s
and t which means that at these nodes flow in = flow out. For simplicity assume no arc enters
s and no arc leaves t. The question is that how much oil can we send?

2.2 Max flow and Min Cut

Definition 2.1. Let D = (N,A) be a digraph, where arc a has capacity ca

For any U ⊆ N , the cut δ+(U) is:

δ+(U) = { uv : u ∈ U, v /∈ U, uv ∈ A }

The capacity of the cut is:

c(δ+(U)) =
∑

a∈δ+(U)

ca

Lemma 2.2 (Weak Duality). For any flow and any U with s ∈ U , t /∈ U , the amount of flow
from s to t is at most c(δ+(U))
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Proof. The net amount of flow crossing U is
∑

a∈δ+(U)

xa −
∑

a∈δ+(V \U)

xa. Since 0 ≤ xa ≤ ca :

∑
a∈δ+(U)

xa −
∑

a∈δ+(V \U)

xa ≤
∑

a∈δ+U

ca

We also have the strong duality theorem which is called the max-flow min cut-theorem:

Theorem 2.3 (Ford and Fulkerson 1956). The maximum amount of flow from s to t equals
the minimum capacity of a cut δ+(U) where s ∈ U and t /∈ U . Furthermore, if c is integral then
there is an integral flow that achieves the maximum flow.

We are going to prove this theorem by linear programming.

2.3 LP formulation of Max Flow

• Variables: xa is the amount of flow to send on arc a.

• Constraints: For every node except s and t, flow in = flow out

• Objective value: Total amount of flow sent by s.

• Notation: δ+(v) = arcs with tail at v, δ−(v) = arcs with head at v

The LP is: 
max

∑
a∈δ+(s) xa

s.t
∑

a∈δ−(v) xa −
∑

a∈δ+(v) xa = 0 ∀v ∈ V \ {s, t}
0 ≤ xa ≤ ca ∀a ∈ A

The matrix M defining the constraints of this LP, such a matrix is called the incidence
matrix of a directed graph, has one row for every node (except s or t) and one column for every
arc. Note that every arc appears in two rows because its the tail of one vertex and the head of
another vertex.

Mv,a =


+1 if node v is the head of arc a
−1 if node v is the tail of arc a
0 otherwise

The key property that this matrix has is that its a totally unimodular matrix.

3 Total Unimodularity

Definition 3.1. Let M be a real m × n matrix. Suppose that every square submatrix of M
has determinant in {0,+1,−1}. Then M is totally unimodular.

In particular every entry of M must be in {0,+1,−1} because every entry is a trivial square
submatrix. Note that with this definition, polytopes defined by totally unimodular matrices
have integral extreme points.
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Lemma 3.2. Suppose M is totally unimodular matrix. Let b and c be integer vectors. Then

• Every extreme point of P = { x : Mx ≤ b } is integral.

• Every extreme point of P = { x : Mx = b, 0 ≤ x ≤ c } is integral.

We know that extreme points are equivalent to basic feasible solutions so we prove lemma for
basic feasible solutions:

Lemma 3.3. Suppose A is totally unimodular matrix. Let b be any integer vector. Then every
basic feasible solution of P = { x : Ax ≤ b } is integral.

Proof. Let x be a basic feasible solution. Then the constraints that are tight at x have rank
n. Let A′ be a submatrix of A and b′ a subvector of b corresponding to n linearly independent
constraints that are tight at x.Then x is the unique solution to A′x = b′, i.e., x = (A′)−1b

Cramer’s Rule: If M is a square, non-singular matrix then

(M−1)i,j = (−1)i+j det Mdel(j,i)/ det M

In which det Mdel(j,i) = submatrix of M obtained by deleting row j and column i.

Thus all entries of (A′)−1 are in {0,+1,−1}. Since b′ is integral, x is also integral.

Now we show that, as we claimed earlier, the matrix for the Max Flow problem is totally
unimodular.

Lemma 3.4. Let D = (N,A) be a directed graph. Define M by

Mv,a =


+1 if node v is the head of arc a
−1 if node v is the tail of arc a
0 otherwise

M is totally unimodular.

Proof. Let Q be a k × k submatrix of M . We argue by induction on k. If k = 1 then Q is a
single entry of M , so det Q is either 0 or ±1. So assume k > 1.

Case 1: If some column of Q has no non-zero entries, then det(Q) = 0.

Case 2: Suppose jth column of Q has exactly one non-zero entry, say Qt,j 6= 0. Use column
expansion of determinant:

det Q =
∑
i

(−1)i+jQi,j · det Qdel(i,j) = (−1)t+jQt,j · det Qdel(t,j)

where t is the unique non-zero entry in column j. By induction, det Qdel(t,j) in {0,+1,−1} ⇒
det Q in {0,+1,−1}

Case 3: Suppose every column of Q has exactly two non-zero entries. For each column
one non-zero is a +1 and the other is a −1. So summing all rows in Q gives the vector
[0, 0, · · · , 0]. Thus Q is singular, and det Q = 0.
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4 The Max Flow LP and its Dual

4.1 The Max Flow LP

The linear programming formulation:
max

∑
a∈δ+(s) xa

s.t
∑

a∈δ−(v) xa −
∑

a∈δ+(v) xa = 0 ∀v ∈ V \ {s, t}
0 ≤ xa ≤ ca ∀a ∈ A

Assuming that the capacities are all non-negative, the LP is feasible since the zero flow is feasible.
The feasible region is bounded thus the LP is bounded. So by fundamental theorem of linear
programming it has an optimal solution which is a maximum flow. The feasible region is the
polyhedron P = { x : Mx = b, 0 ≤ x ≤ c } where M is totally unimodular matrix. Note that
since P is bounded it doesn’t contain any line and it has extreme points.

Corollary 4.1. If c is integral then every extreme point is integral, and so there is a maximum
flow that is integral.

So this gives us the second half of max-flow min-cut theorem that there is always an optimal
flow that is integral. To prove the rest of the theorem we consider the dual. To find the dual for
the max flow LP we consider a variable yv for every v ∈ N \ {s, t} and a variable zuv for every
arc uv. The dual is:

min
∑

a∈A caza
s.t. −yu + yv + zuv ≥ 0 ∀uv ∈ A, v, w ∈ N \ {s, t}

yv + zsv ≥ 1 ∀sv ∈ A
−yu + zut ≥ 0 ∀ut ∈ A
z ≥ 0

Let’s set ys = 1 and yt = 0 then the dual would be simplified as:
min

∑
a∈A caza ≥ 0

s.t. −yu + yv + zuv ≥ 0 ∀uv ∈ A
z ≥ 0

Where ys and yt are not variables ys = 1 and yt = 0.

We will show that given an given an optimal solution (y, z), we can construct a cut δ+(U)
such that c(δ+(U)) =

∑
a∈A

caza. In other words the capacity of the cut δ+(U) equals the optimal

value of the dual LP. By strong LP duality, this equals the optimal value of the primal LP, which
is the maximum flow value. By weak duality every cut has capacity at least the max flow value
so this must be a minimum cut.

Primal: max
{
dTx : Mx = 0, 0 ≤ x ≤ c

}
Dual: min

{
cTz :

(
MT I

)( y
z

)
≥ 0, z ≥ 0, ys = 1, yt = 0

}
=


min

∑
a∈A caza ≥ 0

s.t. −yu + yv + zuv ≥ 0 ∀uv ∈ A
z ≥ 0 ys = 1, yt = 0
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We claim that
(
MT I

)
is also totally unimodular. Therefore any extreme point solution of

Dual has y and z integral. Since we are minimizing we can assume that zuv = max{yu − yv, 0}
for all arcs uv. Define U = { v : yv ≥ 1 }; then s ∈ U and t /∈ U . Also note that zuv ≥ 1 for all
uv ∈ δ+(U).

Max Flow value
Strong Duality

=
∑
a

zaca ≥ c(δ+(U))
Weak Duality
≥ Max Flow value

Therefore δ+(U) is a cut separating s and t with capacity equal to max flow.
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