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1 Corner Points

We consider three different possible definitions for our intuitive concept of a “corner point”.
Note that in all of these definitions P =

{
x : aTi x ≤ bi ∀i

}
⊂ Rn.

Definition 1.1 (Vertex). x is a vertex of a polyhedron P if ∃c ∈ R such that cTx > cTy
∀y ∈ P \ {x}

Definition 1.2 (Extreme Point). x is an extreme point of a polyhedron P if ∀y, z ∈ Rn
α ∈ (0, 1) such that x = αy + (1− α)z, either y /∈ P or z /∈ P

Definition 1.3 (Basic Feasible Solution). Let Ix =
{
i : aTi x = bi

}
, and Ax = { ai : i ∈ Ix }.

Then x is a basic feasible solution if rank Ax = n.

Claim 1.4. If rank(Ax) < n, ∃w ∈ Rn w 6= 0 such that ∀ai ∈ Ax aTi w = 0.

Proof. Let M be the matrix whose ith row is ai. Recall dim(M) = dim(rowspace(M)) +
dim(nullspace(M)), hence since dim(rowspace(M)) = rank(Ax) < n, ∃w ∈ nullspace(M). This
w is orthogonal to all of Ax.

Lemma 1.5. If P is a polyhedron the above definitions are equivalent.

Proof. First we show that if x is a vertex then it must be an extreme point.
Assume x is a vertex, by definition ∃c such that cTx > cTy ∀y ∈ P \ {x}.
Let y, z ∈ Rn \ {x} be arbitrary vectors and α ∈ (0, 1) an arbitrary scalar such that x =
αy + (1− α)z.
Assume y, z ∈ P

cTx = αcTy + (1− α)cTz

< αcTx+ (1− α)cTx

= cTx

Leading us to conclude cTx < cTx, which is a contradiction, so either y /∈ P or z /∈ P . Thus x
is an extreme point.
Second we show that if x is an extreme point then x is a basic feasible solution.
Assume x is an extreme point, and assume to the contrary that it is not a basic feasible
solution. This means rank(Ax) < n (where Ax is defined as above).
Recall ∃w ∈ Rn w 6= 0 such that ∀ai ∈ Ax aTi w = 0.
Let y = x+ εw, z = x− εw.
We show that ε can be chosen such that y, z ∈ P . Start with y ∈ P .
Consider a constraint ai such that aTi x = bi, then aTi w = 0 from our choice of w and hence
aTi y = aTi x+ aTi w = bi.
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Next consider the other constraints, those for which aTi x < bi. If we take ε =
bi−aTi y
2aTi w

, then we

get

bi − aTi y = bi − aTi x− εaTi w

= bi − aTi x−
bi − aTi x

2

=
bi − aTi x

2
> 0

aTi y < bi

Which shows that y satisfies the constraint as well.
Since y satisfies the constraints that are satisfied with equality at x, and those satisfied by
inequality, it satifies all the constraints of P , that is y ∈ P .
The proof that z ∈ P is similar, and hence y, z ∈ P . We have that y, z ∈ P such that x = y

2 + z
2 ,

and thus x is not an extreme point, leading to a contradiction. Hence if x is an extreme
point it must also be a basic feasible solution.
The last step is to show that if x is a basic feasible solution then x is a vertex.
Assume x is a basic feasible solution, that is rank(Ax) = n.
Let c =

∑
i∈Ix ai.

Then

cTx =
∑
i∈Ix

aTi x

=
∑
i∈Ix

bi

We now show that x is the unique optimizer for c, which is equivalent to x is a vertex.
Let y ∈ P . Then aTi y ≤ bi.
Hence

cTy =
∑
i∈Ix

aTi y

≤
∑
i∈Ix

bi

= cTx

Thus ∀y ∈ P cTx ≥ cTy. (1)
Let y ∈ P such that cTx = cTy.
If ∃ai ∈ Ax such that aTi y < bi then cTy < cTx, so there can’t be any such i.
Thus ∀ai ∈ Ax aTi y = bi.
Since rank(Ax) = n there is a unique solution, and hence x = y.
Ergo ∀y ∈ P such that cTx = cTy then x = y. (2)
Combining (1) and (2) we get ∀y ∈ P \ {x} cTx > cTy, which is our definition for x is a vertex.
Since we have established:
x is a vertex =⇒ x is an extreme point =⇒ x is a basic feasible solution =⇒ x is a
vertex
We conclude that all these statements are equivalent.
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Corollary 1.6. Any polyhedron has finitely many extreme points.

Proof. Any polyhedron can be described by m ∈ Z constraints, thus there are at most (mn ) ways
to choose constraints to be satisfied by the basic feasible solution, and thus finitely many such
points. Since every extreme point is a basic feasible solution, there are no more extreme points
than there are basic feasible solutions. Thus there are finitely many extreme points.

Now that we have discussed common ways to define corner points of polyhedra we move
on to showing that optimal solutions of linear programs are realized at extreme points. There
are some cases where this isn’t the case, specifically when the polyhedra we are optimizing over
contains a line (see below for formal definition), or is infeasible. For example the linear program
min { y : x ∈ R, y ≥ 0 } has infinitely many optimal solutions (of the form (x, 0)), but has no
extreme points.

Definition 1.7 (Line). A line is any subset L of Rn of the form L = { v : ∃λ ∈ R v = u+ λw },
where u,w ∈ Rn, w 6= 0.

Lemma 1.8. Let P =
{
x : ∀i aTi x ≤ bi

}
, further assume P does not contain any lines.

Let L = max
{
cTx : x ∈ P

}
be a linear program, which has an optimal solution.

Then there is an extreme point of P which is an optimal solution of L.

Proof. Suppose x is an optimal point of L with the maximal number of tight constraints, that
is ∀x′ an optimal solution of L |Ix′ | ≤ |Ix|. Further assume x is not an extreme point.
Then x is not a basic feasible solution, and as we’ve seen above ∃w ∈ Rn w 6= 0 such that ∀i ∈
Ix aTi w = 0.
Define y(ε) = x+ εw. Now we have two cases to consider, either cTw = 0 or not.
First assume cTw = 0.
Let δ = mini/∈Ix

bi−aTi x
aTi w

, h = arg mini/∈Ix
bi−aTi x
aTi w

.

Then ∀i ∈ Ix ayi (δ) = aTi x = bi, since aTi w = 0, and hence i ∈ Iy(δ). For i /∈ Ix we have

aTi y(δ) = aTi x+ δaTi w

≤ aTi x+ aTi w
bi − aTi x
aTi w

= bi

Thus y(δ) ∈ P , and

aThy(δ) = aThx+ δaThw

= aThx+ aThw
bh − aThx
ahi w

= bh

Ergo h ∈ Iy(δ), as such |Iy(δ)| > |Ix|.
Finally

cTy(δ) = cTx+ δ cTw︸︷︷︸
=0

= cTx
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so y(δ) is an optimal point of L.
This means y(δ) is an optimal point of L, for which |Iy(δ)| > |Ix|, which contradicts our assump-
tion,
Next we consider the case where cTw 6= 0. Note ∀i ∈ IxaTi (−w) = −aTi w = 0 and cT(−w) =
−cT. Thus without loss of generality we can assume cTw > 0, since we can reverse the inequality
by replacing w with −w.
Let δ be defined as above. Then y(δ) ∈ P ), and

cTy(δ) = cTx+ δcTw > cTx

which contradicts x being optimal.
Since we reach a contradiction in both cases the optimal point with maximum number of tight
constraints must be an extreme point.

This leads to a very simple algorithm for solving linear programs. First you go through the
(mn ) possible choices of n constraints, and check which ones give you a basic feasible solution.
Then you return the optimal solution out of this set of points.

2 Polyhedrons

We start by defining the dimension of sets.

Definition 2.1. An affine space A is a set A = { x+ z : x ∈ L } where L is a linear space
and z is any vector.
The dimension of an affine space, is the dimension of the underlying linear space L.

Definition 2.2. The dimension of any S ⊂ Rn, is dimS = min { A : A an affine space S ⊆ A }.
By convention dim ∅ = −1.

Definition 2.3. A set C is convex if ∀x, y ∈ C ∀α ∈ [0, 1] αx+ (1− α)y ∈ C

Claim 2.4. The following are convex sets:

1. Closed halfspaces, that is sets of the form
{
x : aTx ≤ b

}
, where a ∈ Rn b ∈ R.

2. The intersection of a family of convex sets.

3. Polyhedrons.

Closed halfspaces are convex. Let H be the closed halfspace
{
x : aTx ≤ b

}
, for some a ∈

Rn b ∈ R. Take y, z ∈ H, arbitrary.
Then given α ∈ [0, 1]

aT(αy + (1− α)z) = αaTy + (1− α)aTz

≤ αb+ (1− α)b

= b

so αy + (1− α)z ∈ H, an hence it is convex.
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Intersections of convex families are convex. Let (Ci)i∈I be a family of convex sets, and let y, z ∈
∩i∈ICi.
Given α ∈ [0, 1] then ∀i ∈ I αy + (1 − α)z ∈ Ci, since x, y ∈ Ci which is convex, hence
αy + (1− α)z ∈ ∩i∈ICi. So ∩i∈ICi is a convex set.

Polyhedrons are convex. Polyhedrons are the intersections of closed halfspaces. Since we have
shown closed halfspaces are convex, and the intersections of convex sets are convex, polyhedrons
are convex.

Definition 2.5. Let C ⊆ Rn a convex set. An inquality aTx ≤ b is valid for C if ∀x ∈
C aTx ≤ b.

Definition 2.6. Let P ⊆ Rn be a polyhedron. A face of P is a set F = P ∩
{
x : aTx = b

}
,

such that aTx ≤ b is valid for P .

Claim 2.7. Every face of a polyhedron is a polyhedron.

Proof. Note that
{
x : aTx = b

}
=
{
x : aTx ≤ b

}
∩
{
x : −aTx ≤ −b

}
. Hence any face of a

polyhedron is the intersection of closed halfspaces, and thus a polyhedron.

Claim 2.8. For any given polyhedron P , P and ∅ are faces of P .

Proof. Take a = 0, b = 0 in the above definition. 0Tx ≤ 0 is true for all x, so it is valid for P .
P ∩

{
x : 0Tx = 0

}
= P ∩Rn = P . Thus P is a face of P . Similarly take a = 0, b = 1. 0Tx ≤ 1

is true for all x, and hence valid for P . P ∩
{
x : 0Tx = 1

}
= P ∩ ∅ = ∅. Thus ∅ is a face of

P .

Definition 2.9. A face of a polyhedron with dimension k is called a k-face.
An (n-1)-face is a facet, a 1-face is an edge, a 0-face is a vertex.

We now show it makes sense to call 0-faces vertices, by showing it is equivalent to are above
definition of a vertex.

Proof. If F = v is a face of some polyhedron, then ∃a ∈ Rn ∃b ∈ R such that ∀x ∈ P aTx ≤
b and aTv = b. Note that P ∩

{
x : aTx = b

}
= v, so ∀x ∈ P \ v aTx < b. Hence v is a vertex

of P , according to our first definition of a vertex.

3 Simplex Method

The simplex method can be very simply described as picking an arbitrary starting vertex from
the feasible polyhedron, and moving along edges of the polyhedron, until there are no such
moves that result in an improvement in the objective value.
This algorithm works very well in practice, and is often preferred to more theoretically com-
plex algorithms which have asymptotically better running times. The exact complexity of the
algorithm is unknown because it is hard to find bounds on the shortest to a given vertex on
arbitrary polyhedrons.
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