
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 23 — April 3, 2013

Prof. Nick Harvey Scribe: Samira Samadi

1 Tropp’s theorem applications

Theorem 1.1 (Tropp’s theorem). Let X1, · · · , Xk be independent, n × n symmetric matrices
with 0 4 Xi 4 RI. Let µmin I 4

∑
i
E[Xi] 4 µmax I. Then ∀ε ∈ [0, 1]

Pr[λmax(
∑
i

Xi) ≥ (1 + ε)µmax] ≤ n e
−ε2 µmax

3R (1.1)

Pr[λmin(
∑
i

Xi) ≥ (1− ε)µmin] ≤ n e
−ε2 µmin

2R (1.2)

As we remember from Lecture 19

Definition 1.2 (Graph sparsifiers). H is sparsifier of G if (1− ε)LG 4 LH 4 (1 + ε)LG.

We are going to use Tropp’s theorem to prove the following theorem:

Theorem 1.3 (Spielman, Srivastava). ∃H with O(|V | log
|V |
ε2

) edges.

1.1 Reduction

As usual, we apply the reduction (Lemma 6) described in Lecture 14. This yields vectors
{ we : e ∈ E } ⊂ Rn where n = |V | − 1 and

∑
e
wew

T
e = I so that the following conditions are

equivalent:

(1) subgraph H of G with edge set F and weights s : F → R+ is a sparsifier of G

(2) (1− ε)I 4
∑
e∈F

sewew
T
e 4 (1 + ε)I

So we assume that we have these vectors and try to prove (2).

1.2 Algorithm

- Parameters: C :=
6 log n

ε2
, A← 0, s← 0

- Pseudocode:

For j := 1, · · · , C {

For e ∈ E {
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with probability wT
e we︸ ︷︷ ︸
=pe

:

F ← F ∪ {e}

se ← se +
1

C wT
e we︸ ︷︷ ︸
pe

A← A+
wew

T
e

C wT
e we︸ ︷︷ ︸
pe

}

}

Claim 1.4. With probability at least 0.9, H has O(n log n/ε2) edges.

Proof.

E[|F |] =
C∑

j=1

∑
e∈E

wT
e we︸ ︷︷ ︸
pe

= C · tr[(
∑
e

wT
e we︸ ︷︷ ︸
pe

)] = C · tr[(
∑
e

wew
T
e )] = C · tr[(I)] = C · n =

6n log n

ε2

By Markov’s inequality, H has at most 60n log n/ε2 edges with probability at least 0.9.

Claim 1.5. With high probability λi(A) ∈ [1−ε, 1+ε] for all i. Thus, letting H be the subgraph
of G with edges F and weights s, we have that H is a sparsifier of G with high probability.

Proof. We use Tropp’s theorem. The change to A in iteration (j, e) is a random matrix which
we denote Zj,e. Clearly

Zj,e =


wew

T
e

C · wT
e we

w.p wT
e we

0 o.w.

 .

Note that E[Zj,e] = 1
Cwew

T
e . Also, the matrix wew

T
e /w

T
e we has maximum eigenvalue 1, so Zj,e

always has maximum eigenvalue at most 1/C.

The output of the algorithm is the matrix A =
∑
j,e
Zj,e. Note that

E[A] =
∑
j,e

E[Zj,e] =
1

C

C∑
j=1

∑
e∈E

wew
T
e =

∑
e∈E

wew
T
e = I

We apply Tropp’s theorem to the random matrices X1, . . . , Xk which we define by letting

{ Xi : i = [k] } = { Zj,e : j ∈ [C], e ∈ E } .

We have A =
∑k

i=1Xi,
∑k

i=1 E[Xi] = I, and λmax(Xi) = λmax(Zj,e) ≤ 1
C . So we may apply

Tropp’s theorem with µmin = µmax = 1 and R := 1
C . The theorem yields

Pr[λmax(A) ≥ 1 + ε] ≤ n · e
−ε2µmax

3R = n · e
−ε2C

3 = n · e−2 logn =
1

n

Pr[λmin(A) ≤ 1− ε] ≤ n · e
−ε2µmin

2R = n · e−3 logn ≤ 1

n

So with probability at least 1− 2/n, we have λi(A) ∈ [1− ε, 1 + ε] for all i.
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1.3 pe values

Recall that the reduction (Lemma 6 of Lecture 14) has the property that

wT
e we = (eu − ev)TL+

G(eu − ev) = pe. (1.3)

What is this quantity? We will show that it is the effective resistance between u and v. Think
of every edge of G that is present as a 1-ohm resistor and other edges that are not present as
an infinite resistor.

Fact 1.6 (Ohm’s law). v = i · r (voltage difference equals current times resistance).

Since current has a direction, if we orient edges arbitrarily we can talk about current on each
edge, e.g., if the vertices are labeled {1, ..., n} we can orient each edge from the smaller vertex
to the larger vertex. Let V ∈ Rn be a vector giving the voltage level at the vertices.

iab = current on edge ab =
(Va − Vb)

1
= (Va − Vb) (1.4)

We can write this in terms of matrices. Let U be the E × V matrix that is the the node-arc
incidence matrix of this orientation of G. That is, for edge e = {u, v} ∈ E, row e of U is
yTe = (eu − ev)T.

Let v ∈ RV be a vector giving the voltage at each vertex. Let i ∈ RE be a vector giving the
current across each edge. So (1.4) states that

i = U · v (1.5)

That is, given voltages v, we get the current on every edge. But the current depends only on
the voltage difference, so this equation remains true if we increase all voltages by α:

i = U · v ⇐⇒ i = U · (v + α~1) ∀α ∈ R. (1.6)

Next we state Kirchhoff’s current conservation law.

Fact 1.7. Let iexta be the external current entering at node a. Then

iexta =
∑

ab leaves a

iab −
∑

ab entering a

iab.

That is, if the amount of current leaving a in the graph exceeds the amount of current entering a
in the graph, then there must be an external current source at a supplying the required current.

Letting i ∈ RE and iext ∈ RV , we can also write this in terms of matrices.

iext = UT · i = UTU(v + α~1) = LG(v + α~1) ∀α ∈ R.

That is, given any voltages v ∈ RV and any α ∈ R, we can find the external current required to
support these voltages.

The reverse is true too: given a vector of external currents iext ∈ RV , we can find voltages
v ∈ RV that produce these currents. Recall that image(LG) = span(~1)⊥. Let v = L+

G · iext. Then
we have

LG · v = LG · L+
G · i

ext = iext
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since ~1Tiext =
∑

a∈V i
ext
a = 0, again by Kirchhoff’s current conservation law.

Now connect a 1-amp current source between two nodes a and b. Following Ohm’s law
(v = ir with i = 1), the effective resistance between a and b is the voltage difference required to
support this single unit of current. So our external current vector is

iext := ea − eb.

The voltages that produce these currents are

v = L+
G · i

ext = L+
G(ea − eb).

The voltage difference between a and b is

va − vb = (ea − eb)TL+
G(ea − eb).

This is the effective resistance between a and b. For any edge ab ∈ E, it is the same as our
sampling probability pab, as shown in (1.3).
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