
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 22 — March 27, 2013

Prof. Nick Harvey Scribe: Zachary Drudi

In this lecture, we prove Tropp’s inequality, asuming Lieb’s inequality. We first state Lieb’s inequality
and record some easy consequences. Then we review the proof of the Chernoff bound before proving
Tropp’s inequality, which can be thought of as a matrix generalization of the Chernoff bound.

1 Preliminaries

Definition 1. If A,B are positive definite, define A�B = exp(log(A) + log(B)).

This binary operation yields an abelian group on the set of positive definite matrices. In particular, �
is commutative. Also, if A and B commute then A�B is the usual product AB.

Theorem 2. (Lieb) Fix any symmetric H. The map A 7→ trace exp
(

log(A) + H
)

is concave on
positive definite matrices.

This result is difficult, and we will not be doing the proof.

Corollary 3. trace(A�B) is concave in A.

Proof. trace(A�B) = trace exp(logA+ logB). Apply Lieb’s theorem with H = logB. �

Corollary 4. Let B be fixed, and A a random matrix. Then E[trace(A�B)] ≤ trace(E[A]�B).

Proof. Apply Jensen’s inequality. �

Corollary 5. Let A1, ..., Ak be independent random positive definite matrices. Then

E[trace(A1 � ...�Ak)] ≤ trace(E[A1]� ...� E[Ak])

Proof. Induction, applied to the preceding result. �
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2 The Chernoff Bound

To highlight the similarities between Tropp’s inequality and the Chernoff bound, we first present a
complete proof of the Chernoff bound.

Theorem 6. Let X1, ..., Xk be independent random variables with 0 ≤ Xi ≤ R.
Let µmin ≤

∑
i E [Xi ] ≤ µmax. Then, for all δ ∈ [0, 1],

Pr
[∑k

i=1Xi ≥ (1 + δ)µmax

] (a)

≤
(

eδ

(1+δ)1+δ

)µmax/R (b)

≤ e−δ
2µmax/3R

Pr
[∑k

i=1Xi ≤ (1− δ)µmin

] (c)

≤
(

e−δ

(1−δ)1−δ

)µmax/R (d)

≤ e−δ
2µmin/2R.

Inequality (a) is actually valid for all δ ≥ 0.

We now prove inequality (a). Inequalities (b) and (d) are proven in the appendix.

Claim 7.

Pr

[
k∑
i=1

Xi ≥ t

]
≤ inf

θ>0
e−θt ·

k∏
i=1

E
[
eθXi

]
.

Proof. Fix θ > 0.

Pr [
∑

iXi ≥ t ] = Pr [
∑

iθXi ≥ θt ]
= Pr [ exp(

∑
iθXi) ≥ exp(θt) ] (monotonicity of ex)

≤ e−θt · E [ exp(
∑

iθXi) ] (Markov’s inequality)

This expectation can be simplified:

E [ exp(
∑

iθXi) ] = E
[∏

i e
θXi
]

=
∏
i E
[
eθXi

]
(independence)

Combining these proves the claim. �

Claim 8. Let X be a random variable with 0 ≤ X ≤ 1. Then

E
[
eθX

]
≤ 1 + (eθ − 1) · E [X ] .

Proof. For x ∈ [0, 1] we have eθx ≤ 1 + (eθ − 1) · x, by convexity of the left-hand side. Since X ∈ [0, 1],

eθX ≤ 1 + (eθ − 1) ·X

=⇒ E
[
eθX

]
≤ 1 + (eθ − 1) · E [X ] ,

since inequalities are preserved under taking expectation. �

Proof (of Chernoff Upper Bound). Without loss of generality R = 1.∏k
i=1 E

[
eθXi

]
≤
∏k
i=1

(
1 + (eθ−1) · E [Xi ]

)
(by Claim 11)

= exp
(∑k

i=1 log
(
1 + (eθ−1) · E [Xi ]

))
≤ exp

(∑k
i=1(e

θ−1) · E [Xi ]
)

(using log(1 + x) ≤ x)

≤ exp
(
(eθ − 1)µmax

)
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Applying Claim 10 with t = (1 + δ)µmax and θ = ln(1 + δ)

Pr

[∑
i

Xi ≥ (1 + δ)µmax

]
≤ exp

(
− ln(1 + δ) · (1 + δ)µmax

)
· exp(δ · µmax)

=
( eδ

(1 + δ)1+δ

)µmax

�
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3 Tropp’s Matrix Chernoff Bound

Theorem 9. Let X1, ..., Xk be independent random d× d symmetric matrices with 0 � Xi � R · I.
Let µmin · I �

∑
i E [Xi ] � µmax · I. Then, for all δ ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + δ)µmax

] (a)

≤ d ·
(

eδ

(1+δ)1+δ

)µmax/R (b)

≤ d · e−δ2µmax/3R

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− δ)µmin

] (c)

≤ d ·
(

e−δ

(1−δ)1−δ

)µmin/R (d)

≤ d · e−δ2µmin/2R.

Inequality (a) is actually valid for all δ ≥ 0.

We now prove inequality (a). Inequalities (b) and (d) follow from the discussion in the appendix.

Claim 10.

Pr

[
λmax

( k∑
i=1

Xi

)
≥ t

]
≤ inf

θ>0
e−θt · tr

(
k⊙
i=1

E
[
eθXi

])
.

Proof. Fix θ > 0.

Pr [λmax(
∑

iXi) ≥ t ] = Pr [λmax(
∑

iθXi) ≥ θt ] (homogeneity of max eigenvalue)
= Pr

[
exp

(
λmax(

∑
iθXi)

)
≥ exp(θt)

]
(monotonocity of ex)

≤ e−θt · E
[

exp
(
λmax(

∑
iθXi)

) ]
(Markov’s inequality)

We can bound the maximum eigenvalue by a trace:

exp
(
λmax(

∑
iθXi)

)
= λmax

(
exp(

∑
iθXi)

)
(definition of matrix exponentiation)

≤ tr
(

exp(
∑

iθXi)
)

(max eigenvalue ≤ sum of eigenvalues)

Taking the expectation gives the bound:

Pr [λmax(
∑

iXi) ≥ t ] ≤ e−θt · E
[

tr
(

exp(
∑

iθXi)
) ]
.

This expectation can be bounded:

E
[

tr
(

exp(
∑

iθXi)
) ]

= E
[

tr
(

exp(
∑

i logAi)
) ]

(let Ai = eθXi)
= E [ tr(A1 � · · · �Ak) ] (definition of �)
≤ tr

(
E [A1 ]� · · · � E [Ak ]

)
(by Corollary 5)

Combining these inequalities proves the claim. �

Claim 11. Let X be a random symmetric d× d matrix with 0 � X � I. Then

E
[
eθX

]
� I + (eθ − 1) · E [X ] .

Proof. For x ∈ [0, 1] we have eθx ≤ 1 + (eθ − 1) · x, by convexity of the left-hand side. Since X has all
eigenvalues in [0, 1], Claim 2 from Lecture 21 gives

eθX � I + (eθ−1) ·X

=⇒ E
[
eθX

]
� I + (eθ−1) · E [X ] ,

since the Löwner ordering is preserved under taking expectation (Claim 3 from Lecture 21). �

Proof (of Matrix Chernoff Upper Bound). Without loss of generality R = 1. Our first observation is
a bound for a sum of logs:∑k

i=1 log E
[
eθXi

]
= k ·

∑k
i=1

1
k log E

[
eθXi

]
� k · log

(∑k
i=1

1
k E
[
eθXi

] )
(by operator concavity of log) (1)
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Next:

tr
(

E
[
eθX1

]
� · · · � E

[
eθXk

] )
= tr exp

(∑k
i=1 log E

[
eθXi

] )
(definition of �)

≤ tr exp
(
k · log

(∑k
i=1

1
k E
[
eθXi

] ))
(by (1) and Claim 5 from Lecture 21)

≤ d · λmax

(
exp

(
k · log

(∑k
i=1

1
k E
[
eθXi

] )))
(sum of eigenvalues ≤ d times maximum)

≤ d · exp
(
k · log λmax

(∑k
i=1

1
k E
[
eθXi

] ))
(definition of matrix exp and log)

≤ d · exp
(
k · log λmax

(
I +

∑k
i=1

1
k (eθ−1) E [Xi ]

))
(by Claim 11)

= d · exp
(
k · log

(
1 + eθ−1

k λmax(
∑k

i=1 E [Xi ])
))

≤ d · exp
(

(eθ−1) · λmax(
∑k

i=1 E [Xi ])
)

(using log(1 + x) ≤ x)

≤ d · exp
(

(eθ−1) · µmax

)
Apply Claim 10 with t = (1 + δ)µmax and θ = ln(1 + δ):

Pr [λmax(
∑

iXi) ≥ (1 + δ)µmax ] ≤ exp
(
− ln(1 + δ) · (1 + δ)µmax

)
·
(
d · exp(δ · µmax)

)
= d ·

( eδ

(1 + δ)1+δ

)µmax

�
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4 Appendix

In this appendix, we prove inequalities (b) and (d) from Theorem 6. The same argument also proves
inequalities (b) and (d) in Theorem 9.

4.1 Proof of inequality (b)

Claim 12. Suppose δ ∈ [0, 1]. Then (1 + x) ln(1 + x)− x ≥ x2/3.

Proof. Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1]. By simple calculus,

d

dx

[
(1 + x) ln(1 + x)− x

]
= ln(1 + x) and

d

dx
x2/3 = 2x/3.

At x = 0, ln(1 + x) equals 2x/3. At x = 1, we have ln(1 + x) = ln(2) > 0.69 and 2x/3 < 0.67. Since
ln(1 + x) is concave, we have ln(1 + x) ≥ 2x/3 for all x ∈ [0, 1]. �

Corollary 13. For all δ ∈ [0, 1],

Pr

[
k∑
i=1

Xi ≥ (1 + δ)µmax

]
≤ exp

(
− (δ2/3)µmax/R

)
.

Proof. Claim 12 implies that
(

eδ

(1+δ)1+δ

)
≤ e−δ2/3. �

4.2 Proof of inequality (d)

Claim 14. Suppose x ∈ [0, 1]. Then (1− x) ln(1− x) + x ≥ x2/2.

Proof. Note that the LHS and RHS both vanish at x = 0. So the claim holds if the derivative of the
LHS is at least the derivative of the RHS on the interval [0, 1). By simple calculus,

d

dx

[
(1− x) ln(1− x) + x

]
= − ln(1− x) and

d

dx
x2/2 = x.

The linear approximation of − ln(1− x) at x = 0 is

x · ddx
(
− ln(1− x)

)∣∣∣
x=0

= x ·
(

1
1−x
)∣∣∣
x=0

= x.

Furthermore, − ln(1 − x) is convex on [0, 1) because its second derivative is 1/(1 − x)2 ≥ 0. Thus
− ln(1− x) ≥ x on [0, 1). �

Corollary 15. For all δ ∈ [0, 1],

Pr

[
k∑
i=1

Xi ≤ (1− δ)µmin

]
≤ exp

(
− (δ2/2)µmin/R

)

Proof. Claim 14 implies that
(

e−δ

(1−δ)1−δ

)
≤ e−δ2/2. �
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