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Here we collect some definitions and results on the Lowner ordering and random matrices, in preparation
for proving Tropp’s inequality on sums of random matrices.

1 Random Matrices

We consider sums of random, independent, bounded matrices. We want to bound the concentration of
eigenvalues or singular values. We will obtain a perfect generalization of the Chernoff bound.

Let X be a random matrix of size d x d. There are two different ways to think of a random matrix:
1: A matrix sampled according to a distribution on matrices
2: An array of scalar random variables
Our perspective also impacts how we interpret the expectation of a random matrix.
1:  If we consider X as sampled according to some distribution on matrices, then E[X] = 3" , A- Pr[X = A]

2: If we consider X as an array of random variables, then E[X] is the array of the expectations
of the entries of X

Given independent, random, symmetric, positive semi-definite matrices X1, Xo, ..., X3, we want to un-

derstand the concentration of ) . X;. Tropp’s recent result solves this problem.

Theorem 1 (Tropp ’12). Let Xi,..., X) be independent random d x d symmetric matrices with
0<X;<R-1I
Let ptmin - I <D, E[X;] < fimax - I. Then, for all § € [0, 1],
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In order to prove this theorem, we need to gather some definitions and results on symmetric matrices.

2 Lowner Ordering, Monotonicity, Convexity and Concavity

For any f: R — R, we can define a function on symmetric matrices A by applying f to the eigenvalues
of A. Formally, let A = UDU? be the spectral decomposition of A. That is, U is orthogonal and D is
the diagonal matrix whose diagonal entries are the eigenvalues of A.

Define f(A) = Uf(D)UT, where f(D) is a diagonal matrix with [f(D)]; = f(Dy).

We will use this definition with f = exp, In.

Claim 2. Fact: Let f: R — R and g : R — R satisfy f(z) < g(x)Vx € [I,u]. Suppose A is symmetric
and the spectrum of A C [I,u]. Then f(A) < g(A).

Proof. Let UDUT be the spectral decomposition of A. Then

9(A) = [(A) =Ug(D)UT —Uf(D)UT = U(9(D) - f(D))UT



Since the diagonal entries of D are in the interval [I, u], we see g(Dy;) > f(D;;) for all i. Therefore the
diagonal matrix g(D)— f(D) has non-negative entries on the diagonals, and thus is positive semi-definite,
s0 f(A) < g(A). n

How do functions behave with respect to the Lowner ordering? Usually badly. One might hope that if f

is monotone on some interval [[, u], then when we extend f to matrices, we obtain a monotone operator on
matrices with eigenvalues in the interval [I, u]. That is, A < B and the eigenvalues of A, B are in [l,u] =
f(A) = f(B). However, this is not true in general.

For a counter example, consider
11 2 1
_ .2 _ _
f(x) =27, A—L 1], B—[l J

So f is monotone on R>q. Now

so A < B. We claim f(A) £ f(B).

Proof. For any matrix C with decomposition UDUT,
f(c)=vfD)uT =up?v? = (UDUT)(UDUT) = C?,
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The charateristic polynomial of f(B) — f(A) is t> — 3t — 1. Since the constant term is negative, the
roots must be of different signs, and thus f(B) — f(A) is not positive semi-definite, so f(A) £ f(B). B
Claim 3. If X and Y are random matrices and X <Y, then E[X] < E[Y].

Proof. Use the linearity of expectation. If X <Y, then Y — X is positive semi-definite. Therefore
E[Y — X] = E[Y] — E[X] is positive semi-definite, so E[X] < E[Y]. [ ]

While monotone funtions on R do not necessarily yield monotone functions on symmetric matrices as
we saw above, it is true that if f is monotone then tracef := A — trace(f(A)) is monotone. In order to
establish this, we need a preliminary result concerning the spectrum of two matrices A, B with A < B.

Claim 4 (Weyl’s Monotonicity Theorem). Suppose A and B are symmetric, n X n matrices. Let \;(A)
be the ith largest eigenvalue of A. If A < B, then \;(A) < \;(B) for all 7.

Proof. We use the variational characterization of eigenvalues for symmetric matrices:
Ai(A) = max{min{Ra(z) | z € U\ {0}} | U C V,dim(U) = i},
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where Ra(x) =

To see this, consider the decomposition of R into the eigenspaces Ef1, ..., E, of A, where E; = span{v;},
and v; is a unit eigenvector of A with eigenvalue \;j(A). By taking U = S; = 23:1 E;, we see the RHS

. AZ T Z . . . .
above is > Ry (v;) = ;}’vv = A, since v; minimizes R4 (x) for x € S;.

On the other hand, let P be the orthogonal projection onto S;, let U be any subspace with dimension
i and consider P|y, the restriction of P to U. If P|y has trivial kernel, then rank(P|y) = dim(U) =
rank(P), so we conclude U = im(P) = S;. Otherwise, say = € kernel(P|y),z # 0. Then x is a linear
combination of eigenvectors v; with j > 4, so
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thus the minimum of R4 over U is less than or equal to the minimum of R4 over S;, and the RHS
above is < \;.

= Xit1 < A,

Now we prove the claim. Suppose S4 maximizes the expression min{R4(z) | = € S4 \ {0}} among all
subspaces with dimension i, and Sp is similiarly the maximizer for B. We have:

Ai(B) = Ai(A)
=min{Rp(z) | x € Sp\{0}} —min{R4(x) | = € Sx\ {0}}
> min{Rp(z) | © € Sa\{0}} —min{Ra(z) | x € Sa\{0}}

%) min{Rp(x) — Ra(x) | = € Sa\{0}}

@ min{Rp_a(x) | z € Sa\{0}}

> min{Rp_a(x) | x € R"\ {0}}
= M(B—A)
(3)
>0
To obtain (1), say x4, xp are the minimizers for A, B in S4 respectively. Then Ra(z4) < Ra(xp), so

Rp(zp) — Ra(za) > Rp(zp) — Ra(rp) > min{Rp(z) — Ra(z) | z € Sa\{0}},

establishing (1).
For (2), note
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(3) follows by the fact that B — A is positive semi-definite. [

We now establish our result about functions tracef, for monotone f.

Claim 5. If f is monotone, then tracef is monotone.
Proof. This follows easily from Claim 4. Say A < B. We establish tracef(A) < tracef(B):

n

tracef (4) = 3 FOM(A)) £ D F(N(B) = tracef(B)

We will use this result for f = exp.

We call f operator concave if Vx € [0,1],VA, B,

f(1=2)A+2B) = (1 —2)f(A)+ xf(B). Operator convexity is defined similarly, only with a flipped
inequality.

As for monotone functions, f convex on R doesn’t imply f is operator convex. For example, exp is
not operator convex. However, it is known that log is operator concave on the set of positive definite
matrices.
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