
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 20 — March 20, 2013

Prof. Nick Harvey Scribe: Alexandre Fréchette

We study the Maximum Cut Problem with approximation in mind, and naturally we
provide a spectral graph theoretic approach.

1 The Maximum Cut Problem

Definition 1.1. Given a (undirected) graph G = (V,E), the maximum cut δ(U) for U ⊆ V is
the cut with maximal value |δ(U)|. The Maximum Cut Problem consists of finding a maximal
cut.

We let MaxCut(G) = max{|δ(U)| : U ⊆ V } be the value of the maximum cut in G, and

MaxCut′ = MaxCut(G)
|E| be the normalized version (note that both normalized and unnormalized

maximum cut values are induced by the same set of nodes — so we can interchange them in our
search for an actual maximum cut).

The Maximum Cut Problem is NP-hard. For a long time, the randomized algorithm
consisting of uniformly choosing a cut was state-of-the-art with its 1

2 -approximation factor1 The
simplicity of the algorithm and our inability to find a better solution were unsettling. Linear pro-
gramming unfortunately didn’t seem to help. However, a (novel) technique called semi-definite
programming provided a 0.878-approximation algorithm [Goemans-Williamson ’94], which is
optimal assuming the Unique Games Conjecture.

2 A Spectral Approximation Algorithm

Today, we study a result of [Trevison ’09] giving a spectral approach to the Maximum Cut
Problem with a 0.531-approximation factor. We will present a slightly simplified result with
0.5292-approximation factor.

To get the general idea, consider d-regular graphs. As we discussed earlier, the smallest
non-zero eigenvalue of the Laplacian determines the spectral expansion. But what does the
maximum eigenvalue tell us? It is known that λmax(LG) = 2d if and only if G is bipartite, that
is the maximum cut of G contains every edge! Hence, the idea is that maybe λmax(LG) ≈ 2d
implies G has a big cut.

In more detail, we would like to show that

MaxCut′(G) ≤ 1

2

λmax(LG)

d

and if λmax(LG) = 2d(1 − ε) for some 0 ≤ ε ≤ 1, then we can find a cut that cuts 1 − O(
√
ε)

fraction of the edges. To do so, we proceed in three distinct steps:

1Let U∗ induce the optimal max cut and U be chosen uniformly at random. Then, E{δ(U)} =
∑
e∈E P{e ∈

δ(U)} ≥
∑
e∈δ(U∗) P{e ∈ δ(U)} =

∑
e∈δ(U∗)

1
2
= 1

2
δ(U∗) = 1

2
MaxCut(G).

1

• formalizing the relationship between MaxCut′(G) and the eigenvalues of LG,

• show how to partition a graph, cutting lots of edges, given an eigenvector for the maximum
eigenvalue, and

• assemble an algorithm from our observations.

2.1 Graph Spectrum and Maximum Cuts

Fix a (undirected) graph G = (V,E), and as usual assume V = [n]. Let A be the adjacency
matrix of G, and D the diagonal matrix with the degree of the vertices on the diagonal. Recall
that the Laplacian is LG = D −A. Today it will be more convenient to work with the matrix
SG = D + A, which Gary Miller calls the “sum Laplacian”. The reason that SG is more
convenient is that, in the d-regular case, the quantity 1− λmax(LG)/2d is simply λmin(SG)/2d.

Claim 2.1. If |δ(U)|
|E| = 1− ε

2 for some ε > 0, then if x = 1− 2χ(U),

x>SGx = εx>Dx.

Proof. First, note that xi =

{
−1 if i ∈ U

1 if i 6∈ U . Hence,

x>Ax = 2
(
|{e 6∈ δ(U)}| − |{e ∈ δ(U)}|

)
= 2
(ε

2
− (1− ε

2
)
)
|E| = 2(ε− 1)|E| (2.1)

and
x>Dx =

∑
i∈V

deg(i) = 2|E|. (2.2)

So

x>SGx = x>(D + A)x

= x>Dx + x>Ax

= 2|E|+ 2(ε− 1)|E|

by Equations (2.1) and (2.2),

= ε2|E|
x>SGx = εx>Dx.

Corollary 2.2. If minx 6=0{x
>(D+A)x
x>Dx

} ≥ ε for some ε > 0, then MaxCut′(G) ≤ 1− ε
2 .

Proof. This is just the contrapositive of Claim 2.1. Indeed, let minx 6=0{x
>(D+A)x
x>Dx

} ≥ ε, and
suppose there was a cut with value larger than 1 − ε

2 . Then by Claim 2.1, the minimum of
x>(D+A)x

x>Dx
would in fact be smaller than ε; contradiction.

This sums up our formalized relationship between the maximum cut and the eigenvalue/quadratic
form for an algebraic representation of G.

2

2.2 Building Cuts from Eigenvectors

We want to devise a way to cut our graph using eigenvectors. First, fix a partitioning of the
vertex set of our graph in three sets L (left), R (right) and D (deferred) — see Figure 1.

L

R

D

Figure 1: Partitioning a graph in three pieces L, R and D. Only the edges crossing the partitions
are shown.

Given two disjoint sets of vertices S, T ⊆ V , we let δ(S, T) = {e = ij ∈ E : i ∈ S, j ∈ T or i ∈
T, j ∈ S}. Recall also that, for a set of vertices S ⊆ V , E[S] = {e = ij ∈ E : i ∈ S, j ∈ S}.

Fix our partitioning L,R,D of the vertex set. Then we categorize the edges as follows (see
Figure 2):

• cut = δ(L,R) are the edges we definitely cut,

• uncut = E[L] ∪ E[R] are edges we do not cut,

• cross = δ(L,D) ∪ δ(R,D) are edges we may or may not cut,

• defer = E[D] are edges we recursively evaluate to check if we cut or not.

uncut

uncut

defer
cut

cross

cross

Figure 2: The categorization of the edges given an L,R,D partition.

3

The idea is that we will identify L and R, and then recursively find (L′, R′) in the remainder D.
We then output (L∪L′, R∪R′) or (L∪R′, R∪L′) as our cut in the graph, whichever is better.
Note that one of these choices cuts at least half of the cross edges, and all the cut edges. Hence,
we want |cut| and |cross| to be large.

Let’s see how we can identify L and R.

Lemma 2.3. Given a vector x such that x>SGx
x>Dx

≤ ε for some ε > 0, we can find a vector

y ∈ {−1, 0, 1}V such that ∑
i,j∈V Aij |yi + yj |∑

i∈V Dii|yi|
≤
√

8ε.

Now suppose we set L = {i : yi = 1}, R = {i : yi = −1} and D = {i : yi = 0}. Then in the
numerator

∑
i,j∈V Aij |yi + yj | of Lemma 2.3’s result, a cut edge does not contribute, an uncut

edge contributes 4 and a cross edge contributes 2. So
∑

i,j∈V Aij |yi + yj | = 4|uncut|+ 2|cross|.
As for the denominator, we get the sum of the degrees in L∪R, which is 2(|cut|+|uncut|)+|cross|.
Hence, Lemma 2.3 tells us that

4|uncut|+ 2|cross|
2|cut|+ 2|uncut|+ |cross|

≤
√

8ε. (2.3)

But for the left hand side ratio to be that small (i.g. less than
√

8ε), we need |cut| to be large,
which is to our advantage. Lemma 2.3 is exactly the rounding mechanism we need for our
algorithm.

Claim 2.4. Fix ε > 0 and some x ∈ RV . Then

x>SGx

x>Dx
≤ ε

if and only if

1

2

∑
i,j∈V

Aij(xi + xj)
2 ≤ ε

∑
i∈V

Diix
2
i =

ε
∑

i,j∈V Aij(x
2
i + x2

j)

2
.

Proof. Fix an edge e = ij, and let zij = ei + ej (where ei ∈ RV is the i-th standard basis), and
Ze = zijzij

>. Then, as with the graph Laplacian, we get that SG =
∑

e=ij∈E Ze. Now note that

x>Zex = x2
i + 2xixj + x2

j = (xi + xj)
2. Hence,

x>SGx = x>
(∑
e=ij∈E

Ze

)
x =

∑
e=ij∈E

x>Zex =
∑

e=ij∈E
(xi + xj)

2 =
1

2

∑
i,j∈V

Aij(xi + xj)
2. (2.4)

Moreover,

x>Dx =
∑
i∈V

Diix
2
i (2.5)

by definition of D.

Hence,

x>SGx

x>Dx
≤ ε ⇔ x>SGx ≤ εx>Dx

⇔ 1

2

∑
i,j∈V

Aij(xi + xj)
2 ≤ ε

∑
i∈V

Diix
2
i

4

by Equations (2.4) and (2.5). Finally,∑
i∈V

Diix
2
i =

1

2

∑
i,j∈V

Aij(x
2
i + x2

j) (2.6)

by double counting — each edge is accounted for by two vertices.

We are now ready to prove our main lemma.

Proof of Lemma 2.3. Suppose we have a vector x such that x>SGx
x>Dx

≤ ε for some ε > 0. Note
that any scaling of x does not affect the above inequality, so we can assume that |xi| ≤ 1 for all
i ∈ V .

By Claim 2.4, x satisfies ∑
i,j∈V

Aij(xi + xj)
2 ≤ 2ε

∑
i∈V

Diix
2
i (2.7)

and ∑
i,j∈V

Aij(xi + xj)
2 ≤ ε

∑
i,j∈V

Aij(x
2
i + x2

j).

Let us try to interpret this second inequality. It says that, on average over all edges e = ij ∈
E, (xi + xj)

2 is much smaller than (x2
i + x2

j). In order for this to happen, this means xi and xj
have opposite signs, and their magnitude are about the same, again on average with respect to
all edges.

With this observation in hand, consider laying the vertices on the unit interval on the real
line according to their x value - see Figure 3.

−1 1

Figure 3: A depiction of vertices on the real line according to their x coordinate

To partition the graph, we will pick a threshold t ∈ [0, 1] then partition the real line into
three parts as follows: L = {i : xi ≤ −t}, R = {i : xi ≥ t} and D = {i : −t < xi < t}. See
Figure 4.

5

−1 1

L RD

−t t

Figure 4: A tri-partition of the real line cutting many edges.

Because of how the xi’s are (on average) balanced for each edge, we should expect to cut
many edges with this L, R, D partition.

But how should we choose t? You might guess that we will choose it randomly. Indeed we
will, but the distribution is not what you might expect. We choose u ∼ U [0, 1] uniformly at
random from the unit interval, then set t =

√
u. The L, R, D partition is then encoded in the

random vector Y ∈ {−1, 0, 1}V defined by

Yi =

−1 if xi ≤ −t

0 if |xi| < t
1 if xi ≥ t

.

We prove that Y satisfies the conditions of the lemma on expectation, and thus there exists
some (non-random) y satisfying the lemma.

We want to show that

E{
∑
i,j∈V

Aij |Yi + Yj |} ≤
√

8ε · E{
∑
i∈V

Dii|Yi|}. (2.8)

We show in Claim 2.5 that
E{|Yi|} = x2

i (2.9)

and
E{|Yi + Yj |} ≤ |xi + xj |(|xi|+ |xj |). (2.10)

We use those two properties of Y to get our conclusion:

E
{ ∑
i,j∈V

Aij |Yi + Yj |
}

=
∑
i,j∈V

AijE{|Yi + Yj |}

≤
∑
i,j∈V

Aij |xi + xj |(|xi|+ |xj |)

by Equation (2.10),

≤
√∑
i,j∈V

Aij |xi + xj |2
√∑
i,j∈V

Aij(|xi|+ |xj |)2

6

by the Cauchy-Schwartz inequality. We can then apply our hypothesis Equation (2.7) to the
left sum, and use the fact that (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R on the summands of the right
sum to get

≤
√

2ε
∑
i∈V

Diix2
i

√
2
∑
i,j∈V

Aij(|xi|2 + |xj |2)

=

√
2ε
∑
i∈V

Diix2
i

√
4
∑
i∈V

Diix2
i

applying Equation (2.6),

=
√

8ε
∑
i∈V

Diix
2
i

E{
∑
i,j∈V

Aij |Yi + Yj |} ≤
√

8ε
∑
i∈V

DiiE{|Yi|}

from Equation (2.9).

Claim 2.5. Given x ∈ [−1, 1]V , let u ∼ U [0, 1] and Y ∈ {−1, 0, 1}V be such that

Yi =

−1 if xi ≤ −

√
u

0 if |xi| <
√
u

1 if xi ≥
√
u

.

Then
E{|Yi|} = x2

i

for all i ∈ V , and
E{|Yi + Yj |} ≤ |xi + xj |(|xi|+ |xj |)

for all i, j ∈ V .

Proof. The first result follows directly from definition:

E{|Yi|} = P{|xi| ≥
√
u} = P{|xi|2 ≥ u} = x2

i

For the second result, we use a case analysis. Without loss of generality, we may assume
that |xi| ≤ |xj |.

• Suppose that xi and xj have opposite signs, or that xi = 0. Then Yi and Yj cannot have
the same sign, so it is not possible that |Yi + Yj | = 2. Thus

E{|Yi + Yj |} = P{|Yi + Yj | = 1}.

Because we assume that |xi| ≤ |xj |, the event {|Yi + Yj | = 1} occurs precisely when
|xi| <

√
u ≤ |xj |. Thus

E{|Yi + Yj |} = |xj |2 − |xi|2 = (|xj | − |xi|)(|xi|+ |xj |).

Finally, note that |xi + xj | = |xj | − |xi| due to our assumptions that |xi| ≤ |xj | and that
xi and xj have opposite signs (or xi = 0). So the claim is proven in this case.

7

• Suppose xi is non-zero and that xi and xj have the same sign. Because the claim is invariant
under simultaneously negating xi and xj , it suffices to consider the case 0 < xi ≤ xj . By
definition of Y, we have

|Yi + Yj | =

0 when xj <

√
u

1 when xi <
√
u ≤ xj

2 when
√
u ≤ xi

Hence,

E{|Yi + Yj |} = P{x2
i < u ≤ x2

j}+ 2P{u ≤ x2
i }

= (x2
j − x2

i) + 2x2
i = x2

j + x2
i

≤ (xi + xj)
2 = |xi + xj |(|xi|+ |xj |).

So the claim is proven in this case too.

2.3 An Approximation Algorithm for the Maximum Cut Problem

As previously noted, given a x such that x>SGx
x>Dx

≤ ε for some ε > 0, Lemma 2.3 gives us an
L, R, D partition of our graph where the edges satisfy Equation (2.3). Let’s work out this last
equation to see what we can get out of it:

4|uncut|+ 2|cross|
2|cut|+ 2|uncut|+ |cross|

≤
√

8ε

⇒
|uncut|+ 1

2 |cross|
|cut|+ |uncut|+ 1

2 |cross|
≤
√

2ε

⇒ |cut|
|cut|+ |uncut|+ 1

2 |cross|
≥ 1−

√
2ε

⇒
|cut|+ 1

2 |cross|
|cut|+ |uncut|+ |cross|

≥ 1−
√

2ε.

(2.11)

Note that the numerator |cut|+ 1
2 |cross| is the guaranteed minimum value of the best cut between

(L ∪ L′), (R ∪R′) and (L ∪R′), (R ∪ L′) (where L′ and L′ are recursively found in D). Indeed,
such cut cuts all the cut edges, and at least half the cross edges. Moreover, the denominator
|cut|+ |uncut|+ |cross| is the best contribution our two cuts could have, cutting all possible edges
(but the deferred edges). Hence, Equation (2.3) tells us that our minimum contribution is not
so bad - this is what we leverage.

Consider the following algorithm:

8

Algorithm 2.1 Spectral Maximum Cut Algorithm

Require: A graph G = (V,E).
Ensure: A cut in G cut of value at least 0.5292MaxCut(G).
1: τ ← 0.1107
2: α← 0.5292
3: ε← min{x

>SGx
x>Dx

: x 6= 0}
4: x← arg min{x

>SGx
x>Dx

: x 6= 0}
5: if ε ≥ τ then
6: return a random cut in G.
7: else if ε < τ then
8: Use Lemma 2.3 to get L, R, D partition and corresponding edges cut, uncut and cross.
9: {Iteratively find best cut in deferred edges.}

10: (L′, R′)← Spectral Maximum Cut Algorithm(G[D]).
11: {Return the best of two possible cuts.}
12: return arg max{|δ(L ∪ L′, R ∪R′)|, |δ(L ∪R′, R ∪ L′)|}
13: end if

Before analysing the actual quality of the solution outputted by Algorithm 2.1 (and confirm-
ing its guarantee), let us address some algorithmic issues.

First, note that line 8 in the algorithm uses Lemma 2.3 to find a partition, but the lemma
is about a random partition. As usual, we can compensate for the randomness by amplifying
and repeating the algorithm many times, taking the best cut encountered. The same goes for
the random cut outputted at line 6.

Second, how can we efficiently solve the optimization problem min{x
>SGx
x>Dx

: x 6= 0} of lines 3

and 4 in Algorithm 2.1? Well consider the change of variable z = D
1
2 x, which is non-degenerate

since D is diagonal with strictly positive diagonal entries, thus invertible. Then the problem
becomes

min
{z>D−

>
2 SGD−

1
2 z

z>z
: z 6= 0

}
.

Since we can always rescale solutions and keep same objective value (given a solution z∗, use
z∗√
z∗>z∗

), we can restrict the feasible space to unit norm vectors (which is equivalent to z>z = 1):

min
{
z>D−

>
2 SGD−

1
2 z : z 6= 0, ‖z‖ = 1

}
.

The solution of the latter problem is simply the smallest eigenvalue (and corresponding eigen-

vector) of D−
>
2 SGD−

1
2 .

Finally, let’s analyze the quality of the cut returned by Algorithm 2.1. In the first case,
ε ≥ τ . By Corollary 2.2, this means MaxCut(G) ≤ (1− ε

2)|E|. But, as we have observed in the
introduction, a random cut in expectation cuts at least 1

2 |E| edges. Hence, our cut outputted
as an approximation factor of at least

1
2 |E|

(1− ε
2)|E|

=
1

2− ε
≥ 1

2− τ
≥ 0.5292 = α.

For the second case, we have ε < τ and our edge sets cut, uncut, cross and defer induced by our

9

tri-partition. Note that

MaxCut(G) ≤ MaxCut((V, cut ∪ uncut ∪ cross)) + MaxCut((V, defer))

≤ |cut ∪ uncut ∪ cross|+ MaxCut((V, defer))

where recall that for F ⊆ E, MaxCut((V, F)) is the value of the maximum cut in the subgraph
(V, F) of G - so MaxCut((V, defer) is the maximum cut in the deferred edges section of the graph.
Thus,

MaxCut(G) ≤ |cut|+ |uncut|+ |cross|+ MaxCut((V, defer))

Equation (2.11) guarantees that

⇒
|cut|+ 1

2 |cross|
|cut|+ |uncut|+ |cross|

≥ 1−
√

2ε ≥ 1−
√

2τ .

Hence, we inductively2 find L′, R′ in the deferred edges and output the best cut out of (L ∪
L′, R∪R′) and (L∪R′, R∪L′), whichever is better and cut at least half the cross edges. Hence,
our outputted cut as value at least

|cut|+ |cross|
2

+ αMaxCut((V, defer))

by induction, where recall α = 0.5292. Piecing everything together to get our ratio, we have

|cut|+ |cross|
2 + αMaxCut((V, defer))

MaxCut(G)
≥

|cut|+ |cross|
2 + αMaxCut((V, defer))

|cut|+ |uncut|+ |cross|+ MaxCut((V, defer))

≥ min
{ |cut|+ |cross|

2

|cut|+ |uncut|+ |cross|
,
αMaxCut((V, defer))

MaxCut((V, defer))

}
since a+b

c+d ≥ min{ac ,
b
d} for a, b, c, d > 0,

≥ min{1−
√

2τ , α}

|cut|+ |cross|
2 + αMaxCut((V, defer))

MaxCut(G)
≥ α = 0.5292.

So our outputted cut in any case has an approximation ratio of at least α = 0.5292.

2We are not addressing the formal proof by induction of the result.

10

	The Maximum Cut Problem
	A Spectral Approximation Algorithm
	Graph Spectrum and Maximum Cuts
	Building Cuts from Eigenvectors
	An Approximation Algorithm for the Maximum Cut Problem

