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Recall from last time that our goal is to prove the following theorem. Similar results were
first announced by Goemans (unpublished, 2012).

Theorem 0.1. Let G = (V, E) be a connected graph, let n = |V| and assume |E| > 3. Let P
be the spanning tree polytope of G, and let € P. For e € E, let w, € R"! be such that

Z xewewg =1
eclk
Then there exists a set of edges F' with |F| > 5 such that
Ama (3 wew! ) <35,
eclF
and (V, F) is acyclic.

Corollary 0.2. Let L, be the weighted Laplacian of the fractional spanning tree . There
exists ' C E with |F| > % such that F' is acyclic and Ly < 35 - L., where L is the Laplacian
of the forest F.

We give an algorithm to produce this thin forest F' below. We will prove its correctness,
thus proving the theorem.

Algorithm 0.1 Thin Forest Algorithm
Require: A graph G = (V, E).
Ensure: A forest F' C E with )\max( Y oecF weweT) <35and |F| > §.
A+0
F+ 0
s u4—ug =20
0= %
U(A) = trace((ul — A)~1) = " Hu — \) 7!, where {\; " are the eigenvalues of A.
for j=1...n/2do
Find a good edge e
F + FU{e}
A+ A+ wew?!
U u+90
: end for
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Given F' C E, we say an edge e € E is good if:
(a) FU{e} is acyclic and e ¢ F
(b) Amax(A +wew!) < u+6
(c) ®*FO(A+ wewl) < Y(A)



We will show that the for loop maintains the following invariants:

(a) F is acyclic
(b) Amax(A4) < u
(c) @“(A) < 5

We will need the Sherman-Morrison Formula to prove the correctness of the algorithm.

Theorem (Sherman-Morrison Formula). Let B be an n x n nonsingular matrix, and a,b € R™.
Then (B + ab?) ! exists iff 1 # —bT B~1a, and in that case

B~ lab" B!
B+ab")! = BTl - .
(B +ab) 1+b'B 1a

1 Correctness of the Algorithm

Assume A\pax(A) < u. Define

M = ((ut 6)I — A)~!

M2
N = (I)u(A) _ (I)u—i-d(A) +M

Observation 1: (u+ )] — A is invertible.
Observation 2: ®“T9(A4) < d¥(A)
Observation 3: M is a positive definite matrix.

Observation 4: M < N, i.e. vI Mv < v Nv for all non-zero v € R*1,

Proof. (1) As Amax(A) < u, in particular u+ 0 is not an eigenvalue of A. Therefore (u+4d)I — A
has trivial kernel, and so is invertible.

(2) Since \; <w and 6 >0, we have 0 < u— X\; <u—+0 — .
Thus ®*H(A) = 3, ((u+68) — X))+ < Y(u—A) ™! = &%(A)

(3) Every eigenvalue of M is strictly postive, so M is positive definite.

. . M?2
(4) COHSlder N - M = m
As the denominator is positive by (2), and M is positive definite, we have that N — M is

positive definite, and so M < N.
O

Lemma 1.1. Suppose Amax < u. Let v € R and t > 0 be arbitrary. If vT Nv < %, then
PUHI(A + tovT) < d%(A) and Apax (A + tovT) < u + 4.


http://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula

Proof. We will apply the Sherman-Morrison formula with B = (u+6)] — A, a = —tv and b = v.
This is justified because, assuming v # 0,

—'B7la = t-v"Mv < t-of'Nv < 1,
by Observation 4 and the hypothesis of the lemma. So

DUt (A 4 tovT) = trace[((u+ 6)I — A — tov?) 1]

= trace (M - %)
= trace(M) + trace (%)
. MM
_ putd (A) + ! tiaiegT Mo v
Tpr2
= d"T0(A) + ;_UT]\ZU
'UTMZ’U

= 0"(A) — (®"(4) — 2"(A4)) +

b
% — T Mo

where the fourth equality follows by applying the identity trace(AB) = trace(BA).
So

YA + tovT) < DU(A)

TMZU
= (DU(A) — (A + L <
(@A) @)+ T
v M?v T 1
< —
= Guga) —ouroga) T MUsy

1
<:>UTNU§¥

To establish the bound on Apax(A + tva), we collect some facts about the spectral norm.
Define

1BI| = max{[| Bz || | [|=[} <1}
We establish the triangle inequality for || - ||:

1B+ Cl = max{[|(B + C)z[| | [l«] <1}
< max{||Bz| + [|Cx| | |lz[ <1}
< max{|[Bz| | [z} <1} + max{[[Cz| | [[z]| <1}
= [IBl + 1]l

Now, since || - || satisfies the triangle inequality, we get the inequality | || B|| — ||C]| |[< || B — C/,
from which continuity of || - || follows.

Consider ¢(t) := ||A+tvvT||. For a symmetric, positive definite matrix B, || B|| = |Amax(B)| =
Amax(B), 50 ¢(t) = Amax(A + tvvT). Furthermore, since ¢ is a composition of the continuous
functions t — A + tvvT and || - ||, ¢ is continuous.



If ¢(to) > u + & for some v’ Nv < %, then since ¢(0) = Amax(A4) < u < u + 6, there exists
some 0 < t < tg such that ¢(t;) = u+ 6. So (u+0)I — (A +tyvv’) is not an invertible matrix.

However, by the Sherman-Morrison formula we have
M (—tl U)UTM
14+ T M(—t1v)

(u+ )T — (A+tw") " =M

The denominator is non-zero since t1v! Mv < tov? Nv < 1, so in particular (u-+0)1 — (A+tjvvT)
is invertible. This is a contradiction.

O
Lemma 1.2. trace(N) < 2
Proof.
M2
t N) =t M t
race(V) race(M) + race(q)u(A) — q>u+6(A))
n—1 -2
- 0) — N
_ (I)u+§(A) + —— lel ((u1+ ) ) -
2imt [(w =)™ = ((u+08) = X)~]
n—1 -9
- 0) — A
(2 q)u+§(A) + n;:lz:l ((U + ) ) —
02 iz (w40 = Ai)(u = X))
(2) n-—1 — )2
< (I)U(A) 4 n712Z21 (u +0 )‘l) —
02 =1 (w40 = X)(u+3d =N
1
=o“(A) + -
(4) + 5
2
< —
Y
We obtain (1) by using the identity % — a%rb = a(++b) with a = u — \; and b = 6.
For (2), we use Observation (2), and for the fraction, observe we are decreasing the denominator
and thus increasing the fraction. O

Now randomly pick an edge e with probability ~*<. (v € P, so Y  .pze =n — 1). Using
the following two claims, we will establish that with non-zero probability e is a good edge.

Claim 1.3. Pr[w! Nw, > 1] < %



Proof. Applying Markov’s inequality, we have

Prlw! Nw, > 1] < E[w! Nw,]
= Z e ’LUZNU)@

n—1
ecl

1
= Z . - trace(w! Nw,)
eckE

1
=0 Z . - trace(Nwow?)
eck

1
= 1trace (N(ZeeExewewZ)>
n

1
= 1trace(N)
1 2

n—16

1 2(n-1)
n—1 20
1

10

Applying Lemma 1.1 with ¢t = 1, if w! Nw, < 1 then Apax(A + wew?!) < u + 6 and
PUHI(A + wew!l) < ®%(A), or in other words e satisfies conditions (b) and (c) of being a good
edge. So Prle violates condition (b) or (c)] < 4.
We next check condition (a), that F'U {e} is acyclic and e ¢ F.

. . 3
Claim 1.4. Pr[F U {e} contains a cycle or e € F] < §
Proof. Let C1,C59,...,Cy C V be the components of F' at iteration j. Initially there are n

components, and each iteration decreases the number of components by 1. Since j < §, k > 7.
Recall that E[C;] denotes the set of edges with both endpoints in C;.

Let R={ec E:e¢ U E[C]} = E\UE[C).
Note: e € R <= F U{e} is acyclic, and e ¢ F. Since x € P, the spanning tree polytope,

iL'(ECl])§|Cl|—1 V’izl,...,k

k k k
— o JBIC) =Y a(BlC) <Y (G- =n—k< .
i=1 1=1 i=1
soz(R)=x(E)—z(J;ElCi]) >2n—-1-5 =5 -1



Thus

Pr[F U {e} is acyclic and e ¢ F]
= Prle € R]
1

T - 1:1:(R)

n

2
n—1

1 (n-1 1
S 2\n—-1 n-1
1

1_
( n—l)

v

I SR

assuming n > 3.

So applying a union bound we get

Prle is not good]
= Pr[e violates (a), (b), or (c)]
< Prle violates (a)] + Pr[e violates (b) or (c)]

<3+1
—4 10
Y
20’

thus Pr[e is good] > %. In particular, there exists a good edge.
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