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Recall from last time that our goal is to prove the following theorem. Similar results were
first announced by Goemans (unpublished, 2012).

Theorem 0.1. Let G = (V,E) be a connected graph, let n = |V | and assume |E| ≥ 3. Let P
be the spanning tree polytope of G, and let x ∈ P . For e ∈ E, let we ∈ Rn−1 be such that∑

e∈E
xewew

T
e = I

Then there exists a set of edges F with |F | ≥ n
2 such that

λmax

(∑
e∈F

wew
T
e

)
≤ 35,

and (V, F ) is acyclic.

Corollary 0.2. Let Lx be the weighted Laplacian of the fractional spanning tree x. There
exists F ⊂ E with |F | ≥ n

2 such that F is acyclic and LF � 35 · Lx, where LF is the Laplacian
of the forest F .

We give an algorithm to produce this thin forest F below. We will prove its correctness,
thus proving the theorem.

Algorithm 0.1 Thin Forest Algorithm

Require: A graph G = (V,E).
Ensure: A forest F ⊂ E with λmax

(∑
e∈F wew

T
e

)
≤ 35 and |F | ≥ n

2 .
1: A← 0
2: F ← ∅
3: u← u0 := 20
4: δ := 20

n−1

5: Φu(A) := trace((uI −A)−1) =
∑n−1

i=1 (u− λi)−1, where {λi}n−1
i=1 are the eigenvalues of A.

6: for j = 1 . . . n/2 do
7: Find a good edge e
8: F ← F ∪ {e}
9: A← A+ wew

T
e

10: u← u+ δ
11: end for

Given F ⊂ E, we say an edge e ∈ E is good if:

(a) F ∪ {e} is acyclic and e /∈ F

(b) λmax(A+ wew
T
e ) < u+ δ

(c) Φu+δ(A+ wew
T
e ) ≤ Φu(A)
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We will show that the for loop maintains the following invariants:

(a) F is acyclic

(b) λmax(A) < u

(c) Φu(A) ≤ 1
δ

We will need the Sherman-Morrison Formula to prove the correctness of the algorithm.

Theorem (Sherman-Morrison Formula). Let B be an n×n nonsingular matrix, and a, b ∈ Rn.
Then (B + abT )−1 exists iff 1 6= −bTB−1a, and in that case

(B + abT )−1 = B−1 − B−1abTB−1

1 + bTB−1a
.

1 Correctness of the Algorithm

Assume λmax(A) < u. Define

M := ((u+ δ)I −A)−1

N :=
M2

Φu(A)− Φu+δ(A)
+M

Observation 1: (u+ δ)I −A is invertible.

Observation 2: Φu+δ(A) < Φu(A)

Observation 3: M is a positive definite matrix.

Observation 4: M ≺ N , i.e. vTMv < vTNv for all non-zero v ∈ Rn−1.

Proof. (1) As λmax(A) < u, in particular u+ δ is not an eigenvalue of A. Therefore (u+ δ)I−A
has trivial kernel, and so is invertible.

(2) Since λi < u and δ > 0, we have 0 < u− λi < u+ δ − λi.
Thus Φu+δ(A) =

∑
i

(
(u+ δ)− λi

)−1
<
∑

i(u− λi)−1 = Φu(A)

(3) Every eigenvalue of M is strictly postive, so M is positive definite.

(4) Consider N −M = M2

Φu(A)−Φu+δ(A)

As the denominator is positive by (2), and M is positive definite, we have that N −M is
positive definite, and so M ≺ N .

Lemma 1.1. Suppose λmax < u. Let v ∈ Rn−1 and t > 0 be arbitrary. If vTNv ≤ 1
t , then

Φu+δ(A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δ.
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Proof. We will apply the Sherman-Morrison formula with B = (u+ δ)I−A, a = −tv and b = v.
This is justified because, assuming v 6= 0,

−bTB−1a = t · vTMv < t · vTNv ≤ 1,

by Observation 4 and the hypothesis of the lemma. So

Φu+δ(A+ tvvT ) = trace[((u+ δ)I −A− tvvT )−1]

= trace

(
M − M(−tv)vTM

1 + vTM(−tv)

)
= trace(M) + trace

(
tMvvTM

1− tvTMv

)
= Φu+δ(A) +

t · trace(vTMMv)

1− tvTMv

= Φu+δ(A) +
vTM2v

1
t − vTMv

= Φu(A)− (Φu(A)− Φu+δ(A)) +
vTM2v

1
t − vTMv

,

where the fourth equality follows by applying the identity trace(AB) = trace(BA).

So

Φu+δ(A+ tvvT ) ≤ Φu(A)

⇐⇒ − (Φu(A)− Φu+δ(A)) +
vTM2v

1
t − vTMv

≤ 0

⇐⇒ vTM2v

Φu(A)− Φu+δ(A)
+ vTMv ≤ 1

t

⇐⇒ vTNv ≤ 1

t

To establish the bound on λmax(A + tvvT ), we collect some facts about the spectral norm.
Define

‖B‖ := max{‖Bx‖ | ‖x‖ ≤ 1}

We establish the triangle inequality for ‖ · ‖:

‖B + C‖ = max{‖(B + C)x‖ | ‖x‖ ≤ 1}
≤ max{‖Bx‖+ ‖Cx‖ | ‖x‖ ≤ 1}
≤ max{‖Bx‖ | ‖x‖ ≤ 1}+ max{‖Cx‖ | ‖x‖ ≤ 1}
= ‖B‖+ ‖C‖

Now, since ‖ · ‖ satisfies the triangle inequality, we get the inequality | ‖B‖ − ‖C‖ |≤ ‖B − C‖,
from which continuity of ‖ · ‖ follows.

Consider φ(t) := ‖A+tvvT ‖. For a symmetric, positive definite matrixB, ‖B‖ = |λmax(B)| =
λmax(B), so φ(t) = λmax(A + tvvT ). Furthermore, since φ is a composition of the continuous
functions t→ A+ tvvT and ‖ · ‖, φ is continuous.
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If φ(t0) > u + δ for some vTNv ≤ 1
t0

, then since φ(0) = λmax(A) < u < u + δ, there exists

some 0 < t1 < t0 such that φ(t1) = u+ δ. So (u+ δ)I − (A+ t1vv
T ) is not an invertible matrix.

However, by the Sherman-Morrison formula we have

(
(u+ δ)I − (A+ t1vv

T )
)−1

= M − M(−t1v)vTM

1 + vTM(−t1v)

The denominator is non-zero since t1v
TMv < t0v

TNv ≤ 1, so in particular (u+δ)I−(A+t1vv
T )

is invertible. This is a contradiction.

Lemma 1.2. trace(N) ≤ 2
δ

Proof.

trace(N) = trace(M) + trace
( M2

Φu(A)− Φu+δ(A)

)
= Φu+δ(A) +

∑n−1
i=1 ((u+ δ)− λi)−2∑n−1

i=1 [(u− λi)−1 − ((u+ δ)− λi)−1]

(1)
= Φu+δ(A) +

∑n−1
i=1 ((u+ δ)− λi)−2

δ
∑n−1

i=1 [(u+ δ − λi)(u− λi)]−1

(2)

≤ Φu(A) +

∑n−1
i=1 (u+ δ − λi)−2

δ
∑n−1

i=1 [(u+ δ − λi)(u+ δ − λi)]−1

= Φu(A) +
1

δ

≤ 2

δ

We obtain (1) by using the identity 1
a −

1
a+b = b

a(a+b) with a = u− λi and b = δ.

For (2), we use Observation (2), and for the fraction, observe we are decreasing the denominator
and thus increasing the fraction.

Now randomly pick an edge e with probability xe
n−1 . (x ∈ P , so

∑
e∈E xe = n − 1). Using

the following two claims, we will establish that with non-zero probability e is a good edge.

Claim 1.3. Pr[wTe Nwe > 1] ≤ 1
10
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Proof. Applying Markov’s inequality, we have

Pr[wTe Nwe > 1] ≤ E[wTe Nwe]

=
∑
e∈E

xe
n− 1

wTe Nwe

=
1

n− 1

∑
e∈E

xe · trace(wTe Nwe)

=
1

n− 1

∑
e∈E

xe · trace(Nwew
T
e )

=
1

n− 1
trace

(
N
(∑

e∈Exewew
T
e

))
=

1

n− 1
trace(N)

≤ 1

n− 1

2

δ

=
1

n− 1

2(n− 1)

20

=
1

10

Applying Lemma 1.1 with t = 1, if wTe Nwe ≤ 1 then λmax(A+ wew
T
e ) < u+ δ and

Φu+δ(A + wew
T
e ) ≤ Φu(A), or in other words e satisfies conditions (b) and (c) of being a good

edge. So Pr[e violates condition (b) or (c)] ≤ 1
10 .

We next check condition (a), that F ∪ {e} is acyclic and e /∈ F .

Claim 1.4. Pr[F ∪ {e} contains a cycle or e ∈ F ] ≤ 3
4

Proof. Let C1, C2, . . . , Ck ⊂ V be the components of F at iteration j. Initially there are n
components, and each iteration decreases the number of components by 1. Since j ≤ n

2 , k ≥ n
2 .

Recall that E[Ci] denotes the set of edges with both endpoints in Ci.

Let R = {e ∈ E : e /∈
⋃k
i E[Ci]} = E \

⋃k
i E[Ci].

Note: e ∈ R⇐⇒ F ∪ {e} is acyclic, and e /∈ F . Since x ∈ P , the spanning tree polytope,

x(E[Ci]) ≤ |Ci| − 1 ∀i = 1, . . . , k

=⇒ x(
k⋃
i=1

E[Ci]) =
k∑
i=1

x(E[Ci]) ≤
k∑
i=1

(|Ci| − 1) = n− k ≤ n

2
,

so x(R) = x(E)− x(
⋃
iE[Ci]) ≥ n− 1− n

2 = n
2 − 1.
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Thus

Pr[F ∪ {e} is acyclic and e /∈ F ]

= Pr[e ∈ R]

=
1

n− 1
x(R)

≥
n
2 − 1

n− 1

=
1

2

(
n− 1

n− 1
− 1

n− 1

)
=

1

2
(1− 1

n− 1
)

≥ 1

4
,

assuming n ≥ 3.

So applying a union bound we get

Pr[e is not good]

= Pr[e violates (a), (b), or (c)]

≤ Pr[e violates (a)] + Pr[e violates (b) or (c)]

≤ 3

4
+

1

10

=
17

20
,

thus Pr[e is good] ≥ 3
20 . In particular, there exists a good edge.
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