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The main goal for this lecture is to obtain an O
(

logn
log logn

)
approximation algorithm for the

ATSP problem. Outlining this algorithm will involve all of the disparate techniques and ideas
developed in the past several lectures. First, by considering the Held-Karp LP relaxation, we
will obtain a “fractional Hamiltonian cycle” x∗ of minimum weight. Next we let x be a “scaled
symmetrization” of x∗, and show that x is an (undirected) “fractional spanning tree”, i.e., x
lies in the spanning tree polytope. Next, applying pipage rounding to x, we obtain an integral,
undirected spanning tree T . By orienting the edges of T , we obtain a digraph H to which we
apply the transshipment process in order to obtain an Eulerian digraph H ′. Finally, by taking
shortcuts in H ′ (exploiting the triangle inequality), we obtain a Hamiltonian cycle with weight

within a factor of O
(

logn
log logn

)
of the optimal value of the Held-Karp relaxtion.

1 An O
(

log n
log log n

)
Algorithm for ATSP

In the ATSP problem we are given a directed, complete graph G = (V,A) with edge weights
w : A→ R≥0, where the weight function satisfies the triangle inequality.

1.1 Held-Karp Relaxation

In Lecture 8, we defined the following linear program, called the the Held-Karp relaxation:

LP = min{wTx : x(δ+(v)) = x(δ−(v)) = 1 ∀x ∈ V
x(δ+(U)) ≥ 1 ∀U ( V,U 6= ∅
0 ≤ xa ≤ 1 ∀a ∈ A}

Recall that despite the exponential number of constraints in this LP, we were able to obtain
an optimal solution in polynomial time in n. Let x∗ be an optimal solution to this LP. Now
x∗ represents a directed, fractional tree in G. We’d like to obtain an integral tree which ap-
proximates x∗, but our tool for this process, pipage rounding, works with fractional trees in the
spanning tree polytope of undirected graphs. So we symmetrize x∗ by replacing it with x, where
x{u,v} =

(
n−1
n

)
(x∗uv +x∗vu). We now show x is in the spanning tree polytope P of G, where here

we consider G to be undirected by simply forgetting edge orientation and removing duplicate
edges. Recall

P = {x ∈ RE≥0 : x(E) = n− 1, x(E[U ]) ≤ |U | − 1 ∀U ⊂ V,U 6= ∅},
where E[U ] = {{u, v} ∈ E : u, v ∈ U}
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Claim 1.1. ∀U ⊂ V, x(δ(U)) = 2(n−1)
n x∗(δ+(U))

Proof.

x(δ(U)) =
∑

{u,v}∈δ(U)

x{u,v} =
∑

{u,v}∈δ(U)

(
n− 1

n

)
(x∗uv + x∗vu)

=
n− 1

n
(x∗(δ+(U)) + x∗(δ−(U))) =

2(n− 1)

n
x∗(δ+(U)),

where we used x∗(δ+(U)) = x∗(δ−(U)) in the last equality which was proved in Lecture 8, Claim
1.3.

Claim 1.2. x ∈ P

Proof. We simply verify that x satisfies the constraints defining P .

First, note that x{u,v} =
(
n−1
n

)
(x∗uv + x∗vu) ≥ 0.

By claim 1, x(δ(v)) = 2(n−1)
n ∀v ∈ V ,

so x(E) = 1
2

∑
v∈V x(δ(v)) = 1

2n
2(n−1)
n = n− 1.

Since x∗ satisfies the LP, we have x∗(δ+(U)) ≥ 1 ∀U ⊂ V,U 6= ∅.

Thus x(δ(U)) = 2(n−1)
n x∗(δ+(U)) ≥ 2(n−1)

n ∀U ⊂ V,U 6= ∅.

Also, 2(n−1)
n |U | =

∑
u∈U x(δ(u)) = 2x(E[U ]) + x(δ(U)) ≥ 2x(E[U ]) + 2(n−1)

n ,

so 2x(E[U ]) ≤ 2(n−1)
n |U | − 2(n−1)

n = 2(n−1)
n (|U | − 1)

and thus x(E[U ]) < |U | − 1.

1.2 Eulerian Graph from a Fractional Tree

Our next step is to obtain an Eulerian graph.

In lecture 9, we used transshipments to get an Eulerian graph. Here is a generalized state-
ment:

Claim 1.3. Suppose H is an integral (multi-) digraph with:

(1) weight(H) ≤ αwTx∗

(2) |δ+H(U)|+|δ−H(U)| ≥ 1 ∀U ( V,U 6= ∅ (note this is equivalent to H being weakly connected)

(3) |δ+H(U)| ≤ αx∗(δ+(U)) ∀U ⊂ V

Then there is an integral, Eulerian, strongly-connected (multi-) digraph H ′ with:

(4) weight(H ′) ≤ O(α)wTx∗

Proof. As in Lecture 9, we use transshipments to ’patch up’ H in order to obtain an Eulerian
graph. The arguments given there give us an integral, Eulerian, weakly-connected digraph, and
the desired bound on its weight. Note that a Eulerian graph H ′ must be strongly connected:
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given U ( V,U 6= ∅, if |δ−H′(U)| ≥ 1, walking along a Eulerian trail starting from a vertex in U
we must be able to traverse the edges in δ−H′(U), and thus we must be able to get to V \U , in
particular δ+H′(U) 6= ∅. If |δ+H′(U)| ≥ 1, we consider walking along a Eulerian trail starting from
a vertex in V \U , and apply the same argument.

We obtain such an H to apply Claim 1.3 to by applying pipage rounding to x. This produces
an undirected tree T , and by the proof of Claim 1.11 of Lecture 12 with probability ≥ 1 − 3

n ,
for any U ⊂ V we have

|δT (U)| ≤ αx(δ(U)),where α := 6 logn
log logn , and thus

|δT (U)| ≤ αx(δ(U)) = α
2(n− 1)

n
x∗(δ+(U)) < 2αx∗(δ+(U))

Next, let w{u,v} = min {wuv, wvu}. We calculate the expectation of the weight of T , in order
to use Markov’s inequality:

E[weight of T] =
∑
e

we Pr[e ∈ T ]

=
∑
e

wexe

=
n− 1

n

∑
{u,v}∈E

w{u,v}(x
∗
uv + x∗vu)

≤ n− 1

n

∑
uv∈A

wuvx
∗
uv

< wTx∗,

so applying Markov’s inequality we get:

Pr[weight of T > 2wTx∗] ≤ E[weight of T]

2wTx∗
<

1

2
.

Collecting the above, we have that with probability ≥ 1
3 (assume n ≥ 5) that:

1. weight(T ) ≤ 2wTx∗

2. |δT (U)| < 2αx∗(δ+(U)) ∀U ⊂ V

To get H, add arc uv to H if {u, v} ∈ T and wuv ≤ wvu, where we break ties arbitrarily. So:

1. weight(H) = weight(T ) ≤ 2wTx∗

2. H is weakly connected, since T is a tree.

3. |δ+H(U)| ≤ |δT (U)| ≤ 2αx∗(δ+(U))

So by Claim 1.3, we get an integral, Eulerian, strongly-connected multi-digraph H ′ with
weight(H ′) = O(α)wTx∗

Taking advantage of the triangle inequality and applying a shortcutting argument (see the
end of Lecture 6), we can obtain a Hamiltonian cycle from H ′ with weight bounded above by
weight(H).
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2 Integrality Gaps

Consider an integer program IP = {minwTx : x ∈ P, x ∈ Zn} and suppose LP = {minwTx :
x ∈ P ′} and P ′ ⊃ P ∩ Zn. This LP is called an LP-relaxation of the IP.

Remark: the optimum value of the LP is less than or equal to the optimum value of the IP.

We want an integer solution y ∈ P such that

wT y ≤ α · (IP-optimum) (*)

However, typically we cannot compute IP-optimum. Instead, we show that

wT y ≤ α · (LP-optimum) (**)

Note (**) implies (*). If we can prove (**) for all instances, we say that the LP-relaxation has
integrality gap ≤ α.

We showed that the Held-Karp LP has integrality gap O
(

logn
log logn

)
, assuming the triangle

inequality. This result is due to [Asadpour, Goemans, Madry, Gharan, Saberi 2010].

2.1 Lower Bounds for Held-Karp Integrality Gap

In [Charikar, Goemans, Karloff 2006], the authors obtained a constant asymptotic lower bound
for the Held-Karp integrality gap. More precisely they showed that for all r ≥ 3 and k ≥ 2 there
exists an instance of ATSP on O(rk) vertices such that

IP-opt
LP-opt ≥

r−1
r+1 ·

2k−1
k

Since r−1
r+1 ·

2k−1
k → 2 as (r, k)→ (∞,∞), we obtain the asymptotic bound.

For simplicity, we’ll just briefly describe their construction for k = 2, r ≥ 3, which gives a
gap 3(r−1)

2(r+1) → 3/2.

4



t1 t2 tr

p12 p22 pr2

p1r−1 p2r−1 prr−1

b1 b2 br

r

r

11 11 11

11 11 11

r

r

There are two cycles, the top and bottom cycles. Each of these cycles has r vertices, and
each edge in either cycle has weight r. We choose a bijection between the vertices of these two
cycles, and for each pair of corresponding vertices we have a two way path containing r vertices.
Each edge on these paths has weight 1. As there are r paths, every path has r vertices, and
each pair of paths is disjoint, the graph has r · r = r2 vertices.

Claim 2.1. The Held-Karp LP has optimum value at most 2r2 + r.

Proof. (Sketch) The fractional solution that puts weight 1/2 on every arc is feasible.

Claim 2.2. Every integral solution has value at least 3(r − 1)r.

Proof. By case analysis.
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