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ATSP problem. Outlining this algorithm will involve all of the disparate techniques and ideas
developed in the past several lectures. First, by considering the Held-Karp LP relaxation, we
will obtain a “fractional Hamiltonian cycle” x* of minimum weight. Next we let  be a “scaled
symmetrization” of z*, and show that z is an (undirected) “fractional spanning tree”, i.e., x
lies in the spanning tree polytope. Next, applying pipage rounding to x, we obtain an integral,
undirected spanning tree T. By orienting the edges of T, we obtain a digraph H to which we
apply the transshipment process in order to obtain an Eulerian digraph H’. Finally, by taking
shortcuts in H' (exploiting the triangle inequality), we obtain a Hamiltonian cycle with weight

within a factor of O (101;1%) gn> of the optimal value of the Held-Karp relaxtion.

The main goal for this lecture is to obtain an O ( ) approximation algorithm for the

1 AnO (li> Algorithm for ATSP

loglogn

In the ATSP problem we are given a directed, complete graph G = (V, A) with edge weights
w : A — R>(, where the weight function satisfies the triangle inequality.

1.1 Held-Karp Relaxation

In Lecture 8, we defined the following linear program, called the the Held-Karp relaxation:

LP = min{w’z : 2(6T(v)) = (6~ (v)) =1 Ve eV
z(0T(U)) > 1 YU CV,U # @
0<z, <1 Va € A}

Recall that despite the exponential number of constraints in this LP, we were able to obtain
an optimal solution in polynomial time in n. Let z* be an optimal solution to this LP. Now
x* represents a directed, fractional tree in G. We’d like to obtain an integral tree which ap-
proximates x*, but our tool for this process, pipage rounding, works with fractional trees in the
spanning tree polytope of undirected graphs. So we symmetrize x* by replacing it with z, where
Tlyp) = (”Tfl) (x}, +x5,). We now show z is in the spanning tree polytope P of G, where here
we consider G to be undirected by simply forgetting edge orientation and removing duplicate

edges. Recall

P={zeRf:2(E)=n—-1, z(EU))<|U -1 YUCV,U+# @},
where E[U]| = {{u,v} € E:u,v € U}



Claim 1.1. YU CV, z(5(U)) = 2=Ya*(s+(V))

n

Proof.

60N = Y e X () hr et
{u,w}ed(U) {u,w}ed(U)
= e o) = 2 et ),

where we used z*(61(U)) = 2*(§~(U)) in the last equality which was proved in Lecture 8, Claim
1.3. O

Claim 1.2. z € P

Proof. We simply verify that x satisfies the constraints defining P.
First, note that xy, ,) = (=1 (2, + ah,) > 0.

n

By claim 1, z(d(v)) = 2021wy eV,

s0 2(E) = 53,y #(6(v)) = $n20=l — 1,

Since z* satisfies the LP, we have z*(67(U)) >1 VYU C V,U # @.

Thus z(§(U)) = 25t (U)) > 2D v c VU # 2.

Also, 222U\ = T 2(0(w)) = 22(E[U]) + 2(5(U)) > 20(B[U)) + 2,
so 20(E[U]) < 2nl|py| — 2=l = 202D (7] — 1)

n

and thus z(E[U]) < |U| — 1. O

1.2 Eulerian Graph from a Fractional Tree

Our next step is to obtain an Eulerian graph.

In lecture 9, we used transshipments to get an Eulerian graph. Here is a generalized state-
ment:

Claim 1.3. Suppose H is an integral (multi-) digraph with:

(1) weight(H) < aw”z*

(2) |65(U)|+|65(U)| > 1 VU C V,U # @ (note this is equivalent to H being weakly connected)
(3) [64(U)| < ax*(6*(U)) YU CV

Then there is an integral, Eulerian, strongly-connected (multi-) digraph H’ with:

(4) weight(H') < O(a)wT z*

Proof. As in Lecture 9, we use transshipments to 'patch up’ H in order to obtain an Eulerian
graph. The arguments given there give us an integral, Eulerian, weakly-connected digraph, and
the desired bound on its weight. Note that a Eulerian graph H’ must be strongly connected:



given U C V,U # @, if [0,,(U)| > 1, walking along a Eulerian trail starting from a vertex in U
we must be able to traverse the edges in 05, (U), and thus we must be able to get to V\U, in
particular 67, (U) # @. If |85, (U)| > 1, we consider walking along a Eulerian trail starting from
a vertex in V\U, and apply the same argument. O

We obtain such an H to apply Claim 1.3 to by applying pipage rounding to x. This produces
an undirected tree T', and by the proof of Claim 1.11 of Lecture 12 with probability > 1 — %,
for any U C V we have

|07(U)] < az(§(U)), where a := 1§glcl’fgnn, and thus

20U o (5%(1)) < 2007 (5 (V)

o7 (U)] < az(6(V)) = a——

Next, let wy, 3 = min {wyp, Wy, }. We calculate the expectation of the weight of 7', in order
to use Markov’s inequality:

E[weight of T] = Z we Prle € T

e
:E Wele
e
n—1

= n Z w{u,v}(xuv + xvu)
{uv}eFE

n—1 Z N
S n wu’l}xuy
wv€EA

< wlz*,

so applying Markov’s inequality we get:

E|weight of T 1
Pr[weight of T > 2w’ z*] < Efweight of T < -
2wT 2

Collecting the above, we have that with probability > % (assume n > 5) that:

1. weight(7T) < 2wlaz*

2. |60 (U)| < 2ax*(67(U)) YU CV

To get H, add arc uwv to H if {u,v} € T and wy, < w,,, where we break ties arbitrarily. So:
1. weight(H) = weight(7T) < 2w’ z*

2. H is weakly connected, since 7" is a tree.

3. |55,(U)] < 167(U)] < 200" (5 (V)

So by Claim 1.3, we get an integral, Eulerian, strongly-connected multi-digraph H’ with
weight(H') = O(a)wTz*

Taking advantage of the triangle inequality and applying a shortcutting argument (see the
end of Lecture 6), we can obtain a Hamiltonian cycle from H’ with weight bounded above by
weight(H ).



2 Integrality Gaps

T T

Consider an integer program IP = {minw'xz : x € P,x € Z"} and suppose LP = {minw' x :
x € P'} and P’ D PNZ"™. This LP is called an LP-relaxation of the IP.

Remark: the optimum value of the LP is less than or equal to the optimum value of the IP.

We want an integer solution y € P such that

wly < a - (IP-optimum) *)
However, typically we cannot compute IP-optimum. Instead, we show that

wly < a - (LP-optimum) (**)

Note (**) implies (*). If we can prove (**) for all instances, we say that the LP-relaxation has
integrality gap < a.

We showed that the Held-Karp LP has integrality gap O (10235)2”), assuming the triangle

inequality. This result is due to [Asadpour, Goemans, Madry, Gharan, Saberi 2010].

2.1 Lower Bounds for Held-Karp Integrality Gap

In [Charikar, Goemans, Karloff 2006], the authors obtained a constant asymptotic lower bound
for the Held-Karp integrality gap. More precisely they showed that for all » > 3 and k > 2 there
exists an instance of ATSP on O(r*) vertices such that

IP-opt > r=1 2k—1

LP-opt = 7+1 =k
Since :% : %T_l — 2 as (r,k) — (00, 00), we obtain the asymptotic bound.

For simplicity, we’ll just briefly describe their construction for k = 2, r > 3, which gives a
3(r—1
gap 28:“; — 3/2.
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There are two cycles, the top and bottom cycles. Each of these cycles has r vertices, and
each edge in either cycle has weight r. We choose a bijection between the vertices of these two
cycles, and for each pair of corresponding vertices we have a two way path containing r vertices.
Each edge on these paths has weight 1. As there are r paths, every path has r vertices, and
each pair of paths is disjoint, the graph has r - r = r? vertices.

Claim 2.1. The Held-Karp LP has optimum value at most 2r? + r.

Proof. (Sketch) The fractional solution that puts weight 1/2 on every arc is feasible. O

Claim 2.2. Every integral solution has value at least 3(r — 1)r.

Proof. By case analysis. O



