
UBC CPSC 536N: Sparse Approximations Winter 2013

Lecture 12 — February 13, 2013

Prof. Nick Harvey Scribe: Noushin Saeedi

1 Approximating cuts via pipage rounding

Let G = (V,E) be a graph and n = |V |. Let P be a spanning tree polytope of G. Given any
fractional point x in P , we want to find an integral point tree such that for every cut, the tree
approximates x.

Conjecture 1.1 (Goddyn, late 1980s). For all x ∈ P , there exists a spanning tree T such that

χT (δ(U))︸ ︷︷ ︸
|T∩δ(U)|

≤ O(1) · x(δ(U)) for all U ⊆ V.

The conjecture, if true, would have many implications in graph theory and algorithms.In
particular, it would imply that ATSP can be approximated within a constant factor.

We will prove a weaker version of this conjecture (which is the best known result).

Theorem 1.2. For all x ∈ P , there exists a spanning tree T such that

χT (δ(U)) ≤ O(
log n

log logn
) · x(δ(U)) for all U ⊆ V.

In order to prove this theorem, we run pipage rounding algorithm on x. This gives a tree,
and we show that with good probability the inequality is satisfied. If we specify a partially
concave function f that somehow relates to the cuts, then we can use f to give us the desired
inequality. So we need to design f . Let x1 be the starting x in the algorithm.

Definition 1.3. For U ⊆ V , define PU : P → R by

PU (x) = e−λα ·
∏

e∈δ(U)

(1 + x(e) · eλ),

where α = 6 logn
log logn · x1(δ(U)) and λ = log(α

x1(δ(U))).

Claim 1.4. PU is partially concave.

Proof. Fix x ∈ P and coordinates i and j. The univariate function z 7→ PU (x + z(ei − ej)) is
continuous. So we just need to compute its second derivative and if that is non positive, then
the univariate function is concave.

Note that if i /∈ δ(U) or j /∈ δ(U), then the second derivative would be zero. So we assume

that i, j ∈ δ(U). Thus, d2

dz2
PU (x+ z(ei − ej)) is

e−λα · [
∏

e∈δ(U)
e/∈{i,j}

(1 + x(e) · eλ)] · d
2

dz2
[(1 + (x(i) + z)eλ)(1 + (x(j)− z)eλ)]︸ ︷︷ ︸

=−2e2λ

.

1

Therefore d2

dz2
PU (x+ z(ei − ej)) is non positive, which implies that PU is partially concave.

Observation 1.5. λ− 1 ≥ log logn
2 , assuming n > e. (The logarithms are to base e.)

Proof. Note that n > e is required in order to have λ well defined.

λ− 1 = log(
6 log n

log log n
)− 1

= log 6 + log log n− log log log n− 1

We know that ex ≥ x2 (and as a result x ≥ 2 log x) for all positive x. For n ≥ e, we have
log log n ≥ 0 and thus log log n ≥ 2 log log log n. Therefore, 2 log 6+log log n ≥ 2+2 log log log n,
which concludes the observation.

Claim 1.6. PU (x1) ≤ n−3x1(δ(U)).

Proof.

PU (x1) = e−λα ·
∏

e∈δ(U)

(1 + x1(e) · eλ)

≤ e−λα ·
∏

e∈δ(U)

ex1(e)·e
λ

[by convexity inequality 1 + x ≤ ex ∀x ∈ R]

= exp (−λα+ eλ ·
∑
e∈δ(U)

x1(e))

= exp (−λα+ α) = exp(−α(λ− 1)) [eλ =
α

x1(δ(U))
and

∑
e∈δ(U)

x1(e) = x1(δ(U))]

≤ exp(− 6 log n

log log n
· x1(δ(U)) · log logn

2
) [using Observation 1.5]

= exp(−3 log n · x1(δ(U)))

= n−3x1(δ(U)).

So we chose PU so that it is partially concave and proved an upper bound on its value
at x1. We know that pipage rounding gives us control over things by partially concave func-
tions. However, PU depends only on a single cut, but we need a function that controls all cuts
simultaneously. So we define function f as follows.

Definition 1.7. f(x) =
∑
∅6=U⊂V

PU (x)

Note that f has exponentially many terms. However, this does not matter since the algorithm
does not evaluate f .

Claim 1.8. f(x1) ≤ 3
n .

Proof. In Lectures 8 and 9, we proved that if G is any undirected graph with weights x on the

edges, and minimum cut at least one, then
∑
∅6=U⊂V

n−3x(δ(U)) ≤ 3

n
.

2

So we just need to show that having weights x1 on the edges, the minimum cut would be
at least one. Note that x1 is in the spanning tree polytope. We know that every tree in the
graph is connected and hence has minimum cut at least one. Since x1 is a convex combination of
trees, we know x1 =

∑
all spanning trees Ti

αTi · Ti, where
∑

all spanning trees Ti
αTi = 1. As a result

if inequality holds for trees, it also holds for x1. This is because for all U we have∑
e∈δ(U)

x1(e) =
∑
e∈δ(U)

∑
all spanning trees

Ti

αTi · Ti(e)

=
∑

all spanning trees
Ti

[αTi ·
∑
e∈δ(U)

Ti(e)]

≥
∑

all spanning trees
Ti

αTi

= 1.

Claim 1.9. f is partially concave.

Proof. Since PU and f are both continuous, we can look at the second derivatives, for fixed
x, i, and j.

d2

dz2
f(x+ z(ei − ej)) =

∑
∅6=U⊂V

d2

dz2
PU (x+ z(ei − ej)) ≤ 0.

We now run the pipage rounding algorithm with input x1 = x, and with this partially concave
function f . Pipage rounding gives an extreme point x? = χT with E[f(χT)] ≤ f(x1) ≤ 3

n .

Claim 1.10. Pr[f(χT) ≤ 1] ≥ 1− 3
n .

Proof. By Markov’s inequality, we get Pr[f(χT) ≥ 1] ≤ E[f(χT)]
1 ≤ 3

n .

We showed that, with good probability, f of final tree is small. Next, we use this to infer
that the inequality in Theorem 1.2 holds for all cuts.

Claim 1.11. With probability 1− 3
n , for all U ⊆ V we have χT (δ(U)) ≤ O(logn

log logn) · x(δ(U)) .

Proof. We know that with probability at least 1 − 3
n , f(χT) ≤ 1 (by Claim 1.10). Each PU is

non negative. Hence by definition of f , with probability at least 1− 3
n , we have

1 ≥ PU (χT) = e−λα ·
∏

e∈δ(U)

(1 + χT (e) · eλ) = e−λα ·
∏

e∈δ(U)∩T

(1 + eλ).

Thus,

eλα ≥
∏

e∈δ(U)∩T

eλ = exp(|δ(U) ∩ T | · λ),

3

which implies λα ≥ λ · |δ(U) ∩ T |. Therefore,

|δ(U) ∩ T | ≤ α =
6 log n

log logn
· x1(δ(U)).

This inequality holds for all U ⊆ V .

This concludes the proof of Theorem 1.2. The theorem implies a O(logn
log logn) approximation for

TSP problem, as we will discuss in Lecture 13.

2 Some remarks on pipage rounding algorithm

2.1 How do we get the maximal chain?

We can modify the algorithm to maintain the maximal chain during execution.

Initially the chain is the empty set and the entire set. We pick a direction and move in that
direction. What prevents from moving further than z+ or z− is a new constraint. So when we
move to x + Z(ea − eb), we hit a new tight set. By argument of Lemma 2.7 in Lecture 10, we
can add that new tight set to the chain and enlarge the chain.

2.2 How to compute z+ and z−?

We give two answers for this question.

Answer 1: Fix x ∈ RE . Assume x ≥ 0 and x(E) = n − 1. Define g(C) = r(C) − x(C). We
know that x ∈ P if and only if x(C) ≤ r(C) for all C ⊆ E. Thus,

x ∈ P ⇐⇒ g(C) ≥ 0 ∀C ⊆ E.

Remember that r is a submodular function, and x is a linear function. It is easy to show
that g is also submodular. In other words, we have

x ∈ P ⇐⇒ min{g(C) : C ⊆ E} ≥ 0,

and deciding whether x ∈ P is a submodular function minimization problem, which can
be done in polynomial time. Then we can compute z+ and z− by binary search.

Answer 2: As with the ATSP LP, we can use minimum s-t cuts to give a separation oracle for
P . Then again binary search gives us z+ and z−.

4

