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1 Pipage Rounding

Let P C R™ be an arbitrary polytope, and let x € P. Moreover, let f : R™ — R be a linear
function. In Lecture 3 we saw' that there is an algorithm that, given x € P, produces an
extreme point x* of P such that f(z*) < f(x).

We want a similar result for a more general class of functions f. To do so, we turn to a
similar problem but on the spanning tree polytope.

Definition 1.1. A function f : R™ — R is partially concave on a polytope P if, for all x € P
and all 7, j € [m], the univariate function z — f(z + z(e; — €;)) is concave.

It turns out that, if P is the spanning tree polytope and f is a partially concave function on
P, then there exists a randomized algorithm that, given = € P, produces a (random) extreme
point X* € P with E{f(X™)} < f(x).

This is our main result for the lecture, and comes in the form of a rounding procedure.
We describe the algorithm step-by-step, and provide claims needed to understand it. A lot of
notation and concepts are taken from our lecture on the spanning tree polytope.

We start from = € P. If it is already integral, we are done. So assume it is fractional, that
is it has a fractional coordinate x;.

Let ) = CycCi cCyC...C Cy_y CC, = F be a maximal chain in 7,. Let C, be
the smallest set in the chain containing i. We know that z(Cs \ Cs—1) = x(Cs) — z(Cs—1) =
r(Cs) — r(Cs—1), which is an integer since 7(Cs) and r(Cs_1) are both integral. Hence, there
exists some j # i such that j € s\ Cs—1 and z; is also fractional.

Let d = e; —e;. Consider moving z in the direction d, that is, along the line {z 4 z2d : z € R}.

Claim 1.2.
7?1: g 7;:—5—2(1-

In other words, any set tight at x is also tight at = + zd.

Proof. Since the C)’s form a chain, every Cj either contains both 7 and j or neither. Hence,
dTX(;l = 0 for all I € [k]. Moreover, every S € T, can be written as xg = Zle[k} a;xc, since
xs € span({xc, : l € [k]}) for all S € T, (see Lemma 2.7 in Lecture 10). Thus,

d"xs=d" > axe, = ad xe =0.
lelk] lelk]
Consider now the point x, = x + zd. Then for any S € T,

2,(S) =2l xs = (v + 2d) xs = 27 x5 + 2d" x5 = 27 x5 = 7(9),

! This is much simpler than solving a linear program from scratch. In particular, the ellipsoid method is not
required. The proof of Lemma 1.8 in Lecture 3 describes the algorithm.



so S is tight for x,. O

Let now 2t =max{z € R: x+ 2d € P} and 2~ = min{z € R: z + 2d € P}.

Claim 1.3. 2zt >0and z~ < 0.

Proof. TODO. O

z— z

Let now p* = %~ and p~ = % Let Z be a random variable where

7 2T with probability p*
| 2z~ with probability p~

2t
2zt —z—

Note that E{Z} = 2t 5=+ 2~ =0.
Let X; = x and Xy = 21 + Zd, and consider the univariate function z — f(z + zd). We
know this function is concave. Recall Jensen’s inequality,

Theorem 1.4 (Jensen’s Inequality). Given a random variable X € R™ and a concave function
g:R™ — R,
E{g(X)} < g(B{X}).

In our case, since X7 = z is not random, this means
E{f(X2)} = E{f(X1 + Zd)} < f(E{X1 + Zd}) = f(X1 + E{Z}d) = f ().

We then repeat this procedure as long as X; is fractional, getting a sequence of points {Xt}le
that stops when X}, is an integral extreme point. We naturally return z* = Xj.

See Algorithm 1.1 for the full pseudo-code of our proposed method. There are a few caveats
and observations we want to make.

First, does the algorithm even terminate? If so, how many times should we repeat the
procedure? We note that Tx, C Tx,,, — there is a tight set A in Tx, , that is not in Tk;.
This is clear, because otherwise we could have moved X; further beyond 2™ or z~. Thus, the
algorithm will terminate, as we will eventually have Tx, = @(FE). In particular, the number
of iterations is k < |p(E)| = 2™. In fact, the number of iterations is much less. Note that
xa € span({xs : S € Tx,}) but xa & span({xs : S € Tx,,,}) — that is, the dimension of
{xs : S € Tx,} increasing with i. Hence, the number of iterations is £k < m as the dimension
cannot exceed m.

Second, we saw that E{f(X2)} < f(X1) = f(z). Intuitively, an inductive argument should
show that E{f(Xy)} < f(z). However, formalizing this induction requires some care with
conditional expectations, together with Jensen’s inequality for conditional expectation [Grim-
mett & Stirzaker, Ex. 7.9.4vi] [Klenke, Theorem 8.19]. Alternatively, one can observe that
(X1, Xo, ..., X)) is a martingale, and so (f(X1), f(X2),..., f(Xk)) is a super-martingale by the
partially concave property of f and known facts about martingales [Grimmett & Stirzaker, Ex.
12.1.6] [Klenke, Theorem 9.35].

Our last two concerns are of computational nature. In the next lecture, we will address the
issues of finding an inclusion maximal chain in Ty,, and solving to find z* and 2.



Algorithm 1.1 The Pipage Rounding algorithm. It is important to note that the algorithm
does not need to know the function f!

Require: A graph G and a point « € P, where P is the spanning tree polyhedron of G.
Ensure: A (random) extreme point X*. If f is any partially concave function f : R"™ — R, we
have E{f(X™*)} < f(x).
1: 1+ 1
2: T4 T
3: while z; is not integral, is not an extreme point do
Let 0 =Cy C C; C --- C () = E be a maximal chain in 7,,.
Let a be any fractional coordinate of z.
Let Cs be the smallest set in the chain that contains a.
Let b be any other fractional coordinate in Cy \ Cs_1.
2t max{z € R:z; + z(eq — ) € P}
z7 < min{z € R:z; + z(e, — &) € P}
100 pt 4 FE=
s
zt—2z—

+ : ..
12: Let Z = { z with probability p

11:  p <

+

z~ with probability p~
13: Tit] < T + Z(ea — eb)

14: i+ 3+1

15: end while

16: return x;
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