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1 Pipage Rounding

Let P ⊆ Rm be an arbitrary polytope, and let x ∈ P . Moreover, let f : Rm → R be a linear
function. In Lecture 3 we saw1 that there is an algorithm that, given x ∈ P , produces an
extreme point x∗ of P such that f(x∗) ≤ f(x).

We want a similar result for a more general class of functions f . To do so, we turn to a
similar problem but on the spanning tree polytope.

Definition 1.1. A function f : Rm → R is partially concave on a polytope P if, for all x ∈ P
and all i, j ∈ [m], the univariate function z 7→ f(x+ z(ei − ej)) is concave.

It turns out that, if P is the spanning tree polytope and f is a partially concave function on
P , then there exists a randomized algorithm that, given x ∈ P , produces a (random) extreme
point X∗ ∈ P with E{f(X∗)} ≤ f(x).

This is our main result for the lecture, and comes in the form of a rounding procedure.
We describe the algorithm step-by-step, and provide claims needed to understand it. A lot of
notation and concepts are taken from our lecture on the spanning tree polytope.

We start from x ∈ P . If it is already integral, we are done. So assume it is fractional, that
is it has a fractional coordinate xi.

Let ∅ = C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Ck−1 ⊂ Ck = E be a maximal chain in Tx. Let Cs be
the smallest set in the chain containing i. We know that x(Cs \ Cs−1) = x(Cs) − x(Cs−1) =
r(Cs) − r(Cs−1), which is an integer since r(Cs) and r(Cs−1) are both integral. Hence, there
exists some j 6= i such that j ∈ Cs \ Cs−1 and xj is also fractional.

Let d = ei−ej . Consider moving x in the direction d, that is, along the line {x+zd : z ∈ R}.

Claim 1.2.
Tx ⊆ Tx+zd.

In other words, any set tight at x is also tight at x+ zd.

Proof. Since the Cl’s form a chain, every Cl either contains both i and j or neither. Hence,
dTχCl

= 0 for all l ∈ [k]. Moreover, every S ∈ Tx can be written as χS =
∑

l∈[k] αlχCl
since

χS ∈ span({χCl
: l ∈ [k]}) for all S ∈ Tx (see Lemma 2.7 in Lecture 10). Thus,

dTχS = dT
∑
l∈[k]

αlχCl
=
∑
l∈[k]

αld
TχCl

= 0.

Consider now the point xz = x+ zd. Then for any S ∈ Tx,

xz(S) = xTz χS = (x+ zd)TχS = xTχS + zdTχS = xTχS = r(S),

1 This is much simpler than solving a linear program from scratch. In particular, the ellipsoid method is not
required. The proof of Lemma 1.8 in Lecture 3 describes the algorithm.
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so S is tight for xz.

Let now z+ = max{z ∈ R : x+ zd ∈ P} and z− = min{z ∈ R : x+ zd ∈ P}.

Claim 1.3. z+ > 0 and z− < 0.

Proof. TODO.

Let now p+ = −z−
z+−z− and p− = z+

z+−z− . Let Z be a random variable where

Z =

{
z+ with probability p+

z− with probability p−
.

Note that E{Z} = z+ −z−
z+−z− + z− z+

z+−z− = 0.

Let X1 = x and X2 = x1 + Zd, and consider the univariate function z 7→ f(x + zd). We
know this function is concave. Recall Jensen’s inequality,

Theorem 1.4 (Jensen’s Inequality). Given a random variable X ∈ Rm and a concave function
g : Rm → R,

E{g(X)} ≤ g(E{X}).

In our case, since X1 = x is not random, this means

E{f(X2)} = E{f(X1 + Zd)} ≤ f(E{X1 + Zd}) = f(X1 + E{Z}d) = f(x).

We then repeat this procedure as long as Xt is fractional, getting a sequence of points {Xt}kt=1

that stops when Xk is an integral extreme point. We naturally return x∗ = Xk.

See Algorithm 1.1 for the full pseudo-code of our proposed method. There are a few caveats
and observations we want to make.

First, does the algorithm even terminate? If so, how many times should we repeat the
procedure? We note that TXi ( TXi+1 — there is a tight set A in TXi+1 that is not in TXi .
This is clear, because otherwise we could have moved Xi further beyond z+ or z−. Thus, the
algorithm will terminate, as we will eventually have TXk

= ℘(E). In particular, the number
of iterations is k ≤ |℘(E)| = 2m. In fact, the number of iterations is much less. Note that
χA 6∈ span({χS : S ∈ TXi}) but χA 6∈ span({χS : S ∈ TXi+1}) — that is, the dimension of
{χS : S ∈ TXi} increasing with i. Hence, the number of iterations is k ≤ m as the dimension
cannot exceed m.

Second, we saw that E{f(X2)} ≤ f(X1) = f(x). Intuitively, an inductive argument should
show that E{f(Xk)} ≤ f(x). However, formalizing this induction requires some care with
conditional expectations, together with Jensen’s inequality for conditional expectation [Grim-
mett & Stirzaker, Ex. 7.9.4vi] [Klenke, Theorem 8.19]. Alternatively, one can observe that
(X1, X2, . . . , Xk) is a martingale, and so (f(X1), f(X2), . . . , f(Xk)) is a super-martingale by the
partially concave property of f and known facts about martingales [Grimmett & Stirzaker, Ex.
12.1.6] [Klenke, Theorem 9.35].

Our last two concerns are of computational nature. In the next lecture, we will address the
issues of finding an inclusion maximal chain in TXi , and solving to find z+ and z−.

2



Algorithm 1.1 The Pipage Rounding algorithm. It is important to note that the algorithm
does not need to know the function f !

Require: A graph G and a point x ∈ P , where P is the spanning tree polyhedron of G.
Ensure: A (random) extreme point X∗. If f is any partially concave function f : Rm → R, we

have E{f(X∗)} ≤ f(x).
1: i← 1
2: xi ← x
3: while xi is not integral, is not an extreme point do
4: Let 0 = C0 ⊂ C1 ⊂ · · · ⊂ Ck = E be a maximal chain in Txi .
5: Let a be any fractional coordinate of x.
6: Let Cs be the smallest set in the chain that contains a.
7: Let b be any other fractional coordinate in Cs \ Cs−1.
8: z+ ← max{z ∈ R : xi + z(ea − eb) ∈ P}
9: z− ← min{z ∈ R : xi + z(ea − eb) ∈ P}

10: p+ ← −z−
z+−z−

11: p− ← z+

z+−z−

12: Let Z =

{
z+ with probability p+

z− with probability p−

13: xi+1 ← xi + Z(ea − eb)
14: i← i+ 1
15: end while
16: return xi
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