Mathematical Programs

Linear Program (LP)

$$\min \quad c^{\mathsf{T}} x
\text{s.t.} \quad a_i^{\mathsf{T}} x \leq b_i \qquad \forall i = 1, ..., m$$

Can be efficiently solved e.g., by Ellipsoid Method

Integer Program (IP)

min
$$c^{\mathsf{T}}x$$

s.t. $a_i^{\mathsf{T}}x \leq b_i \qquad \forall i = 1, ..., m$
 $x \in \mathbb{Z}^n$

Cannot be efficiently solved assuming $P \neq NP$

Combinatorial Optimization

- Study of optimization problems that have discrete solutions and some combinatorial flavor (e.g., involving graphs)
- Why are we interested in this?
 - Applications: OR (planning, scheduling, supply chain),
 Computer networks (shortest paths, low-cost trees),
 Compilers (coloring), Online advertising (matching)...
 - Rich theory of what can be solved efficiently and what cannot
 - Underlying math can be very interesting

Combinatorial IPs are often nice

- Max-Weight Perfect Matching
- Given bipartite graph G=(V, E). Every edge e has a weight w_e.
- Find a maximum-weight perfect matching
 - A set $M \subseteq E$ s.t. every vertex has **exactly** one incident edge in M

Combinatorial IPs are often nice

- Max-Weight Perfect Matching
- Given bipartite graph G=(V, E). Every edge e has a weight w_e.
- Find a maximum-weight perfect matching
 - A set $M \subseteq E$ s.t. every vertex has **exactly** one incident edge in M

The blue edges are a max-weight perfect matching M

Combinatorial IPs are often nice

- Max-Weight Perfect Matching
- Given bipartite graph G=(V, E). Every edge e has a weight w_e.
- Find a maximum-weight perfect matching
 - A set $M \subseteq E$ s.t. every vertex has **exactly** one incident edge in M
- The natural integer program

$$\max \sum_{e \in E} w_e \cdot x_e$$
s.t.
$$\sum_{e \text{ incident to } v} x_e = 1 \qquad \forall v \in V$$

$$x_e \in \{0, 1\} \qquad \forall e \in E$$

• This IP can be efficiently solved, in many different ways

How to solve combinatorial IPs?

- Two common approaches
 - 1. Design combinatorial algorithm that directly solves IP
 - Often such algorithms have a nice LP interpretation
 - 2. Relax IP to an LP; prove that they give same solution; solve LP by the ellipsoid method
 - Need to show special structure of the LP's extreme points
 - Sometimes we can analyze the extreme points combinatorially
 - Sometimes we can use algebraic structure of the constraints.
 For example, if constraint matrix is Totally Unimodular then IP and LP are equivalent
- We'll see examples of these approaches

Network Flow

- Let D=(N,A) be a directed graph.
- Every arc a has a "capacity" $c_a \ge 0$. (Think of it as an oil pipeline)
- Want to send oil from node s to node t through pipelines
- Oil must not leak at any node, except s and t: flow in = flow out.
- How much oil can we send?
- For simplicity, assume no arc enters s and no arc leaves t.

Max Flow & Min Cut

Harris and Ross [1955]

Schematic diagram of the railway network of the Western Soviet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as 'The bottleneck'. [Schrijver, 2005]

Max Flow & Min Cut

- Let D=(N,A) be a digraph, where arc a has capacity c_a .
- **Definition:** For any $U\subseteq N$, the **cut** $\delta^+(U)$ is:

$$\delta^+(U) = \{ uv : u \in U, v \notin U, uv \in A \}$$

The capacity of the cut is:

$$c(\delta^+(U)) = \sum_{a \in \delta^+(U)} c_a$$

Delbert Ray Fulkerson

- Theorem: [Ford & Fulkerson 1956]
 The maximum amount of flow from s to t equals the minimum capacity of a cut δ⁺(U), where s∈U and t∉U
- Furthermore, if c is integral then there is an integral flow that achieves the maximum flow.

LP Formulation of Max Flow

- Variables: x_a = amount of flow to send on arc a
- Constraints:

For every node except s & t, flow in = flow out. Flow through each arc can not exceed its capacity.

- Objective value: Total amount of flow sent by s.
- Notation: $\delta^+(v)$ = arcs with tail at v $\delta^-(v)$ = arcs with head at v
- The LP is:

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

Max Flow & Min Cut

- Let D=(N,A) be a digraph, where arc a has capacity c_a .
- **Definition:** For any $U\subseteq N$, the **cut** $\delta^+(U)$ is:

$$\delta^+(U) = \{ uv : u \in U, v \notin U, uv \in A \}$$

The **capacity** of the cut is:

$$c(\delta^+(U)) = \sum_{a \in \delta^+(U)} c_a$$

- "Weak Duality": For any flow and any U with $s \in U$, $t \notin U$, the amount of flow from s to t is at most $c(\delta^+(U))$.
- Proof: The net amount of flow crossing U is

$$\sum_{a \in \delta^+(U)} x_a - \sum_{a \in \delta^+(V \setminus U)} x_a \le \sum_{a \in \delta^+(U)} c_a$$

since 0 < x < c.

Incidence Matrix of a Directed Graph

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

- What is the matrix M defining the constraints of this LP?
 - Row for every node (except s or t)
 - Column for every arc

$$M_{v,a} = \begin{cases} +1 & \text{if node v is the head of arc a} \\ -1 & \text{if node v is the tail of arc a} \\ 0 & \text{otherwise} \end{cases}$$

Goal: Analyze extreme points of this LP.

Total Unimodularity

- Let M be a real mxn matrix
- **Definition:** Suppose that every square submatrix of M has determinant in {0, +1, -1}. Then M is **totally unimodular (TUM)**.
 - In particular, every entry of M must be in {0, +1, -1}
- Key point: Polytopes defined by TUM matrices have integral extreme points.

```
Lemma: Suppose M is TUM. Let b, c be integer vectors. Then every extreme point of P = \{x : Mx \le b\} is integral. And every extreme point of P = \{x : Mx = b, 0 \le x \le c\} is integral.
```

Total Unimodularity

- Let A be a real mxn matrix
- **Definition:** Suppose that every square submatrix of A has determinant in {0, +1, -1}. Then A is **totally unimodular (TUM)**.
 - In particular, every entry of A must be in {0, +1, -1}
- **Lemma:** Suppose A is TUM. Let b be any integer vector. Then every basic feasible solution of $P = \{x : Ax \le b \}$ is integral.
- **Proof:** Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A' be a submatrix of A and b' a subvector of b corresponding to n linearly independent constraints that are tight at x.

Then x is the unique solution to A' x = b', i.e., $x = (A')^{-1} b'$.

Cramer's Rule: If M is a square, non-singular matrix then $(M^{-1})_{i,j} = (-1)^{i+j} \det M_{del(j,i)} / \det M$.

Submatrix of M obtained by deleting row j and column i

Total Unimodularity

- Let A be a real mxn matrix
- **Definition:** Suppose that every square submatrix of A has determinant in {0, +1, -1}. Then A is **totally unimodular (TUM)**.
- **Lemma:** Suppose A is TUM. Let b be any integer vector. Then every basic feasible solution of $P = \{x : Ax \le b \}$ is integral.
- **Proof:** Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A' be the submatrix of A and b' the subvector of b containing n linearly independent constraints that are tight at x.

Then x is the unique solution to A' x = b', i.e., $x = (A')^{-1} b'$.

Cramer's Rule: If M is a square, non-singular matrix then $(M^{-1})_{i,j} = (-1)^{i+j} \det M_{del(j,i)} / \det M$.

Thus all entries of $(A')^{-1}$ are in $\{0, +1, -1\}$.

Since b' is integral, x is also integral.

Incidence Matrices are TUM

• Let D=(N, A) be a directed graph. Define M by:

$$M_{u,a} = \begin{cases} +1 & \text{if node u is the head of arc a} \\ -1 & \text{if node u is the tail of arc a} \\ 0 & \text{otherwise} \end{cases}$$

- **Lemma:** M is TUM.
- **Proof:** Let Q be a $k_x k$ submatrix of M. Argue by induction on k. If k=1 then Q is a single entry of M, so det(Q) is either 0 or ± 1 . So assume k>1.

- Lemma: M is TUM.
- **Proof:** Let Q be a kxk submatrix of M. Assume k>1.

Case 1:

If some column of Q has **no** non-zero entries, then det(Q)=0.

Case 2:

Suppose jth column of Q has **exactly one** non-zero entry, say $Q_{t,j} \neq 0$ Use "Column Expansion" of determinant:

$$\det Q \ = \ \sum (-1)^{i+j} Q_{i,j} \cdot \det Q_{\text{del}(i,j)} \ = \ (-1)^{t+j} Q_{t,j} \cdot \det Q_{\text{del}(t,j)} \,,$$

where t is the unique non-zero entry in column j.

By induction, det $Q_{del(t,i)}$ in $\{0,+1,-1\} \Rightarrow det Q$ in $\{0,+1,-1\}$.

Case 3:

Suppose every column of Q has exactly two non-zero entries.

- For each column, one non-zero is a +1 and the other is a -1.

So summing all rows in Q gives the vector [0,0,...,0].

Thus Q is singular, and det Q = 0.

The Max Flow LP

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

Observations:

- The LP is feasible (assume the capacities are all non-negative)
- The LP is bounded (because the feasible region is bounded)
- It has an optimal solution, i.e., a maximum flow. (by FTLP)
- The feasible region is $P = \{x : Mx=b, 0 \le x \le c\}$ where M is TUM.
- **Corollary:** If c is integral, then every extreme point is integral, and so there is a maximum flow that is integral.
- Q: Why does P have any extreme points? A: It contains no line.

Max Flow LP & Its Dual

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \quad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \quad \forall a \in A$$

Dual variables:

- A variable y_v for every $v \in N \setminus \{s,t\}^{-1}$
- A variable z_{uv} for every arc uv

The dual is

$$\min \sum_{a \in A} c_a z_a
s.t. \quad -y_u + y_v + z_{uv} \geq 0 \qquad \forall uv \in A, v, w \in N \setminus \{s, t\}
y_v + z_{sv} \geq 1 \qquad \forall sv \in A
-y_u + z_{ut} \geq 0 \qquad \forall ut \in A
z \geq 0$$

• Let's simplify: Set $y_s = 1$ and $y_t = 0$

The Dual

min
$$\sum_{a \in A} c_a z_a$$

s.t. $-y_u + y_v + z_{uv} \ge 0$ $\forall uv \in A$
 $z \ge 0$

where y_s and y_t are **not** variables: $y_s = 1$ and $y_t = 0$

• We will show: Given an optimal solution (y,z), we can construct a cut $\delta^+(U)$ such that

$$c(\delta^+(U)) = \sum_{a \in A} c_a z_a$$

- In other words, the capacity of the cut $\delta^+(U)$ equals the optimal value of the dual LP.
- By strong LP duality, this equals the optimal value of the primal LP, which is the maximum flow value.
- Weak duality: Every cut has capacity at least the max flow value, so this must be a minimum cut.

- Primal: $\max \{ d^Tx : Mx=0, 0 \le x \le c \}$ Dual: $= \min \{ c^Tz : (M^T I) (y \ge 0, z \ge 0, y_s=1, y_t=0 \}$ $= \min \sum_{a \in A} c_a z_a$ s.t. $-y_u + y_v + z_{uv} \ge 0 \quad \forall uv \in A$ $z > 0 \quad y_s=1, y_t=0$
- Claim: [M^T I] is also TUM
- ⇒ Any extreme point solution of Dual has y and z integral
 - Since we're minimizing, can assume $z_{uv} = max\{y_u y_v, 0\}$
 - Define U = { $v : y_v \ge 1$ }. Then $s \in U$, $t \notin U$.
 - Note $z_{uv} \ge 1$ for all $uv \in \delta^+(U)$.

 - $\delta^+(U)$ is a cut separating s&t with capacity = max flow

Summary

- We have proven:
- **Theorem:** [Ford & Fulkerson 1956] The maximum amount of flow from s to t equals the minimum capacity of a cut $\delta^+(U)$, where $s \in U$ and $t \notin U$ Furthermore, if c is integral then there is an integral flow that achieves the maximum flow.
- We also get an algorithm for finding max flow & min cut
 - Solve Max Flow LP by the ellipsoid method.
 - Get an extreme point solution. It is an integral max flow.
 - Solve Dual LP by the ellipsoid method.
 - Get an extreme point solution. U = $\{v : y_v \ge 1\}$ is a min cut.
- This algorithm runs in polynomial time