Mathematical Programs

e Linear Program (LP)
T Can be efficiently solved

min c x
st. alzx <b, Vi—=1 . .m e.g., by Ellipsoid Method

* Integer Program (IP)
min Cannot be efficiently solved

bi Vi=1,...m assuming P = NP
Zn

c'x
S.t. a,,L-T:z: <
X c



Combinatorial Optimization

e Study of optimization problems that have
discrete solutions and some combinatorial
flavor (e.g., involving graphs)

e Why are we interested in this?

— Applications: OR (planning, scheduling, supply chain),
Computer networks (shortest paths, low-cost trees),
Compilers (coloring), Online advertising (matching)...

— Rich theory of what can be solved efficiently
and what cannot

— Underlying math can be very interesting



Combinatorial IPs are often nice

e Max-Weight Perfect Matching
e Given bipartite graph G=(V, E). Every edge e has a weight w...
 Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M




Combinatorial IPs are often nice

e Max-Weight Perfect Matching
e Given bipartite graph G=(V, E). Every edge e has a weight w...
 Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M

4 The blue edges are
a max-weight
perfect matching M



Combinatorial IPs are often nice

Max-Weight Perfect Matching
Given bipartite graph G=(V, E). Every edge e has a weight w..
Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M

The natural integer program
max ) .c.p We - Te
St D incident to v Te = 1 VweV
T c {0,1} Ve e E

This IP can be efficiently solved, in many different ways



How to solve combinatorial IPs?

e Two common approaches

1. Design combinatorial algorithm that directly solves IP
e Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method
 Need to show special structure of the LP’s extreme points
e Sometimes we can analyze the extreme points combinatorially

e Sometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent

e We'll see examples of these approaches



Network Flow
e Let D=(N,A) be a directed graph.
* Every arc a has a “capacity” c,>0. (Think of it as an oil pipeline)
 Want to send oil from node s to node t through pipelines

e QOil must not leak at any node, except s and t:
flow in = flow out.

e How much oil can we send?
* For simplicity, assume no arc enters s and no arc leaves t.
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Max Flow & Min Cut

w*ﬂ 7 /gf.f

ORIGING

7w 5
Harris and Ross [1955]

Schematic diagram of the railway network of the Western Soviet Union and Eastern
European countries, with a maximum flow of value 163,000 tons from Russia to Eastern
Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’. [Schrijver, 2005]



Max Flow & Min Cut

Let D=(N,A) be a digraph, where arc a has capacity c..
Definition: For any UCN, the cut 0*(U) is:

STU)={w :uelUvgU,uvec A}
The capacity of the cut is:

(G0N = Y e

acdt(U)

Delbert Ray Fulkerson

Theorem: [Ford & Fulkerson 1956]
The maximum amount of flow from s to t equals
the minimum capacity of a cut 0*(U), where s€U and t¢U

Furthermore, if c is integral then there is an integral flow
that achieves the maximum flow.




LP Formulation of Max Flow

Variables: x, = amount of flow to send on arc a

Constraints:
For every node except s & t, flow in = flow out.
Flow through each arc can not exceed its capacity.

Objective value: Total amount of flow sent by s.

Notation: 0*(v) = arcs with tail at v
0°(v) = arcs with head at v

The LP is:

IMax za€5+(8)£€a

S.T. ZGE5_(U) La — Za€5+(fu) Lq — O \V/U c N\{S,t}
0<z, <c¢c, Va € A



Max Flow & Min Cut

Let D=(N,A) be a digraph, where arc a has capacity c..
Definition: For any UCN, the cut 0*(U) is:

STU)={w :uelUvgU,uvec A}
The capacity of the cut is:

(G0N = Y e

acdt(U)

“Weak Duality”: For any flow and any U with seU, teU,
the amount of flow from s to t is at most c(o*(U)).

Proof: The net amount of flow crossing U is
> Ta= ), TS ) c
acdt (U) acdt (V\U) acdt (U)
since 0 <x<c.




Incidence Matrix of a Directed Graph

max Za€5+(s)xa
S.t. Zaéé_(v) aﬁa — Z(J,E(S""(U) :Ua — O \V/’U E N \ {S, t}
0<z, <c¢c, Va € A

e What is the matrix M defining the constraints of this LP?
— Row for every node (except s or t)

— Column for every arc

+1 if nodevisthe head of arc a
-1 if node vis the tail of arc a

Mya = |
0O otherwise

)

 Goal: Analyze extreme points of this LP.



Total Unimodularity

Let M be a real mxn matrix

Definition: Suppose that every square submatrix of M has
determinant in {0, +1, -1}. Then M is totally unimodular (TUM).

— In particular, every entry of M must be in {0, +1, -1}

Key point: Polytopes defined by TUM matrices have integral
extreme points.

Lemma: Suppose M is TUM. Let b, c be integer vectors.
Then every extreme point of P = { x : Mx<b } is integral.
And every extreme point of P = { x: Mx=b, 0<x<c } is integral.




Total Unimodularity

Let A be a real mxn matrix

Definition: Suppose that every square submatrix of A has
determinant in {0, +1, -1}. Then A is totally unimodular (TUM).

— In particular, every entry of A must be in {0, +1, -1}
Lemma: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b } is integral.
Proof: Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A’ be a submatrix of A and b’ a subvector of b corresponding
to n linearly independent constraints that are tight at x.

Then x is the unique solutionto A’ x=b’, i.e., x = (A’)1 b’
Cramer’s Rule: If M is a square, non-singular matrix then
(M_l)i’j S (':I.)l-l-J det Mdel(j,i) / det M.

Submatrix of M obtained by deleting row j and column i



Total Unimodularity
Let A be a real mxn matrix
Definition: Suppose that every square submatrix of A has
determinant in {0, +1, -1}. Then A is totally unimodular (TUM).
Lemma: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b } is integral.
Proof: Let x be a basic feasible solution.
Then the constraints that are tight at x have rank n.

Let A’ be the submatrix of A and b’ the subvector of b
containing n linearly independent constraints that are tight at x.

Then x is the unique solutionto A’ x=b’, i.e., x = (A’)1 b’

Cramer’s Rule: If M is a square, non-singular matrix then
(M_l)i’j S ('1)i+j det Mdel(j,i) / det M.

Thus all entries of (A’)* are in {0, +1, -1}.
Since b’ is integral, x is also integral. H



Incidence Matrices are TUM
Let D=(N, A) be a directed graph. Define M by:

{ +1 if node uis the head of arc a

-1 if node uis the tail of arc a
0 otherwise

My,a =

’

Lemma: M is TUM.

Proof: Let Q be a kxk submatrix of M. Argue by induction on k.
If k=1 then Q is a single entry of M, so det(Q) is either 0 or £1.
So assume k>1.



Lemma: M is TUM.
Proof: Let Q be a kxk submatrix of M. Assume k>1.

Case 1:
If some column of Q has no non-zero entries, then det(Q)=0.

Case 2:
Suppose j" column of Q has exactly one non-zero entry, say Q;; 20

Use “Column Expansion” of determinant:
detQ = Z(_l)iHQi,j -det Queri) = (1) Q¢ - det Qqele ),

where t is the unigue non-zero entry in column j.

By induction, det Qqgtj in {0,+1,-1} = det Qin {0,+1,-1}.

Case 3:

Suppose every column of Q has exactly two non-zero entries.
— For each column, one non-zero is a +1 and the other is a -1.

So summing all rows in Q gives the vector [0,0,...,0].

Thus Q is singular, and det Q = 0. H



The Max Flow LP
max za€5+(8)xa

S0 D ues—(0) Ta — Doacst(v) Ta =0 Vv € N\ {s,t}
0<z, <c¢c, Va € A
Observations:

— The LP is feasible (assume the capacities are all non-negative)
— The LP is bounded (because the feasible region is bounded)
— It has an optimal solution, i.e., a maximum flow. (by FTLP)

The feasible regionis P ={x: Mx=b, 0<x<c}
where M is TUM.

Corollary: If cis integral, then every extreme point is integral,
and so there is a maximum flow that is integral.

Q: Why does P have any extreme points? A: It contains no line.




Max Flow LP & Its Dual
Max ) _,cs+(s)La

S.t. ZCLE(S_(’U) La — ZCLE(S“‘(’U) La — 0 \V/U - N \ {S, t}

O S La S Cq \V/CL -~ A
. \
e Dual variables:

— A variabley, foreveryv € N\ {s,t}
— A variable z , for every arc uv
* The dualis

min = ) .4 Ca Za
St. —Yu+ Y+ 2uw =0 Vuv € A,v,w € N \ {s,t}

yv‘|‘23v 21 \VIS/UEA
—Yu T Zut >0 Vut € A
z >0

e Let’s simplify: Sety.=1andy,=0



The Dual
min = ) . 4CaZa
S.t.  —Yu+Ys +2u0 =0 Yuv € A
z >0
where y, and y, are not variables:y. =1 andy,=0

We will show: Given an optimal solution (y,z),
we can construct a cut 0*(U) such that

c(6T(U)) = Z CaZa

a€A
In other words, the capacity of the cut 0*(U)

equals the optimal value of the dual LP.

By strong LP duality, this equals the optimal value
of the primal LP, which is the maximum flow value.

Weak duality: Every cut has capacity at least the
max flow value, so this must be a minimum cut.



Primal: max { d'x : Mx=0, 0<x<c }
Dual: =min { ¢'z: (m" 1) (%) >0,2>0,y.=1,y,=0}

=min ) -4Ca%a
St. Yy F Y+ 240 =0 Yuv € A
z >0 ¥:=1,y:=0
Claim:[MT|]is also TUM
Any extreme point solution of Dual has y and z integral
Since we’re minimizing, can assume z,, = max{y,y,, O}
DefineU={v:y,>1} ThenscU, tgU.
Note z,,>1 for all uv € §*(U).
Max Flow VaIueT= 3 z.c. > c(d*(U)) 7>r Max Flow Value

d da ada —

Strong Duality Weak Duality

0*(U) is a cut separating s&t with capacity = max flow



Summary

We have proven:

Theorem: [Ford & Fulkerson 1956]

The maximum amount of flow from s to t equals

the minimum capacity of a cut 9*(U), where s€U and tng
Furthermore, if c is integral then there is an integral flow
that achieves the maximum flow.

We also get an algorithm for finding max flow & min cut
— Solve Max Flow LP by the ellipsoid method.

— Get an extreme point solution. It is an integral max flow.

— Solve Dual LP by the ellipsoid method.

— Get an extreme point solution. U={v:y,>1}is a min cut.

This algorithm runs in polynomial time




