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In this lecture we discuss the topic of derandomization — converting a randomized algorithm into a
deterministic one.

1 Method of Conditional Expectations

One of the simplest methods for derandomizing an algorithm is the “method of conditional expecta-
tions”. In some contexts this is also called the “method of conditional probabilities”.

Let us start with a simple example. Let [k] denote {1, . . . , k}. Suppose X is an random variable
taking values in [k]. Let f : [k] → R be any function and suppose E[f(X)] ≤ µ. How can we find an
x ∈ {1, . . . , k} such that f(x) ≤ µ? Well, the assumption E[f(X)] ≤ µ guarantees that there exists
x ∈ {1, . . . , k} with f(x) ≤ µ. So we can simply use exhaustive search to try all possible values for x
in only O(k) time. The same idea can also be used to find an x with f(x) ≥ µ.

Now let’s make the example a bit more complicated. Suppose X1, . . . , Xn are independent random
variables taking values in [k]. Let f : [k]n → R be any function and suppose E[f(X1, . . . , Xn)] ≤ µ.
How can we find a vector (x1, . . . , xn) ∈ [k]n with f(x1, . . . , xn) ≤ µ? Exhaustive search is again an
option, but now it will take O(kn) time, which might be too much.

The method of conditional expectations gives a more efficient solution, under some additional assump-
tions. Suppose that for any numbers (x1, . . . , xi) we can efficiently evaluate

EXi+1,...,Xn [ f(x1, . . . , xi, Xi+1, . . . , Xn) ].

(If you prefer, you can think of this as E[ f(X1, . . . , Xn) | X1 = x1, . . . , Xi = xi ], which is a conditional
expectation of f . This is where the method gets its name.) Then the following algorithm will produce
a point x1, . . . , xn with f(x1, . . . , xn) ≤ µ.

• For i = 1, . . . , n

– Set xi = 0.

– Repeat

∗ Set xi = xi + 1.

– Until E[ f(x1, . . . , xi, Xi+1, . . . , Xn) ] ≤ E[ f(x1, . . . , xi−1, Xi, . . . , Xn) ]

• End

First we claim that the algorithm will terminate (i.e., the repeat loop will eventually succeed). To see
this, define

g(y) = EXi+1,...,Xn [ f(x1, . . . , xx−1, y,Xi+1, . . . , Xn) ].

Just like in our simple example above, there exists an xi with g(xi) ≤ EXi [g(Xi)], so we can find such
an xi by exhaustive search. That is exactly what the repeat loop is doing.
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1.1 Example: Max Cut

To illustrate this method, let us consider our algorithm for the Max Cut problem from Lecture 1. We
are given a graph G = (V,E). Recall that this algorithm generates a cut δ(U) simply by picking a set
U ⊆ V uniformly at random. Equivalently, for each vertex v ∈ V , the algorithm independently flips a
fair coin to decide whether to put v ∈ U . We argued that E[|δ(U)|] ≥ |E|/2.

We will use the method of conditional expectations to derandomize this algorithm. Let the vertex set
of the graph be V = {1, . . . , n}. Let

f(x1, . . . , xn) = |δ(U)| where U = { i : xi = 1}.

Let X1, . . . , Xn be independent random variables where each Xi is 0 or 1 with probability 1/2. We
identify the event “Xi = 1” with the event “vertex i ∈ U”. Then E[f(X1, . . . , Xn)] = E[|δ(U)|] = |E|/2.
We wish to deterministically find values x1, . . . , xn for which f(x1, . . . , xn) ≥ |E|/2.

To apply the method of conditional probabilities we must be able to efficiently compute

EXi+1,...,Xn [ f(x1, . . . , xi, Xi+1, . . . , Xn) ],

for any numbers (x1, . . . , xi). What is this quantity? It is the expected number of edges cut when
we have already decided which vertices amongst {1, . . . , i} belong to U , and the remaining vertices
{i+ 1, . . . , n} are placed in U randomly (independently, with probability 1/2). This expectation is easy
to compute! For any edge with both endpoints in {1, . . . , i} we already know whether it will be cut or
not. Every other edge has probability exactly 1/2 of being cut. So we can compute that expected value
in linear time.

In conclusion, the method of condition expectations gives us a deterministic, polynomial time algorithm
outputting a set U with |δ(U)| ≥ |E|/2.

2 Method of Pessimistic Estimators

So far we have derandomized our very simple Max Cut algorithm, which doesn’t use any sophisticated
probabilistic tools. Next we will see what happens when we try to apply these ideas to algorithms that
use the Chernoff bound.

Let X1, . . . , Xn be independent random variables in [0, 1]. Define the function f as follows:

f(x1, . . . , xn) =

{
1 if

∑
i xi ≥ α

0 if
∑

i xi > α
.

So
E[f(X1, . . . , Xn)] = Pr[

∑
iXi ≥ α],

which is the typical sort of quantity to which one would apply a Chernoff bound.

Can we apply the method of conditional expectations to this function f? For any numbers (x1, . . . , xi),
we need to efficiently evaluate

EXi+1,...,Xn [ f(x1, . . . , xi, Xi+1, . . . , Xn) ] = Pr[
∑

iXi ≥ α | X1 = x1, . . . , Xi = xi ].

Unfortunately, computing this is not so easy. If the Xi’s were i.i.d. Bernoullis then we could compute
that probability by expanding it in terms of binomial coefficients. But in the non-i.i.d. or non-Bernoulli
case, there does not seem to be an efficient way to compute this probability.
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Here is the main idea of “pessimistic estimators”: instead of defining f to be equal to that probability,
we will define f to be an easily-computable upper-bound on that probability. Because f is an
upper bound on the probability of the bad event “

∑
iXi ≥ α”, the function f is called a pessimistic

estimate of that probability. So what upper bound should we use? The Chernoff bound, of course!

For simplicity, suppose that X1, . . . , Xn are independent Bernoulli random variables. The first step of
the Chernoff bound (exponentiation and Markov’s inequality) shows that, for any parameter t > 0,

Pr[
∑

iXi ≥ α ] ≤ E
[
e−tα

∏n
j=1 e

tXj

]
. (1)

Important Remark: This step holds for any joint distribution on the Xi’s, including any non-
independent or conditional distribution. This is because we have only used exponentiation and Markov’s
inequality, which need no assumptions on the distribution.

We will use the upper bound in (1) to define our function f . Specifically, define

f(x1, . . . , xn) = e−tα ·
n∏
j=1

etxj . (2)

Let’s check that the conditional expectations are easy to compute with this new definition of f . Given
any numbers (x1, . . . , xi), we have

EXi+1,...,Xn [ f(x1, . . . , xi, Xi+1, . . . , Xn) ] = e−tα ·
i∏

j=1

etxj · EXi+1,...,Xn

[
n∏

j=i+1

etXj

]

= e−tα ·
i∏

j=1

etxj ·
n∏

j=i+1

EXj

[
etXj

]
.

This expectation is easy to compute in linear time, assuming we know the distribution of each Xj (i.e.,
we know that Pr[Xj = 1] = pj).

Applying the method of conditional expectations to the pessimistic estimator: Now we’ll
see how to use this function f to find (x1, . . . , xn) with

∑
i xi < α. Set µ =

∑
i E[Xi], α = (1 + δ)µ and

t = ln(1 + δ). We have

Pr[
∑

iXi > (1 + δ)µ] ≤ E[f(X1, . . . , Xn)] ≤ exp
(
− µ

(
(1 + δ) ln(1 + δ)− δ

))
,

where the first inequality is from (1) and the second inequality comes from the remainder of our Chernoff
bound proof. Suppose µ and δ are such that this last quantity is strictly less than 1. Then we know
that there exists a vector (x1, . . . , xn) with

∑
i xi < α.

We now explain how to efficiently and deterministically find such a vector. The method of conditional
expectation will give us a vector (x1, . . . , xn) for which f(x1, . . . , xn) < 1. We now apply the same
argument as in (1) to a conditional distribution:

Pr[
∑

iXi ≥ (1 + δ)µ | X1 = x1, . . . , Xn = xn ] ≤ E
[
f(X1, . . . , Xn) | X1 = x1, . . . , Xn = xn

]
= f(x1, . . . , xn) < 1.

But, under the conditional distribution “X1 = x1, . . . , Xn = xn”, there is no randomness remaining. The
sum

∑
iXi is not a random variable; it is simply the number

∑
i xi. Since the event “

∑
i xi ≥ (1 + δ)µ”

has probability less than 1, it must have probability 0. In other words, we must have
∑

i xi < (1 + δ)µ.

This example is actually quite silly. If we want to achieve
∑

i xi < α, the best thing to do is obviously
to set each xi = 0. But the method is useful because we can apply it in more complicated scenarios
that involve multiple Chernoff bounds.
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2.1 Congestion Minimization

In Lecture 3 we gave a randomized algorithm which gives a O(log n/ log log n) approximation to the
congestion minimization problem. We now get a deterministic algorithm by the method of pessimistic
estimators.

Recall that an instance of the problem consists of a directed graph G = (V,A) with n = |V | and a
sequence (s1, t1), . . . , (sk, tk) of pairs of vertices. We want to find si-ti paths such that each arc a is
contained in few paths. Let Pi be the set of all paths in G from si to ti. For every path P ∈ Pi, we
create a variable xiP .

We obtain a fractional solution to the problem by solving this LP.

min C

s.t.
∑
P∈Pi

xiP = 1 ∀i = 1, . . . , k∑
i

∑
P∈Pi with a∈P

xiP ≤ C ∀a ∈ A

xiP ≥ 0 ∀i = 1, . . . , k and P ∈ Pi

Let C∗ be the optimal value of the LP.

We showed how randomized rounding gives us an integer solution (i.e., an actual set of paths). The
algorithm chooses exactly one path Pi from Pi by setting Pi = P with probability xiP . For every arc
a let Y a

i be the indicator of the event “a ∈ Pi”. Then the congestion on arc a is Y a =
∑

i Y
a
i . We

showed that E[Y a] ≤ C∗. Let α = 6 log n/ log logn. We applied Chernoff bounds to every arc and a
union bound to show that

Pr[ any a has Y a > αC∗ ] ≤
∑
a∈A

Pr[ Y a > αC∗ ] ≤ 1/n.

We will derandomize that algorithm with the function

f(P1, . . . , Pk) =
∑
a∈A

e−tα ·
k∏
j=1

etY
a
j .

How did we obtain this function? For each arc a we applied a Chernoff bound, so each arc a has a
pessimistic estimator as in (2). We add all of those functions to give us this function f .

Note that

Pr[ any a has Y a > αC∗ ] ≤
∑

a∈A Pr[ Y a > αC∗ ] ≤ E[f(P1, . . . , Pk)] ≤ 1/n.

Applying the method of conditional expectations, we can find a vector of paths (p1, . . . , pk) for which
f(p1, . . . , pk) ≤ 1/n. Thus,

Pr[ any a has Y a > αC∗ | P1 = p1, . . . , Pk = pk ] ≤ E[ f(P1, . . . , Pk) | P1 = p1, . . . , Pk = pk ]

= f(p1, . . . , pk) ≤ 1/n.

Under that conditional distribution there is no randomness left, so the event “any a has Y a > αC∗”
must have probability 0. So, if we choose the paths p1, . . . , pk then every arc a has congestion at most
αC∗, as desired.

4


	Method of Conditional Expectations
	Example: Max Cut

	Method of Pessimistic Estimators
	Congestion Minimization


