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1 Low-rank approximation of matrices

Let A be an arbitrary n×m matrix. We assume n ≤ m. We consider the problem of approximating A
by a low-rank matrix. For example, we could seek to find a rank s matrix B minimizing ‖A−B‖.

It is known that a truncated singular value decomposition gives an optimal solution to this problem.
Formally, let A = UΣV T be the singular value decomposition of A. Let σ1(A) ≥ · · · ≥ σn(A) be the
singular values (i.e., diagonal entries of Σ.) Let u1, . . . , un be the left singular vectors (i.e., columns of
U). Let v1, . . . , vn be the right singular vectors (i.e., columns of V ).

Fact 1
∑s

i=1 σiuiv
T
i is a solution to minB : rank(B)≤s‖A−B‖, and the minimum value equals σs+1.

Another way of stating this same fact is as follows.

Fact 2 Let Vs = [v1, . . . , vs] be the n × s matrix consisting of the top s left singular vectors. Let
Ps = VsV

T
s be the orthogonal projection onto the span of {v1, . . . , vs}. Then B = APs is a solution to

minB : rank(B)≤s‖A−B‖. Furthermore, ‖A−APs‖ = σs+1.

The SVD can be computed in O(mn2) time. (Strictly speaking, this is not correct — the singular values
can be irrational, so realistically we can only compute an ε-approximate SVD.) With the recent trend
towards analyzing “big data”, a running time of O(mn2) might be too slow.

In the past 15 years there has been a lot of work on sophisticated algorithms to quickly compute low-
rank approximations. For example, one could measure the approximate error in different norms, sample
more or fewer vectors, improve the running time, reduce the number of passes over the data, improve
numerical stability, etc. Much more information can be found in the survey of Mahoney, the review
article of Halko-Martinsson-Tropp, the PhD thesis of Boutsidis, etc.

2 Rudelson & Vershynin’s Algorithm

Let A be an n×m matrix. The Frobenius norm ‖A‖F is defined by

‖A‖2F := tr(AAT) =
∑
i,j

A2
i,j =

∑
i

σ2i .

The stable rank (or numerical rank) of A is

‖A‖2F
‖A‖2

=

∑
i σ

2
i

maxi σ2i
.

Clearly the stable rank cannot exceed the usual rank, which is the number of strictly positive singular
values. The stable rank is a useful surrogate for the rank because it is largely unaffected by tiny singular
values.
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Let r denote the stable rank of A and let a1, . . . , an be the rows of A. We consider the following
algorithm for computing a low-rank approximation Ã to A.

• Initially Ã is the empty matrix.

• Fix any k ≥ 32r log(n)/ε4. (Here we are assuming that the algorithm knows r, or at least
reasonable bounds on r.)

• For i = 1, . . . , k

– Pick a row ai with probability proportional to ‖ai‖2/‖A‖2F .

– Add the row ‖A‖F√
k ‖ai‖

ai to Ã.

• Compute the SVD of Ã.

The runtime of this algorithm is dominated two main tasks. (1) The computation of the sampling
probabilities. This can be done in time linear in the number of non-zero entries of A. (2) Computing
the SVD of Ã. Since Ã has size k ×m, this takes O(mk2) = O(m · poly(r, log n, 1/ε)) time.

Theorem 3 Fix any s ∈ {1, . . . , n}. Let Ps be the orthogonal projection onto top s right singular
vectors of Ã. With probability at least 1− 2/n,

‖A−APs‖ ≤ σs+1(A) + ε‖A‖.

In other words, the best rank s projection obtained from Ã does nearly as well as the best rank s
projection obtained from A. (Compare against Fact 2.) Since our algorithm explicitly computes the
SVD of Ã, so it can easily compute the matrix Ps. We can then use Ps to efficiently compute an
approximate SVD of A as well; see the survey of Halko, Martinsson and Tropp.

Corollary 4 Set s = r/ε2. Let Ps be the orthogonal projection onto top s right singular vectors of Ã.
Then, with probability at least 1− 2/n,

‖A−APs‖ ≤ 2ε‖A‖. (1)

Let us contrast the error guarantee of (1) with the guarantee we achieved in the previous lecture. Last
time we sampled a matrix by sampled a matrix Lw and showed it approximates LG in the sense that∣∣ xTLGx− xTLwx

∣∣ ≤ εxTLGx ∀x ∈ Rn.

We say that our result from last time achieves “multiplicative error guarantee”. In contrast, Corollary
4 only guarantees that ∣∣ ‖Ax‖ − ‖APsx‖

∣∣ ≤ 2ε‖A‖ ∀x ∈ Rn with ‖x‖ = 1,

even though ‖Ax‖ may be significantly smaller than ε‖A‖. We say that today’s theorem only achieves
“additive error guarantee”.

To prove today’s theorem, we will use a version of the Ahlswede-Winter inequality that provides an
additive error guarantee.
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Theorem 5 Let Y be a random, symmetric, positive semi-definite n× n matrix such that ‖E[Y ]‖ ≤ 1.
Suppose ‖Y ‖ ≤ R for some fixed scalar R ≥ 1. Let Y1, . . . , Yk be independent copies of Y (i.e.,
independently sampled matrices with the same distribution as Y ). For any ε ∈ (0, 1), we have

Pr

[ ∥∥∥1

k

k∑
i=1

Yi − E[Yi]
∥∥∥ > ε

]
≤ 2n · exp(−kε2/4R).

The proof is almost identical to the proof of Theorem 1 in Lecture 13. The only difference is that the
final sentence of that proof should be deleted.

Our Theorem 3 is actually weaker than Rudelson & Vershynin’s result. They show that one can take
k to be roughly r log r/ε4, which is quite remarkable because it is “dimension free”: the number of
samples does not depend on the dimension n. Unfortunately our proof, which uses little more than the
Ahlswede-Winter inequality, does not give that stronger bound because the failure probability in the
Ahlswede-Winter inequality depends on the dimension. Rudelson & Vershynin prove an (additive error)
variant of Ahlswede-Winter which avoids avoids this dependence on the dimension. Oliveira 2010 and
Hsu-Kakade-Zhang 2011 give further progress in this direction.

2.1 Proofs

The proof of Theorem 3 follows quite straightforwardly from Theorem 5 and the following lemma, which
we prove later.

Lemma 6 Let B be an arbitrary n × m matrix. Let Ps be the orthogonal projection onto top s left
singular vectors of B. Then

‖A−APs‖2 ≤ σs+1(A)2 + 2‖ATA−BTB‖.

Proof:(of Theorem 3.) Note that everything is invariant under scaling A. So we can assume ‖A‖ = 1.
We defined a1, . . . , an to be the rows of A, but let us now transpose them to become column vectors, so

ATA =

n∑
i=1

aia
T
i .

Let Y1, . . . , Yk be independent, identically distributed random matrices with the following distribution:

Pr

[
Yj = ‖A‖2F ·

aia
T
i

aTi ai

]
=

aTi ai
‖A‖2F

.

This is indeed a probability distribution because

‖A‖2F = tr(ATA) = tr(
∑
i

aia
T
i ) =

∑
i

aTi ai.

Note that the change to ÃTÃ during the jth iteration of the algorithm is Yj/k.

We will apply Theorem 5 to Y1, . . . , Yk. We have

E[Yj ] =

n∑
i=1

aTi ai
‖A‖2F

·

(
‖A‖2F ·

aia
T
i

aTi ai

)
=

n∑
i=1

aia
T
i = ATA,
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so ‖E[Yj ]‖ ≤ 1. We may take R := ‖Yj‖ = ‖A‖2F = r, the stable rank of A (since we assume ‖A‖ = 1).

Since ÃTÃ =
∑k

j=1 Yj/k and E[Yj ] = ATA, we get

Pr

[ ∥∥∥ÃTÃ−ATA
∥∥∥ > ε2/2

]
= Pr

[ ∥∥∥1

k

k∑
j=1

Yj − E[Yj ]
∥∥∥ > ε2/2

]
≤ 2n · exp(−kε4/16r) = 2/n,

by Theorem 5.

Now we apply Lemma 6 to A and Ã. So, with probability at least 1− 2/n,

‖A−APs‖2 ≤ σs+1(A)2 + ε2 ≤ (σs+1(A) + ε)2.

Taking square roots completes the proof. 2

Proof:(of Corollary 4). By the ordering of the singular values,

sσs(A)2 ≤
s∑

i=1

σs(A)2 ≤ ‖A‖2F ,

implying σs(A)2 ≤ ‖A‖2F /s. In particular, if s = ‖A‖2F /ε2‖A‖2 = r/ε2 then σs(A) ≤ ε‖A‖. 2

Proof:(of Lemma 6). Let Qs be the orthogonal projection onto the kernel of Ps (i.e., the span of the
bottom n− s left singular vectors of B). Then

‖A−APs‖ = ‖A(I − Ps)‖ = ‖AQs‖ = sup
x : ‖x‖=1

‖AQsx‖ = sup
x∈span(Qs) : ‖x‖=1

‖Ax‖.

So,

‖A−APs‖2 = sup
x∈ker(Ps) : ‖x‖=1

‖Ax‖2

= sup
x∈ker(Ps) : ‖x‖=1

〈ATAx, x〉

≤ sup
x∈ker(Ps) : ‖x‖=1

〈(ATA−BTB)x, x〉 + sup
x∈ker(Ps) : ‖x‖=1

〈BTBx, x〉

≤ ‖ATA−BTB‖ + σs+1(B
TB)

≤ 2‖ATA−BTB‖ + σs+1(A
TA),

where the last step uses the following fact. 2

Fact 7 Let X and Y be symmetric matrices of the same size. Let λi(X) and λi(Y ) respectively denote
the ith largest eigenvalues of X and Y . Then

max
i
|λi(X)− λi(Y )| ≤ ‖X − Y ‖.

Proof: See Horn & Johnson, “Matrix Analysis”, page 370. 2
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