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1 Useful versions of the Ahlswede-Winter Inequality

Theorem 1 Let Y be a random, symmetric, positive semi-definite d × d matrix such that E[Y ] = I.
Suppose ‖Y ‖ ≤ R for some fixed scalar R ≥ 1. Let Y1, . . . , Yk be independent copies of Y (i.e.,
independently sampled matrices with the same distribution as Y ). For any ε ∈ (0, 1), we have

Pr

[
(1− ε)I � 1

k

k∑
i=1

Yi � (1 + ε)I

]
≥ 1− 2d · exp(−ε2k/4R).

This event is equivalent to the sample average 1
k

∑k
i=1 Yi having minimum eigenvalue at least 1− ε and

maximum eigenvalue at most 1 + ε.

Proof: We apply the Ahlswede-Winter inequality with Xi =
(
Yi − E[Yi]

)
/R. Note that E[Xi] = 0,

‖Xi‖ ≤ 1, and

E[X2
i ] =

1

R2
E
[(
Yi − E[Yi])

2
]

=
1

R2

(
E[Y 2

i ]− 2E[Yi]
2 + E[Yi]

2
)

� 1

R2
E[Y 2

i ] (since E[Yi]
2 � 0)

� 1

R2
E[‖Yi‖ · Yi]

� R

R2
E[Yi]

Finally, since 0 � E[Yi] � I, we get
λmax

(
E[X2

i ]
)
≤ 1/R. (1)

Now we use Claim 15 from the Notes on Symmetric Matrices, together with the inequalities

1 + x ≤ ex ∀x ∈ R
ex ≤ 1 + x+ x2 ∀x ∈ [−1, 1].

Since ‖Xi‖ ≤ 1, for any λ ∈ [0, 1], we have eλXi � I + λXi + λ2X2
i , and so

E[eλXi ] � E[I + λXi + λ2X2
i ] � I + λ2E[X2

i ] � eλ
2E[X2

i ].

Thus by (1) we have

‖E[eλXi ]‖ ≤ ‖eλ2E[X2
i ]‖ ≤ eλ

2/R.

The same analysis also shows that ‖E[e−λXi ]‖ ≤ eλ
2/R. Substituting these two bounds into the basic

Ahlswede-Winter inequality from the previous lecture, we obtain

Pr

[ ∥∥∥ k∑
i=1

1

R

(
Yi − E[Yi]

)∥∥∥ > t

]
≤ 2d · e−λt

k∏
i=1

eλ
2/R = 2d · exp(−λt+ kλ2/R).

1
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Substituting t = kε/R and λ = ε/2 we get

Pr

[ ∥∥∥ 1

R

k∑
i=1

Yi −
k

R
E[Yi]

∥∥∥ > kε

R

]
≤ 2d · exp(−kε2/4R).

Multiplying by R/k and using the fact that E[Yi] = I, we have bounded the probability that any
eigenvalue of the sample average matrix

∑k
i=1 Yi/k is less than 1− ε or greater than 1 + ε. 2

Corollary 2 Let Z be a random, symmetric, positive semi-definite d×d matrix. Define U := E[Z] and
suppose Z � R ·U for some scalar R ≥ 1. Let Z1, . . . , Zk be independent copies of Z. For any ε ∈ (0, 1),
we have

Pr

[
(1− ε)U � 1

k

k∑
i=1

Zi � (1 + ε)U

]
≥ 1− 2d · exp(−ε2k/4R).

Proof: Let U+/2 := (U+)1/2 denote the square root of the pseudoinverse of U . Let Iim U denote the
orthogonal projection on the image of U . Define the random, positive semi-definite matrices

Y := U+/2 · Z · U+/2 and Yi := U+/2 · Zi · U+/2.

Because Zi � 0 and U = E[
∑

i Zi], we have im(Zi) ⊆ im(U). So Claim 16 in Notes on Symmetric
Matrices implies

(1− ε)U � 1

k

k∑
i=1

Zi � (1 + ε)U ⇐⇒ (1− ε)Iim U �
1

k

k∑
i=1

Yi � (1 + ε)Iim U .

We would like to use Theorem 1 to obtain our desired bound. We just need to check that the hypotheses
of the theorem are satisfied. By Fact 6 from the Notes on Symmetric Matrices, we have

Y = U+/2 · Z · U+/2 � U+/2 · (R · U) · U+/2 = R · Iim U ,

showing that ‖Y ‖ ≤ R. Next,

E[Y ] = U+/2 · E[Z] · U+/2 = U+/2 · U · U+/2 = Iim U .

So the hypotheses of Theorem 1 are almost satisfied, with the small issue that E[Y ] is not actually the
identity, but merely the identity on the image of U . But, one may check that the proof of Theorem
1 still goes through as long as every eigenvalue of E[Y ] is either 0 or 1, i.e., E[Y ] is an orthogonal
projection matrix. The details are left as an exercise. 2
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