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1 Concentration for sums of random matrices

Let X be a random real matrix of size d× d. In other words, we have some probability distribution on
the space of all d× d matrices, and we let X be a matrix obtained by sampling from that distribution.
Alternatively, we can think of X as a matrix whose entries are real-valued random variables (that are
not necessarily independent).

As usual, the expectation of X is simply the weighted average of the possible matrices that X could
be, i.e., E[X] =

∑
A Pr[X = A] ·A. Alternatively, we can think of E[X] as matrix whose entries are the

expectations of the entries of X.

Many concentration results are known for matrices whose entries are independent random variables from
certain real-valued distributions (e.g., Gaussian, subgaussian, etc.) In fact, in Lecture 8 on Compressed
Sensing, we proved concentration of the singular values of a matrix whose entries are independent
Gaussians. In this lecture, we will look at random matrices whose entries are not independent, and we
will obtain concentration results by summing multiple independent copies of those matrices.

1.1 The Ahlswede-Winter Inequality

The Chernoff bound is a very powerful tool for proving concentration for sums of independent, real-
valued random variables. Today we will prove the Ahlswede-Winter inequality, which is a generalization
of the Chernoff bound for proving concentration for sums of independent, matrix -valued random vari-
ables.

Let X1, . . . , Xk be random, independent, symmetric matrices of size d × d. Define the partial sums
Sj =

∑j
i=1Xi. We would like to analyze the probability that all eigenvalues of Sk are at most t (i.e.,

Sk � tI). For any λ > 0, this is equivalent to all eigenvalues of eλSk being at most eλt (i.e., eλSk � eλtI).
If this event fails to hold then then certainly tr eλSk > eλt, since all eigenvalues of eλSk are non-negative.
Thus we have bounded the probability that some eigenvalue of Sk is greater than t as follows:

Pr[Sk 6� tI] ≤ Pr[tr eλSk > eλt] ≤ E[tr eλSk ]/eλt, (1)

by Markov’s inequality.

Now let us observe a useful property of the trace. Since it is linear, it commutes with expectation:

E[trX] =
∑
A

Pr[X = A] ·
∑
i

Ai,i =
∑
i

∑
A

Pr[X = A] ·Ai,i

=
∑
i

∑
a

Pr[Xi,i = a] · a =
∑
i

E[Xi,i] = tr
(
E[X]

)
.

The proof of the Ahlswede-Winter inequality is very similar to the proof of the Chernoff bound; one
just has to be a bit careful to do the matrix algebra properly. As in the proof of the Chernoff bound,
the main technical step is to bound the expectation in (1) by a product of expectations that each

1



involve a single Xi, because those individual expectations are much easier to analyze. This is where the
Golden-Thompson inequality (Theorem 17 in the Notes on Symmetric Matrices) is needed.

E[tr eλSk ] = E[tr eλXk+λSk−1 ] (since Sk = Xk + Sk−1)

≤ E[tr(eλXk · eλSk−1)] (by Golden− Thompson)

= EX1,...,Xk−1

[
EXk

[tr(eλXk · eλSk−1)]
]

(by independence)

= EX1,...,Xk−1

[
tr
(
EXk

[eλXk · eλSk−1 ]
)]

(trace and expectation commute)

= EX1,...,Xk−1

[
tr
(
EXk

[eλXk ] · eλSk−1
)]

(Xk and Sk−1 are independent)

≤ EX1,...,Xk−1

[
‖EXk

[eλXk ]‖ · tr eλSk−1
]

= ‖EXk
[eλXk ]‖ · EX1,...,Xk−1

[tr eλSk−1 ],

where the last inequality follows from Corollary 14 in the Notes on Symmetric Matrices. Applying this
inequality inductively, we get

E[tr eλSk ] ≤
k∏
i=1

‖E[eλXi ]‖ · tr eλ0 = d ·
k∏
i=1

‖E[eλXi ]‖,

since eλ0 = I and tr I = d. Combining this with (1), we obtain

Pr[Sk 6� tI] ≤ de−λt
k∏
i=1

‖E[eλXi ]‖.

We can also bound the probability that any eigenvalue of Sk is less than −t by applying the same
argument to −Sk. This shows that the probability that any eigenvalue of Sk lies outside [−t, t] is

Pr[‖Sk‖ > t] ≤ de−λt

(
k∏
i=1

‖E[eλXi ]‖+

k∏
i=1

‖E[e−λXi ]‖

)
. (2)

This is the basic inequality. Much like the Chernoff bound, there are many variations. We will see some
next time.

2

http://en.wikipedia.org/wiki/Golden-Thompson_inequality
http://nickhar.wordpress.com/2012/02/13/notes-on-symmetric-matrices/
http://nickhar.wordpress.com/2012/02/13/notes-on-symmetric-matrices/
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