
CPSC 320: Intermediate Algorithm Design 2016 Summer Term 1

Tutorial 8

Prof. Nick Harvey University of British Columbia

Recurrences describing the value of optimal solutions to subproblems — Dynamic Programming

1. Let A be an array of n distinct integers. In this problem, we are interested in finding the longest
increasing subsequence of A. That is, we want to find elements A[i1], A[i2], ..., A[it] such that

i1 < i2 < ... < it

A[i1] < A[i2] < ... < A[it]

and t is as big as possible.

For instance, consider the array

A = (1, 9, 17, 5, 8, 6, 4, 7, 12, 3).

In this example, (1, 9, 17) and (1, 5, 6, 7, 12) are two increasing subsequences. Note that the sub-
sequence given by the greedy algorithm is (1, 9, 17), which is not the longest one.

In order to find the longest increasing subsequence in the array, you can compute for each position
i the length L[i] of the longest subsequence that ends with element A[i].

(a) Give a recurrence relation that expresses L[i] as a function of L[j] for values of j that are
smaller than i. Hint: you need to consider the position of the previous element of the longest
increasing subsequence.

(b) Write pseudo-code for an algorithm that finds the longest increasing subsequence of an array
with n elements.

2. You are managing a consulting team of computer experts, and each week you have to choose a job
for them to undertake. Now, as you can well imagine, the set of possible jobs is divided into those
that are low-stress (e.g., setting up a Web site for a class at the local elementary school) and those
that are high-stress (e.g., protecting the nation’s most valuable secrets). The basic question, each
week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a revenue of Li > 0 dollars;
if you select a high-stress job, you get a revenue of Hi > 0 dollars. The catch, however, is that
in order for the team to take on a high-stress job in week i, it is required that they do no job (of
either type) in week i−1; they need a full week of preparation to get ready for the crushing stress
level. On the other hand, it is okay for them to take a low-stress job in week i even if they have
done a job (of either type) in week i− 1.

So, given a sequence of n weeks, a plan is specified by a choice of “low-stress”, “high-stress”, or
“none” for each of the n weeks, with the property if that “high-stress” is chosen for week i > 1
then “none” has to be chosen for week i− 1 (choosing a high-stress job in week 1 is acceptable).
The value of the plan is determined in the natural way: for each i, you add Li to the value if you
choose “low-stress” in week i, you add Hi to the value if you choose “high-stress” in week i, and
you add 0 if you choose “none” in week i.

The problem: Given sets of values L1, L2, . . . , Ln and H1, H2, . . . ,Hn, find a plan of maximum
value (such a plan will be called optimal).

Example: Suppose n = 4 and the values of Li and Hi are given by the table:

1



Week 1 Week 2 Week 3 Week 4
Li 10 1 10 10
Hi 20 50 20 15

Then the plan of maximum value would be to choose “none” in week 1, a “high-stress” job in week
2, and “low-stress” jobs in weeks 3 and 4. The value of this plan would be 0 + 50 + 10 + 10 = 70.

(a) Show that the following greedy algorithm does not correctly solve this problem, by giving an
instance on which it does not return the correct answer:

i← 1
while i ≤ n do

if i < n and Hi+1 > Li + Li+1 then
output “choose no job in week i”
output “choose a high-stress job in week i+1”
i← i + 2

else
output “choose a low-stress job in week i”
i← i + 1

end if
end while

Write down both the correct answer for your instance, and the answer incorrectly returned
by the algorithm.

(b) Solve this problem using DP approach.

(c) What is the running time of your algorithm?

(d) (Optional) Rewrite your DP algorithm so that it uses a memoization technique.

2


