
CPSC 320: Intermediate Algorithm Design 2016 Summer Term 1

Tutorial 3

Prof. Nick Harvey University of British Columbia

1. (Snakes and Ladders) This is a classic board game, originating in India no later than the 16th
century. The board consists of an g × g grid of squares, numbered consecutively from 1 to g2,
starting in the bottom left corner and proceeding row by row from bottom to top, with rows
alternating to the left and right. Certain pairs of squares in this grid, always in different rows,
are connected by either “snakes” (leading down) or “ladders” (leading up). Each square can be
an endpoint of at most one snake or ladder.

You start with a token in cell 1, in the bottom left corner. In each move, you advance your token
up to k positions, for some fixed constant k. If the token ends the move at the top end of a snake,
it slides down to the bottom of that snake. Similarly, if the token ends the move at the bottom
end of a ladder, it climbs up to the top of that ladder. Describe and analyze an algorithm to
compute the smallest number of moves required for the token to reach the last square of the grid.

1



2. (Testing Bipartiteness) In lecture we talked about bipartite graphs, which are useful for mod-
eling situations like stable matching, matching clients to servers, etc. Recall that a bipartite graph
is one whose vertices can be colored red and blue, such that there are no blue-blue edges and no
red-red edges.

We observed that an odd cycle (a cycle with an odd number of vertices) cannot possible be
bipartite. This is because its colors must alternate red-blue-red-blue-... until at the end we have
two consecutive vertices of the same color. For the same reason, any graph containing an odd cycle
cannot be bipartite. And, surprisingly, that is the only possible reason for being not bipartite.

Claim 0.1. A graph is bipartite if and only if it has no odd cycle.

We claim that the following algorithm proves this claim.

Run BFS starting from any vertex.
Let dist[v] denote the distance to vertex v computed by BFS.
Let B = { v : dist[v] is even }.
Let R = { v : dist[v] is odd }.
If there is an edge between two vertices in B, or two vertices in R return ‘‘non−bipartite’’.
Otherwise, let all vertices in B be blue, let all vertices in R be red, and return ‘‘bipartite’’.

(a): As an example, run that algorithm on the following graph, where the BFS starts from
the labeled “root” (vertex d).

Let us now discuss correctness of the algorithm.

Case 1: If the algorithm returns “bipartite” then that is obviously correct because the algorithm
checked that there are no blue-blue or red-red edges.

Case 2: If the algorithm returns “non-bipartite” then we will find an odd cycle using the BFS
tree. Suppose the algorithm finds an edge u-v with both u, v ∈ R. Let w be the least-common
ancestor in the BFS tree of u and v. (Meaning that, if you follow the path of parent pointers from
u to s and follow the path from v to s, then w is the first vertex where these paths meet.)

Then
(dist[u]− dist[w]) + (dist[v]− dist[w])

2



is always even because it equals

(dist[u] + dist[v])︸ ︷︷ ︸
always even

− 2 · dist[w]︸ ︷︷ ︸
always even

which is even, because dist[u] and dist[v] are either both even or both odd.

So we obtain an odd cycle by combining the path from u to w, the path from v to w, and the
edge u-v.

(b): Let us continue the same example from before:

Look at the edge you found for which both endpoints have the same color. Find the
least-common ancestor of its endpoints, and the corresponding odd cycle. How long
is your odd cycle?

3


