Tutorial 2

Prof. Nick Harvey

University of British Columbia

- 1. (Algebraic properties of Big-O)
 - (Pointwise Maximum) Let $h = \max\{f, g\}$, i.e., $h(x) = \max f(x), g(x)$ for all x. Prove that $h = \Theta(f + g)$.
 - (Transitivity) Prove that: if h = O(g) and g = O(f), then h = O(f). (Same for Ω and Θ .)
 - (Sums) Let k be a fixed constant. Let $f_1, ..., f_k$ and h be functions such that $f_i = O(h)$ for all i. Prove that $f_1 + \cdots + f_k = O(h)$. (Same for Ω and Θ .)
- 2. (Familiar friends)
 - (Polynomials) Let $T(n) = a_0 + a_1 n + \dots + a_d n^d$, with $a_d > 0$. Then $T(n) = \Theta(n^d)$.
 - (Base of log is irrelevant) Prove that $\log_a n = \Omega(\log_b n)$ for all constants a, b > 1.
- 3. Rank the following functions by order of growth. That is, order them so that

$$f_1 \in O(f_2), \quad f_2 \in O(f_3), \quad \text{etc.}$$

Make sure to indicate whether or not $f_i \in \Theta(f_{i+1})$. For instance you could use the notation

$$n < n^2 = 2n^2 < n^4 \dots$$

Here are the functions to be ordered:

$n^3 - n$	n!	$\log(\log n)$	1.01^{n}
$\sqrt{n\log n}$	17	$4913n^{289}$	3^{2n-17}
$1.01^{1.01^n}$	\sqrt{n}	3^n	n^n
$n^{18/17}$	$n \log^{17} n$	3^{2n}	$n^3 + \log n$

4. (This example uses an **important trick!**) Prove that the runtime of the following algorithm is $\Theta(n \log n)$.

for i = 1, ..., nfor $j = 1, ..., \lceil \log i \rceil$ Print "Hi";

5. Let k be a fixed constant (independent of n). Prove that

 $1^{k} + 2^{k} + \dots + (n-1)^{k} + n^{k} \in \Theta(n^{k+1})$

Hint: do not use induction. Instead, do O and Ω separately.

Hint: To handle Ω , you will need to use the same trick as the previous question.