
CPSC 320: Intermediate Algorithm Design 2016 Summer Term 1

Tutorial 2

Prof. Nick Harvey University of British Columbia

1. (Algebraic properties of Big-O)

• (Pointwise Maximum) Let h = max {f, g}, i.e., h(x) = max f(x), g(x) for all x. Prove
that h = Θ(f + g).

• (Transitivity) Prove that: if h = O(g) and g = O(f), then h = O(f). (Same for Ω and
Θ.)

• (Sums) Let k be a fixed constant. Let f1, ..., fk and h be functions such that fi = O(h)
for all i. Prove that f1 + · · ·+ fk = O(h). (Same for Ω and Θ.)

2. (Familiar friends)

• (Polynomials) Let T (n) = a0 + a1n + · · ·+ adn
d, with ad > 0. Then T (n) = Θ(nd).

• (Base of log is irrelevant) Prove that loga n = Ω(logb n) for all constants a, b > 1.

3. Rank the following functions by order of growth. That is, order them so that

f1 ∈ O(f2), f2 ∈ O(f3), etc.

Make sure to indicate whether or not fi ∈ Θ(fi+1). For instance you could use the notation

n < n2 = 2n2 < n4...

Here are the functions to be ordered:

n3 − n n! log(log n) 1.01n

√
n log n 17 4913n289 32n−17

1.011.01
n √

n 3n nn

n18/17 n log17 n 32n n3 + log n

4. (This example uses an important trick!) Prove that the runtime of the following algorithm is
Θ(n log n).

for i = 1, ..., n
for j = 1, ..., dlog ie

Print ”Hi”;

5. Let k be a fixed constant (independent of n). Prove that

1k + 2k + · · ·+ (n− 1)k + nk ∈ Θ(nk+1)

Hint: do not use induction. Instead, do O and Ω separately.

Hint: To handle Ω, you will need to use the same trick as the previous question.

1


