
CPSC 320: Intermediate Algorithm Design and Analysis
Assignment #1, due Wednesday May 20th, 2015 at 2:15pm in Room x235, Box 42

One mark will be deducted if your solution uses multiple sheets of paper that are not stapled.

[6] 1. The Stable Matching problem, as discussed in class, assumes that every woman and every
man has a fully ordered list of preference. In this and the next problem, we consider the
situation where we have n women and n men (as before), but where a woman or man may
have ties in her/his ranking. For instance, woman w1 might like man m3 best, followed by
m1 and m4 in no particular order (that is, she does not prefer m1 to m4, or m4 to m1),
followed by m2. In this case, we will say that w1 is indifferent between m1 and m4. It is of
course possible for a woman or a man to be indifferent between more than two people.

A strong instability in a perfect matching consists of a woman w and a man m such that
w and m both prefer each other to their current partner. Prove that there always exists
a perfect matching with no strong instability by giving an algorithm that finds such a
matching. Prove the correctness of your algorithm in a couple of sentences.

[6] 2. Continuing with the same setup as in the previous question, let us define a weak instability
as a woman w with partner m and a man m′ with a partner w′, where either

• m prefers w′ to w and w′ either prefers m to m′ or is indifferent between these two
choices, or

• w′ prefers m to m′ and m either prefers w′ to w or is indifferent between these two
choices.

Prove that there does not necessarily exist a perfect matching without weak instabilities.
Give a (small) example where every perfect matching has a weak instability.

[12] 3. You are doing stress-testing on various models of glass jars to determine the height from
which they can be dropped and still not break. The setup for this experiment, on a particular
type of jar, is as follows. You have a ladder with n rungs, and you want to find the highest
rung from which you can drop a copy of the jar and not have it break. We call this the
highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks,
and then recursively try from rung n/4 or 3n/4 depending on the outcome. While this
algorithm will require the fewest tests, it may also result in many broken jars.

(a) How many jars might you end up breaking, in the worst case?

If your primary goal were to conserve jars, on the other hand, you could try a different
strategy. Start by dropping a jar from the first rung, then the second rung, etc. In this way,
you break at most one jar. Unfortunately, you may also need n attempts.

So there seems to be a trade-off: the more jars you are willing to break, the fewer tries you
will need.

(b) Your boss is really cheap, but he is also too impatient to let you make n attempts. So
he gives you 2 jars. Describe a strategy for finding the highest safe rung that requires
you to drop a jar at most f(n) times, where f(n) is a function that is o(n). (So, for
example, f(n) = n/2 is not acceptable.)
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(c) Analyze the worst-case number of attempts of your algorithm from part (b).

[12] 4. Consider the following basic problem: you are given an array A of size n, and you want to
generate a two-dimensional n× n array B such that

B[i, j] =

{∑j
k=iA[k] when i ≤ j

0 otherwise
.

That is, B[i, j] contains the sum of the elements from A[i] to A[j] (unless j < i). Here is a
simple algorithm that achieves this:

Algorithm ComputeMatrix

for i ← 1 to n do

for j ← 1 to n do

if i ≤ j then

B[i,j] ← the sum of the elements A[i], A[i+1], ..., A[j]

else

B[i,j] ← 0

[2] (a) Using O notation, give as close an upper bound as you can for the running time of
algorithm ComputeMatrix, as a function of n.

[8] (b) Although algorithm ComputeMatrix is the most natural one to solve the problem,
it is not the most efficient. Give a different algorithm to solve this problem whose
running time is a factor of n faster than that of algorithm ComputeMatrix.

[3] (c) Using Θ notation, write down the running time of your algorithm from part (b). You
must justify your answer.

[1] 5. (Bonus) How long did it take you to complete this assignment (not including any time you
spent revising your notes before starting)?
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