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Submodular Functions

» Studied for decades in combinatorial optimization and
economics

> Used in approximation algorithms, algorithmic game theory,
machine learning, etc.

> Discrete analogue of convex functions
[Lovész '83], [Murota '03]
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Valuation Functions

> A first step in economic modeling: individuals have valuation
functions giving utility for different outcomes or events
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Valuation Functions

> A first step in economic modeling: individuals have valuation
functions giving utility for different outcomes or events

» Focus on combinatorial settings:
» nitems, {1,2,...,n} = [n]
» fo 2l 5 R
» Submodularity is often a natural assumption
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Topic of Lectures

Approximating submodular functions
based on few values

Motivating Example
» Microsoft Office consists of a set A of products.
e.g., A= {Word, Excel, Outlook, PowerPoint, ...}.
» Consumer has a valuation function f : 24 — R

» Want to learn f without asking consumer too many questions
(Perhaps useful in pricing different bundles of Office?)
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Topic of Lectures

Approximating submodular functions
based on few values

Motivating Example

» Microsoft Office consists of a set A of products.
e.g., A= {Word, Excel, Outlook, PowerPoint, ...}.
» Consumer has a valuation function f : 24 — R

» Want to learn f without asking consumer too many questions
(Perhaps useful in pricing different bundles of Office?)

Outline
» Today: Actively querying the function

» Tomorrow: Observing samples from a distribution
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Submodular Functions

Definition
f 22l — R is submodular if, for all A, B C [n]:
F(A) + f(B) > f(AU B) + f(AN B)
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Submodular Functions

Definition
f 22l — R is submodular if, for all A, B C [n]:
F(A) + f(B) > f(AU B) + f(AN B)

Equivalent Definition
f is submodular if, for all AC B and i ¢ B:

f(AU{i}) —f(A) > f(BU{i}) — f(B)

Diminishing returns: the more you have, the less you want
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» f is submodular if, for all AC B and i ¢ B:

F(AU{i}) - f(A) = f(BU{i}) - f(B)

Diminishing returns: the more you have, the less you want
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Combinatorial Examples

» Linear algebra: Let vq,...,v, € RY. For S C [n], let

f(S)=dimspan{v; : ieS}.
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Combinatorial Examples

» Linear algebra: Let vi,...,v, € RY. For S C [n], let
f(S) =dimspan{v; : i€S}.

» Matroids: Let M = (E,Z) be a matroid. For S C E, the rank
function is

f(S)y=max{|l|: 1CS, 1€Z}.
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Combinatorial Examples

» Linear algebra: Let vi,...,v, € RY. For S C [n], let
f(S) =dimspan{v; : i€S}.

» Matroids: Let M = (E,Z) be a matroid. For S C E, the rank
function is

f(S)y=max{|l|: 1CS, 1€Z}.

» Coverage: Let Ay,..., A, C U. For S C [n], define

U

ieS

f(5) = max
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Minimizing Submodular Functions

(Given Oracle Access)

» Can solve ming f(S) in polynomial time (and oracle calls).
First shown using the ellipsoid method.
[Grotschel, Lovasz, Schrijver '81]

» Combinatorial, strongly-polynomial time algorithms known.
[Schrijver '01], [Iwata, Fleischer, Fujishige '01], ...
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Minimizing Submodular Functions

(Given Oracle Access)

» Can solve ming f(S) in polynomial time (and oracle calls).
First shown using the ellipsoid method.
[Grotschel, Lovasz, Schrijver '81]

» Combinatorial, strongly-polynomial time algorithms known.
[Schrijver '01], [Iwata, Fleischer, Fujishige '01], ...

» One of the most powerful algorithms in combinatorial
optimization. Generalizes bipartite matching, matroid
intersection, polymatroid intersection, submodular flow, ...

» Example: Matroid Intersection [Edmonds '70]
Given matroids My = (E,Z;) and M, = (E, 1)

max{|l|: l € i NI} = min{n(S)+ rn(E\S):SCE}
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Maximizing Submodular Functions

(Given Oracle Access)

Maximization

» Can approximate maxgs f(S) to within 1/4, assuming f > 0:
Just pick S uniformly at random!
[Feige, Mirrokni, Vondrak '07]
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Maximizing Submodular Functions

(Given Oracle Access)

Maximization

» Can approximate maxgs f(S) to within 1/4, assuming f > 0:
Just pick S uniformly at random!
[Feige, Mirrokni, Vondrak '07]

» Can approximate maxs f(S) to within 1/2, assuming f > 0.
[Buchbinder, Feldman, Naor, Schwartz '12]
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Monotone Functions

Definition
f .2l s R is monotone if, for all AC B C [n]:

F(A) < f(B)

Constrained Maximization

» Let M = (E,Z) be a matroid.
Assume f : 2 — R is monotone and submodular.
Can approximate maxsez f(S) to within 1 — 1/e.
[Calinescu, Chekuri, Pal, Vondrdk '09], [Filmus, Ward '12]
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Monotone Functions

Definition
f .2l s R is monotone if, for all AC B C [n]:

f(A) < f(B)

Problem
Given a monotone, submodular f, construct using poly(n) oracle
queries a function f such that:

f(S) < f(S)<an)-f(S) V¥YSCIn

Approximation Quality

» How small can we make a(n)?
» a(n) = nis trivial
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Approximating Submodular Functions Everywhere

Positive Result

Problem
Given a monotone, submodular f, construct using poly(n) oracle
queries a function f such that:

f(S) < f(S) < afn)-f(S) VSCIn]

Our Positive Result
A deterministic algorithm that constructs f(S) with

» a(n) = +/n+ 1 for matroid rank functions f, or
» a(n) = O(y/nlog n) for general monotone submodular f

Also,  is submodular: f(S) = /Z ¢; for some scalars ¢;.
ieS
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Approximating Submodular Functions Everywhere

Almost Tight

Our Positive Result

A deterministic algorithm that constructs #(S) = /Z ¢i with
ieS

» a(n) = +/n+ 1 for matroid rank functions f, or

» a(n) = O(y/nlog n) for general monotone submodular f
Our Negative Result

With polynomially many oracle calls, «(n) = Q(y/n/ log n)
(even for randomized algs)
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Polymatroid

Definition
Given submodular f, polymatroid

Pr = {XE]RL’r ; Zx,- < f(S) forall S C [n]}

ieS

A few properties [Edmonds '70]:
» Can optimize over Pr with greedy algorithm
» Separation problem for Pr is submodular fctn minimization
» For monotone f, can reconstruct f:

f(S) = max (1s,x)

x€ Ps
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Our Approach: Geometric Relaxation

We know:
f(S) = 1
(5) gggy s X)
Suppose that:
QC PrCAQ
Then:
f(S) < f(S) < A (S)
where
f(S) = max(ls, x)
x€EQ
AQ
R
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John's Theorem [1948]

Maximum Volume Ellipsoids

Definition
A convex body K is centrally symmetric if
xe K < —xecK.
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John's Theorem [1948]

Maximum Volume Ellipsoids

Definition
A convex body K is centrally symmetric if
xe K < —xecK.

Definition
An ellipsoid E is an a-ellipsoidal approximation of K if
ECKCa-E.
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John's Theorem [1948]

Maximum Volume Ellipsoids

Definition
A convex body K is centrally symmetric if
xe K < —xecK.

Definition
An ellipsoid E is an a-ellipsoidal approximation of K if
ECKCa-E.

Theorem
Let K be a centrally symmetric convex body in R". \[F'E"‘“’(
Let Epax (or John ellipsoid) be maximum volume

ellipsoid contained in K. Then K C \/n - Epax.
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John's Theorem [1948]

Maximum Volume Ellipsoids

Definition
A convex body K is centrally symmetric if
xe K < —xecK.

Definition
An ellipsoid E is an a-ellipsoidal approximation of K if
ECKCa-E.

Theorem
Let K be a centrally symmetric convex body in R". \[F'E"‘“’(

Let Epax (or John ellipsoid) be maximum volume
ellipsoid contained in K. Then K C \/n - Epax.

Algorithmically?
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Ellipsoids Basics

Definition

> An ellipsoid is
E(A)={xeR": x"Ax < 1}
where A > 0 is positive definite matrix.

Handy notation

» Write ||x||a = VxT Ax. Then

E(A) = {xeR": [Ix]la <1}

Optimizing over ellipsoids
> max,cp(a)(C; x) = [[c[la
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Algorithms for Ellipsoidal Approximations

Explicitly Given Polytopes

» Can find Epax in P-time (up to €) if explicitly given as
K ={x:Ax < b}
[Grotschel, Lovasz and Schrijver '88], [Nesterov, Nemirovski
"89], [Khachiyan, Todd '93], ...

Polytopes given by Separation Oracle

» only n+ l-ellipsoidal approximation for convex bodies given by
weak separation oracle [Grotschel, Lovdsz and Schrijver '88]

» No (randomized) n'~“-ellipsoidal approximation [J. Soto '08]
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Finding Larger and Larger Inscribed Ellipsoids

Informal Statement

» We have A > 0 such that E(A) C K.

» Suppose we find z € K but z far outside of E(A).
» Then should be able to find A’ > 0 such that

> E(A) C K

» vol E(A") > vol E(A)

K

N
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Finding Larger and Larger Inscribed Ellipsoids

Informal Statement

» We have A > 0 such that E(A) C K.

» Suppose we find z € K but z far outside of E(A).
» Then should be able to find A’ > 0 such that

> E(A) C K

» vol E(A") > vol E(A)

K
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Finding Larger and Larger Inscribed Ellipsoids

Formal Statement

Theorem
If A= 0 and z € R" with d = ||z||5 > n then E(A") is max volume
ellipsoid inscribed in conv{E(A), z, —z} where

, nd—1 n d—1 T

Moreover, vol E(A") = kn(d) - vol E(A) where

() (1)
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Finding Larger and Larger Inscribed Ellipsoids

Formal Statement

Theorem
If A= 0 andz e R" withd = ||z||3 > n then E(A") is max volume
ellipsoid inscribed in conv{E(A), z, —z} where

, nd—1 n d—1 T

Moreover, vol E(A") = kn(d) - vol E(A) where

() (1)
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Finding Larger and Larger Inscribed Ellipsoids

Remarks

vol E(A") = kn(d) - vol E(A) where
o= () (322)

» kn(d) > 1 for d > n proves John's theorem

Remarks

» Significant volume increase for d > n+ 1:
kn(n+1) =1+ 0(1/n?)
» Polar statement previously known [Todd '82]
A’ gives formula for minimum volume ellipsoid containing

E(A)Nn{x: —=b<{(c,x)<b}
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct f s.t.

f(S) < f(S) < O(Vn)-f(S) vScV.
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct fst
F(S) < f(S)< O(vn)-F(S) VSCV.
» Can reconstruct f from the polymatroid
Pr = {X S Rg_ : Ziesxi < f(S) VS C [n]}
by (S) = maxxep, (1s, ).
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct f s.t.

F(S) < f(S)< O(vn)-F(S) VSCV.
» Can reconstruct f from the polymatroid
Pr={x€R]: Y csx < f(S) VSC[n]}
by (S) = maxxep, (1s, ).
> Make Pr centrally symmetric by reflections:

S(Pr) ={x = (bal bl [xal) € Pr }
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct fst
F(S) < f(S)< O(vn)-F(S) VSCV.
» Can reconstruct f from the polymatroid
Pr = {X S Rg_ : Ziesxi < f(S) VS C [n]}
by £(S) = maxcep,(1s, x).
> Make Pr centrally symmetric by reflections:
S(Pe) ={x: (bal x|, -, [xl) € Pr }

» Max volume ellipsoid E,,.x has

Emax g S(Pf) g \/E Emax~
Take £(S) = maxyek,,, (15, x).

max
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct fst
f(S) < f(S)<O(vn)-f(S) VSCV.
» Can reconstruct f from the polymatroid
Pr = {X S Rg_ : Ziesxi < f(S) VS C [n]}
by £(S) = maxcep,(1s, x).
> Make Pr centrally symmetric by reflections:
S(Pe) ={x: (bal x|, -, [xl) € Pr }

» Max volume ellipsoid E,,.x has

Emax g S(Pf) g \/E Emax~
Take £(S) = maxyek,,, (15, x).

max

» Compute ellipsoids Ej, Ej, ... in S(Pf) that converge to E,ax.
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Review of Plan

» Given monotone, submodular f, make n°®) queries, construct fst
f(S) < f(S)<O(vn)-f(S) VSCV.
» Can reconstruct f from the polymatroid
Pr = {X S Rg_ : Ziesxi < f(S) VS C [n]}
by £(S) = maxcep,(1s, x).
> Make Pr centrally symmetric by reflections:
S(Pe) ={x: (bal x|, -, [xl) € Pr }

» Max volume ellipsoid E,,.x has

Emax g S(Pf) g \/E Emax~
Take £(S) = maxyek,,, (15, x).

max

» Compute ellipsoids Ej, Ej, ... in S(Pf) that converge to E,ax.
Given E; = E(A;), need z € S(Pr) with ||z][4, > vn+ 1.

» If 3z, can compute E;;; of larger volume.
» If Bz, then E; = Epax.
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Remaining Task

Ellipsoidal Norm Maximization

» Ellipsoidal Norm Maximization

Given A > 0 and well-bounded convex body K by separation oracle.
(So B(r) € K C B(R) where B(d) is ball of radius d.)
Solve

max |||
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Remaining Task

Ellipsoidal Norm Maximization

» Ellipsoidal Norm Maximization
Given A > 0 and well-bounded convex body K by separation oracle.
(So B(r) € K C B(R) where B(d) is ball of radius d.)
Solve
max |||

» Bad News
Ellipsoidal Norm Maximization NP-complete for S(Pr) and Pr.
(Even if f is a graphic matroid rank function.)
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Remaining Task

Ellipsoidal Norm Maximization

» Ellipsoidal Norm Maximization
Given A > 0 and well-bounded convex body K by separation oracle.
(So B(r) € K C B(R) where B(d) is ball of radius d.)
Solve
max |||

» Bad News
Ellipsoidal Norm Maximization NP-complete for S(Pr) and Pr.
(Even if f is a graphic matroid rank function.)

» Approximations are good enough
P-time a-approx. algorithm for Ellipsoidal Norm Maximization
=—> P-time a+/n + l-ellipsoidal approximation for K
(in O(n®log(R/r)) iterations)
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Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task
Given A - 0, and f find max,cs(p;) I|X[ a-
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Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task
Given A - 0, and f find max,cs(p;) I|X[ a-

Observation: Symmetry Helps

S(P¢) invariant under axis-aligned reflections.
(Diagonal {£1} matrices.)

— same is true for Enax

= Epmax = E(D) where D is diagonal.
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Remaining Task

Ellipsoidal Norm Maximization

Our Task
Given diagonal D > 0, and f find
max ||x||p
XES(P{)
Equivalently,
max Y. dix?
st. xé€ Py

» Maximizing convex function over convex set
= max attained at vertex.
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Remaining Task

Ellipsoidal Norm Maximization

Our Task

Given diagonal D > 0, and f find
max y ; d,-xl-2
st. xé€ Py

» Maximizing convex function over convex set
=- max attained at vertex.

Matroid Case
If f is matroid rank function
= vertices in {0,1}" = x? = x;.
Our task is
max . dix
st. xe€ Py

This is the max weight base problem, solvable by greedy algorithm.
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Remaining Task

Ellipsoidal Norm Maximization

Our Task

Given diagonal D > 0, and f find
max y ; d,-xl-2
st. xé€ Py

» Maximizing convex function over convex set
=> max attained at vertex.

General Monotone Submodular Case

More complicated: uses approximate maximization of submodular
function [Nemhauser, Wolsey, Fischer '78], etc.

Can find O(log n)-approximate maximum.
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Summary of Algorithm

Theorem

In P-time, construct a (submodular) function f(S) = /Z ¢ with
i€S

» a(n) = v/n+ 1 for matroid rank functions f, or
» «a(n) = O(y/nlog n) for general monotone submodular f.

The algorithm is deterministic.
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Q(+y/n/ log n) Lower Bound

Theorem

Vn
ogn’
Even for randomized algs, and even if f is matroid rank function.

With poly(n) queries, cannot approximate f better than i
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Q(+y/n/ log n) Lower Bound

Informal Idea

Theorem

Vvn
ogn
Even for randomized algs, and even if f is matroid rank function.

With poly(n) queries, cannot approximate f better than

Boo(ea/\ Laﬁ'w—
Set o

size4n’

f)- rm‘ng IS, g
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Q(+y/n/ log n) Lower Bound

Informal Idea

Theorem

Vvn
ogn
Even for randomized algs, and even if f is matroid rank function.

With poly(n) queries, cannot approximate f better than

/Mj La‘H’iy&
o T L]
SC‘PS oj(

Sizen

£'(5)= mafis), a, B+ISnRI3
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Lower Bound Proof

/ Boolean  Laflice >
F(S): m-‘nglsl,"ﬁ;g F/(S): MMEBLRﬁ*’SnR,}

Algorithm performs queries Sy, ..., Sk. It distinguishes f from f’
iff for some 1/, B
B+ |S;iN R| < min{|Si|, v/n}. (1)
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Lower Bound Proof

/ Beolewn  Lafhco >
@7\5 Py

el
et

f)- m.',.g|5|n{;;g F’(S)’ "“"ElSL\Rﬁ*’SnRB

Algorithm performs queries Sy, ..., Sk. It distinguishes f from f’
iff for some 1/, B
B+ |S;iN R| < min{|Si|, v/n}. (1)

Suppose S; < y/n. Then (1) holds iff |5, 11 R| > /.
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Lower Bound Proof

. .
Boolean  Laflice
& T D]
Sebd
e

f)- m.'ng|5|n{;;g F’(S)’ "“"ElSLRﬁ*’SnRB

Algorithm performs queries Sy, ..., Sk. It distinguishes f from f’
iff for some i,

B+ |S: N R| < min{|S;|,/n}. (1)
Suppose S; < y/n. Then (1) holds iff |5, 11 R| > /.
Pick R at random, each element w.p. 1/y/n.
E(SINR = ISI/vVA < 1
Chernoff bound = Pr[|5, 1R > 7] <eB2=p"01)

Union bound implies that no query distinguishes f from f'.
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Problem
Given a monotone, submodular f, construct using poly(n) oracle
queries a function f such that:

f(S) < f(S)<an)-f(S) V¥SCIn

Our Positive Result
A deterministic algorithm that constructs £(S) = /> ;s ¢i with

» a(n) = +/n+ 1 for matroid rank functions f, or
» «(n) = O(y/nlog n) for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, a(n) = Q(y/n/ log n)
(even for randomized algs)
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Extensions

Existential Approximations

Consider the statement: for a non-negative function f : 2l — R
with £(0) = 0, there exists a “simple” function f with

f(S) < £(S) < V- F(S).

» True for any monotone, submodular function. [This talk]
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Extensions

Existential Approximations
Consider the statement: for a non-negative function f : 2l — R
with f(()) = 0, there exists a "simple” function f with
F(S) < £(S) < V/n-£(S).
» True for any monotone, submodular function. [This talk]

» True for any fractionally subadditive (XOS) function.
[Balcan et al. 2012], [Badanidiyuru et al. 2012]
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Extensions

Existential Approximations
Consider the statement: for a non-negative function f : 2l — R
with f(()) = 0, there exists a "simple” function f with
f(S) < f(S) <+/n-f(S).
» True for any monotone, submodular function. [This talk]

» True for any fractionally subadditive (XOS) function.
[Balcan et al. 2012], [Badanidiyuru et al. 2012]

» True for any (non-monotone) symmetric, submodular function.
[Balcan, Harvey, lwata 2012]
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Extensions

Existential Approximations
Consider the statement: for a non-negative function f : 2l — R
with f(()) = 0, there exists a “"simple” function f with

F(S) < £(S) < V/n-£(S).
» True for any monotone, submodular function. [This talk]

» True for any fractionally subadditive (XOS) function.
[Balcan et al. 2012], [Badanidiyuru et al. 2012]

» True for any (non-monotone) symmetric, submodular function.
[Balcan, Harvey, lwata 2012]

» True for any subadditive function, with approximation
O(v/nlog n). [Badanidiyuru et al. 2012]
But, f cannot be found by polynomially many value queries.
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Extensions

Existential Approximations
Consider the statement: for a non-negative function f : 2l — R
with f(()) = 0, there exists a “"simple” function f with

F(S) < £(S) < V/n-£(S).
» True for any monotone, submodular function. [This talk]

» True for any fractionally subadditive (XOS) function.
[Balcan et al. 2012], [Badanidiyuru et al. 2012]

» True for any (non-monotone) symmetric, submodular function.
[Balcan, Harvey, lwata 2012]

» True for any subadditive function, with approximation
O(v/nlog n). [Badanidiyuru et al. 2012]
But, f cannot be found by polynomially many value queries.

Open Question

True for any submodular function?
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Other Notions of Approximation

Suppose f : 2" — [0,1] is submodular.
Then f is within />-distance € to

» a function of O(Ei2 Iog%) variables (a “junta”).
[Feldman-Vondrak '13]
> a polynomial of degree O(%). [Cheragchi et al. '11]

» a polynomial of degree 0(64% Iog%).
Moreover, the “4/5" is optimal! [Feldman-Vondrak '15]
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