CPSC 421: Introduction to Theory of Computing Practice Problem Set #1, Not to be handed in

- 1. Let L be a regular language. Let $L' \subseteq L$. Is L' necessarily regular? Why?
- 2. A language L is called *finite* if it contains finitely many strings. Prove that every finite language is regular.
- 3. Find regular expressions for the following languages.
 - (a) { w : w contains the substring 0101 }
 - (b) { w : w has length at least 3 and its third symbol is a 0 }
 - (c) { w : w starts with a 0 and has odd length, or starts with a 1 and has even length }
 - (d) { w : w is any string except 11 and 111 }
- 4. Can the following sets of strings be accepted by finite automata? Justify your answers!
 - (a) $\{1^n : n \text{ is a prime number}\};$
 - (b) $\{0^{2n}1^{2m} : n \text{ and } m \text{ are integers}\};$
 - (c) $\{x : x \text{ is a binary power of two}\};$
 - (d) $\{x : \text{the center symbol of } x \text{ is a } 1\}.$
- 5. (A Worked Problem). Let S be a language. Show that $S^* = (S^*)^*$. Solution: We need to show that $S^* \subseteq (S^*)^*$ and $(S^*)^* \subseteq S^*$. To show that $S^* \subseteq (S^*)^*$, recall that any word in a set is also in the set's Kleene closure. For the other inclusion, suppose that $w \in (S^*)^*$. Then

 $w = w_1 \cdots w_n$

for some $n \ge 0$, where $w_i \in S^*$ for all $i \in \{1, \ldots, n\}$. Since $w_i \in S^*$ for every *i*, it follows that

 $w_i = w_{i,1} \cdots w_{i,k_i}$

for some $k_i \ge 0$, where $w_{i,j} \in S$ for all $j \in \{1, \ldots, k_i\}$. Then

 $w = w_{1,1} \cdots w_{1,k_1} w_2 \cdots w_{2,k_2} \cdots w_n \cdots w_{n,k_n},$

where $w_{i,j} \in S$. That is, w is the concatenation of a finite number of words $(k_1 + \cdots + k_n \text{ words})$ in S, so by definition of the star operation, $w \in S^*$.

- 6. Show that the regular sets are not closed under infinite union by producing an infinite family of regular sets whose union is not regular.
- 7. An *epsilon move* takes place when a finite automaton reads and changes state but does not move its tape head. Does this new operation add power to finite automata? Justify your answer.

8. Let $\Sigma = \{0, 1, +, =\}$ and

 $ADD = \{x = y + z : x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$

Show that ADD is not regular.

9. We can use closure properties to help prove certain languages are not regular. Start with the fact that the language

 $L_{0n1n} = \{0^n 1^n : n \ge 0\}$

is not regular. Prove the following languages not to be regular by transforming them, using operations known to preserve regularity, to L_{0n1n} :

(a)
$$\{0^i 1^j : i \neq j\};$$

(b) $\{0^n 1^m 2^{n-m} : n \ge m \ge 0\}.$