
CPSC 421: Introduction to Theory of Computing
Assignment #7, due Tuesday November 15th by 11:59pm (midnight), via Gradescope

[10] 1. Suppose that

• A ⊆ Σ∗ is NP -complete,

• B ⊆ Σ∗ is in P ,

• A ∩B = ∅, and

• A ∪B 6= Σ∗. That is, there exists a string z ∈ Σ∗ \ (A ∪B) that is known to you.

Prove that A ∪B is NP -complete.

[10] 2. In class (and in Sipser Theorem 7.32) a reduction f is described showing that 3SAT ≤P

CLIQUE. In class we described the independent set problem:

INDSET = { 〈G, k〉 : G has an independent set of size k } .

We described a reduction g showing that CLIQUE ≤P INDSET . The definition was:

g : input w ∈ Σ∗

If w not of the form 〈G, k〉, output w
Otherwise

Compute Ḡ, the complement of G
Output 〈Ḡ, k〉

The combined reduction g ◦ f (which applies f , then g) shows that 3SAT ≤P INDSET .

The following picture shows the graph H obtained by starting from some Boolean formula φ
(in 3CNF form) then applying g ◦f . (The reduction does not actually put colours on the edges
or numbers on the vertices. I added the colours to make the picture easier on your eyes. I
added the numbers to make part (c) easier to answer. )
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[1] a. Actually, the reduction g ◦ f produces a string of the form 〈H, k〉. What is the value of
k produced by this reduction?

[6] b. What is a Boolean formula φ that would produce this graph H? Is this formula satisfi-
able?

[3] c. What is the maximum size of an independent set in the graph H? Find a maximum
cardinality independent set (using the numbers on the vertices to indicate which vertices
you have chosen).

[15] 3. The “Interval Depth” problem is as follows. Given a set of n intervals on the real line, we
would like to determine the largest subset of these intervals that contain a common point.
(Each interval is of the form [x, y] where x, y ∈ R and x < y.)

We may write the Interval Depth problem as a language INTDEPTH, which contains strings
of the form 〈k, x1, y1, . . . , xm, ym〉, where xi < yi, and there exist k intervals containing a
common point.

[7] a. Describe a polynomial-time reduction from INTDEPTH to CLIQUE. (That is, prove
INTDEPTH ≤P CLIQUE.)

Hint: You may use Helly’s theorem without proof.

[5] b. Describe and analyze a polynomial-time algorithm for INTDEPTH.

[3] c. Why don’t these two results imply that P = NP?
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[5] 4. This question is about Sipser’s proof of Theorem 7.37 (the Cook-Levin theorem). (Beware:
other proofs that you might find in other books or online resources might be different. In
particular, they might not use the notion of a “configuration”.)

Each row of the tableau is supposed to be a “configuration” (defined on Sipser, page 168). How
does the formula φ ensure that each row contains exactly one state qi?

[10] 5. We showed in class that CLIQUE is NP -complete. (Sipser Theorem 7.32.) So, CLIQUE ∈ P
if and only if P = NP . Consider instead the problem

MAXCLIQUE = { 〈G, k〉 : the maximum clique in G has exactly k vertices } .

The MAXCLIQUE problem is not believed to be in NP .

[5] a. Use a polynomial-time reduction1 to show that MAXCLIQUE is NP -hard.

Hint: Think carefully about the proof in the lectures.

[5] b. Prove that if P = NP then MAXCLIQUE ∈ P .

[2] 6. OPTIONAL BONUS QUESTION:

Let us say that a boolean formula is a “four-occurrence CNF formula” if it is in conjunctive
normal form and every variable appears at most four times. Define

CNF4 = { 〈φ〉 : φ is a satisfiable, four-occurrence CNF formula } .

It is known that CNF4 is NP-complete.

Let us say that a boolean formula is a “four-occurrence 4CNF formula” if it is in conjunctive
normal form, every variable appears at most four times, and every clause contains exactly four
literals (no repetitions). Define

4CNF4 = { 〈φ〉 : φ is a satisfiable, four-occurrence 4CNF formula } .

Prove that 4CNF4 is in P .

1According to the definition we gave in class, and also in Sipser’s Definition 7.29.
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