CPSC 421: Introduction to Theory of Computing
Assignment \#7, due Tuesday November 15th by 11:59pm (midnight), via Gradescope
[10] 1. Suppose that

- $A \subseteq \Sigma^{*}$ is $N P$-complete,
- $B \subseteq \Sigma^{*}$ is in P,
- $A \cap B=\emptyset$, and
- $A \cup B \neq \Sigma^{*}$. That is, there exists a string $z \in \Sigma^{*} \backslash(A \cup B)$ that is known to you.

Prove that $A \cup B$ is $N P$-complete.
[10] 2. In class (and in Sipser Theorem 7.32) a reduction f is described showing that $3 S A T \leq_{P}$ $C L I Q U E$. In class we described the independent set problem:

$$
I N D S E T=\{\langle G, k\rangle: G \text { has an independent set of size } k\} .
$$

We described a reduction g showing that $C L I Q U E \leq_{P} I N D S E T$. The definition was:

```
g : input w}\in\mp@subsup{\Sigma}{}{*
    If w not of the form \langleG,k\rangle, output w
    Otherwise
        Compute }\overline{G}\mathrm{ , the complement of G
        Output \langle\overline{G},k\rangle
```

The combined reduction $g \circ f$ (which applies f, then g) shows that $3 S A T \leq_{P} I N D S E T$.
The following picture shows the graph H obtained by starting from some Boolean formula ϕ (in 3CNF form) then applying $g \circ f$. (The reduction does not actually put colours on the edges or numbers on the vertices. I added the colours to make the picture easier on your eyes. I added the numbers to make part (c) easier to answer.)

[1] a. Actually, the reduction $g \circ f$ produces a string of the form $\langle H, k\rangle$. What is the value of k produced by this reduction?
[6] b. What is a Boolean formula ϕ that would produce this graph H ? Is this formula satisfiable?
[3] c. What is the maximum size of an independent set in the graph H ? Find a maximum cardinality independent set (using the numbers on the vertices to indicate which vertices you have chosen).
[15] 3. The "Interval Depth" problem is as follows. Given a set of n intervals on the real line, we would like to determine the largest subset of these intervals that contain a common point. (Each interval is of the form $[x, y]$ where $x, y \in \mathbb{R}$ and $x<y$.)
We may write the Interval Depth problem as a language INTDEPTH, which contains strings of the form $\left\langle k, x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right\rangle$, where $x_{i}<y_{i}$, and there exist k intervals containing a common point.
[7] a. Describe a polynomial-time reduction from INTDEPTH to CLIQUE. (That is, prove $I N T D E P T H \leq_{P} C L I Q U E$.)
Hint: You may use Helly's theorem without proof.
[5] b. Describe and analyze a polynomial-time algorithm for INTDEPTH.
[3] c. Why don't these two results imply that $P=N P$?
[5] 4. This question is about Sipser's proof of Theorem 7.37 (the Cook-Levin theorem). (Beware: other proofs that you might find in other books or online resources might be different. In particular, they might not use the notion of a "configuration".)
Each row of the tableau is supposed to be a "configuration" (defined on Sipser, page 168). How does the formula ϕ ensure that each row contains exactly one state q_{i} ?
[10] 5. We showed in class that CLIQUE is NP-complete. (Sipser Theorem 7.32.) So, CLIQUE $\in P$ if and only if $P=N P$. Consider instead the problem

MAXCLIQUE $=\{\langle G, k\rangle$: the maximum clique in G has exactly k vertices $\}$.
The MAXCLIQUE problem is not believed to be in NP.
[5] a. Use a polynomial-time reduction ${ }^{1}$ to show that $M A X C L I Q U E$ is $N P$-hard.
Hint: Think carefully about the proof in the lectures.
[5] b. Prove that if $P=N P$ then MAXCLIQUE $\in P$.

[2] 6. OPTIONAL BONUS QUESTION:

Let us say that a boolean formula is a "four-occurrence CNF formula" if it is in conjunctive normal form and every variable appears at most four times. Define

$$
C N F_{4}=\{\langle\phi\rangle: \phi \text { is a satisfiable, four-occurrence CNF formula }\} .
$$

It is known that $C N F_{4}$ is NP-complete.
Let us say that a boolean formula is a "four-occurrence 4CNF formula" if it is in conjunctive normal form, every variable appears at most four times, and every clause contains exactly four literals (no repetitions). Define

$$
4 C N F_{4}=\{\langle\phi\rangle: \phi \text { is a satisfiable, four-occurrence 4CNF formula }\} .
$$

Prove that $4 C N F_{4}$ is in P.

[^0]
[^0]: ${ }^{1}$ According to the definition we gave in class, and also in Sipser's Definition 7.29.

