CPSC 421: Introduction to Theory of Computing Assignment \#6, due Tuesday November 1st by 11:59pm, via Gradescope
[8] 1. Recall that $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is the set of integers. Let $\mathcal{C}=\{m, a, c, o, s\}$. Let

$$
\mathcal{F}=\{\text { function } f: f: \mathbb{Z} \rightarrow \mathcal{C}\}
$$

be the set of all functions whose domain is \mathbb{Z} and whose co-domain is \mathcal{C}. Prove that \mathcal{F} is uncountable by finding an injection from an uncountable set to \mathcal{F}.
[7] 2. Define the language

$$
B_{T M}=\{\langle M, w\rangle: M \text { is a Turing machine that rejects input } w\} .
$$

Describe a reduction $B_{T M} \leq_{T} H A L T_{T M}$. Argue briefly that this reduction is correct.
[10] 3. Let C be any language $C \neq \Sigma^{*}$. Let

$$
B(C)=\{\langle N\rangle: N \text { is a TM and } L(N) \nsubseteq C\}
$$

Show that, for every such C, the language $B(C)$ is undecidable.
Hint: Let z be any string in $\Sigma^{*} \backslash C$. Your argument should use z in an important way.
[10] 4. [5] a. In class we claimed that, if a polynomial-time algorithm is discovered for some problem, it is usually possible to discover a reasonably efficient algorithm, say one running in $O\left(n^{5}\right)$ time.
We could try to formalize this by saying that $P \subseteq \operatorname{TIME}\left(n^{5}\right)$. Is this a true statement? Explain why or why not. (You may refer to theorems from class or the textbook.)
[5] b. Another standard complexity class is $E=\bigcup_{c>0} \operatorname{TIME}\left(2^{c n}\right)$. Is it true that $E=E X P$? Explain why or why not. (You may refer to theorems from class or the textbook.)
[20] 5. Let us consider a decision problem about a generalized form of Sudoku. (The case $n=3$ corresponds to ordinary Sudoku.) A problem instance consists of an integer $n \geq 3$ and a twodimensional grid of cells, with n^{2} rows and n^{2} columns. In the initial problem instance, each cell is either blank or contains a number in $\left\{1, \ldots, n^{2}\right\}$.
The goal is to place a number into every blank cell such that:
(1) Each column contain every number in $\left\{1, \ldots, n^{2}\right\}$ exactly once.
(2) Each row contain every number in $\left\{1, \ldots, n^{2}\right\}$ exactly once.
(3) For every $i, j \in\{0, \ldots, n-1\}$, the square at the intersection of rows $\{n i+1, \ldots, n(i+1)\}$ and columns $\{n j+1, \ldots, n(j+1)\}$ contains every number in $\left\{1, \ldots, n^{2}\right\}$ exactly once.
[6] a. The decision problem $S U D O K U$ is: given an initial problem instance (in which each cell could be blank or contain a number), decide whether the blanks can be filled in such that conditions (1)-(3) are satisfied. Show that SUDOKU is in NP.
[9] b. Suppose that someone proves that $S U D O K U$ (the decision problem) is in P. Give a polynomial-time algorithm with the following behavior: given an initial problem instance (in which each cell could be blank or contain a number), output either:

- A solution, i.e., a value for each cell such that conditions (1)-(3) are satisfied, or
- "Reject" if there is no way to satisfy conditions (1)-(3).
[5] c. Suppose that the initial problem instance has half of its entries blank, and that conditions (1)-(3) can be satisfied. Suppose that a solution is written down in binary. How many bits does it take to write down this solution? You should explain your answer, and you can use Big-O notation.
[2] 6. OPTIONAL BONUS QUESTION: Fix any finite alphabet Σ. Let

$$
\mathcal{A}=\left\{A \subseteq \Sigma^{*}: A \text { is regular and } A \text { has infinite cardinality }\right\} .
$$

Prove that there is a language $C \subseteq \Sigma^{*}$ such that $C \cap A$ is not recognizable for all $A \in \mathcal{A}$.

